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Nonlinear Motion Control of Mobile Robot 
Dynamic Model 

Jasmin Velagic, Bakir Lacevic and Nedim Osmic 
University of Sarajevo 

Bosnia and Herzegovina 

1. Introduction     

The problem of motion planning and control of mobile robots has attracted the interest of 
researchers in view of its theoretical challenges because of their obvious relevance in 
applications. From a control viewpoint, the peculiar nature of nonholonomic kinematics and 
dynamic complexity of the mobile robot makes that feedback stabilization at a given posture 
cannot be achieved via smooth time-invariant control (Oriolo et al., 2002). This indicates that 
the problem is truly nonlinear; linear control is ineffective, and innovative design techniques 
are needed. 
In recent years, a lot of interest has been devoted to the stabilization and tracking of mobile 
robots. In the field of mobile robotics, it is an accepted practice to work with dynamical 
models to obtain stable motion control laws for trajectory following or goal reaching (Fierro 
& Lewis, 1997). In the case of control of a dynamic model of mobile robots authors usually 
used linear and angular velocities of the robot (Fierro & Lewis, 1997; Fukao et al., 2000) or 
torques (Rajagopalan & Barakat , 1997; Topalov et al., 1998) as an input control vector. The 
central problem in this paper is reduction of control torques during the reference position 
tracking. In the case of dynamic mobile robot model, the position control law ought to be 
nonlinear in order to ensure the stability of the error that is its convergence to zero (Oriollo 
et al., 2002). The most authors solved the problem of mobile robot stability using nonlinear 
backstepping algorithm (Tanner & Kyriakopoulos, 2003) with constant parameters (Fierro & 
Lewis, 1997), or with the known functions (Oriollo et al., 2002). In (Tanner & Kyriakopoulos, 
2003) a combined kinematic/torque controller law is developed using backstepping 
algorithm and stability is guaranteed by Lyapunov theory. In (Oriollo et al., 2002) method 
for solving trajectory tracking as well as posture stabilization problems, based on the 
unifying framework of dynamic feedback linearization was presented.  
The objective of this chapter is to present advanced nonlinear control methods for solving 
trajectory tracking as well as convergence of stability conditions. For these purposes we 
developed a backstepping (Velagic et al., 2006) and fuzzy logic position controllers (Lacevic, 
et al., 2007). It is important to note that optimal parameters of both controllers are adjusted 
using genetic algorithms. The novelty of this evolutionary approach lies in automatic 
obtaining of suboptimal set of control parameters which differs from standard manual 
adjustment presented in (Hu & Yang, 2001; Oriolo et al., 2002). The considered motion 
control system of the mobile robot has two levels. The lower level subsystem deals with the 
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control of linear and angular volocities using a multivariable PI controller described with a 
full matrix. This torque control ensures tracking servo inputs with zero steady state errors 
(Velagic et al., 2005). The position control of the mobile robot is a nonlinear and it is on the 
second level. We have developed a mobile robot position controller based on backstepping 
control algorithm with the extension to rapidly decrease the control torques needed to 
achieve the desired position and orientation of mobile robot (Lacevic & Velagic, 2005). This 
is important in the case if the initial position of reference robot does not belong to the 
straight line, determined with the robot and its initial orientation. Also, we have designed a 
fuzzy logic position controller whose membership functions are tuned by genetic algorithm 
(Lacevic, et al., 2007). The main goals are to ensure both successfully velocity and position 
trajectories tracking between the mobile robot and the reference cart. The proposed fuzzy 
controller has two inputs and two outputs. The first input represents the distance between 
the mobile robot and the reference cart. The second input is the angle formed by the straight 
line defined with the orientation of the robot, and the straight line that connects the robot 
with the reference cart. Outputs represent linear and angular velocity inputs, respectively. 
The performance of proposed systems is investigated using a dynamic model of a 
nonholonomic mobile robot with the friction considered. The quality of the fuzzy controller 
is analyzed through comparison with previously developed a mobile robot position 
controller based on backstepping control algorithm. Simulation results indicated good 
quality of both position tracking and torque capabilities with the proposed fuzzy controller. 
Also, noticeable improvement of torques reduction is achieved in the case of fuzzy 
controller.  

2. Control system topology  

The proposed control system with two-level controls is shown in Fig. 1. The low level 
velocity control system is composed of a multivariable PI controller and dynamic model of 
mobile robots and actuators. The medium level position control system generates a non-
linear control law whose parameters are obtained using a genetic algorithm. 
In the following sections the design of the control system blocks from Fig. 1 is described. 
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Figure 1. Mobile robot position and velocity control 
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2.1 Dynamics of mobile robot 

In this section, a dynamic model of a nonholonomic mobile robot with the viscous friction 
will be derived first. A typical representation of a nonholonomic mobile robot is shown in 
Fig. 2. 
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Figure 2. The representation of a nonholonomic mobile robot 

The robot has two driving wheels mounted on the same axis and a free front wheel. Two 
driving wheels are independently driven by two actuators to achieve both the transition and 
orientation. The position of the mobile robot in the global frame {X,O,Y} can be defined by 
the position of the mass center of the mobile robot system, denoted by C, or alternatively by 
position A, which is the center of mobile robot gear, and the angle between robot local frame 
{xm,C,ym} and global frame. The kinetic energy of the whole structure is given by the 
following equation: 

 krrl TTTT ++= , (1) 

where Tl is a kinetic energy that is consequence of pure translation of the entire vehicle, Tr is 
a kinetic energy of rotation of the vehicle in XOY plane, and Tkr is the kinetic energy of 
rotation of wheels and rotors of DC motors. The values of introduced energy terms can be 
expressed by Eqs. (2)-(4): 

 
)(

2

1

2

1 222
cccl yxMMvT $$ +==

, (2)  

 2

2

1
θ$Ar IT = , (3) 

 2
0

2
0

2

1

2

1
LRkr IIT θθ $$ += , (4) 

where M is the mass of the entire vehicle, vc is linear velocity of the vehicle's center of mass 
C, IA is the moment of inertia of the entire vehicle considering point A, θ is the angle that 
represents the orientation of the vehicle (Fig. 2), I0 is the moment of inertia of the 
rotor/wheel complex and dθR/dt and dθL/dt are angular velocities of the right and left wheel 
respectively. 
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Further, the components of the velocity of the point A, can be expressed in terms of dθR/dt 
and dθL/dt:  

 θθθ cos)(
2

LRA

r
x $$$ += ,  (5) 

 θθθ sin)(
2

LRA

r
y $$$ += , (6) 
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r LR

2

)( θθ
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$$$ −
= . (7) 

Since θθ sin$$$ dxx AC −=  and θθ cos$$$ dyy AC += , where d is distance between points A and C, 

it is obvious that following equations follow: 

 θθθθθ sincos)(
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$$$$ d
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2

$$$$ d
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By substituting terms in (1) with expressions in equations (2)-(9), total kinetic energy of the 
vehicle can be calculated in terms of dθR/dt and dθL/dt:  
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Now, the Lagrange equations: 
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are applied. 

Here τR  and τL are right and left actuation torques and KdθR/dt and KdθL/dt are the viscous 
friction torques of right and left wheel-motor systems, respectively.  
Finally, the dynamic equations of motion can be expressed as: 

 RRLR KBA θτθθ $$$$$ −=+ , (13) 

 LLLR KAB θτθθ $$$$$ −=+ , (14) 

where 
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In this chapter we used a mobile robot with the following parameters: M=10kg, IA=1kgm2, 
r=0.035 m, R=0.175 m, d=0.05 m, m0=0.2 kg, I0=0.001 kgm2 and K/A=0.5.  
In the following section a design of both velocity and position controls will be established.   

2.2. Velocity control of mobile robot 

The dynamics of the velocity controller is given by the following equations in Laplace 
domain: 
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where ev(s) is the linear velocity error, and eω(s) is the angular velocity error. This structure 
differs from previously used diagonal structures. Transfer functions gj(s) are chosen to 
represent PI controllers: 
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The particular choice of the adopted multivariable PI controller described by equations (16) 
and (17) is justified with the following theorem.    
Theorem 1. Torque control (16) ensures tracking servo inputs u1 and u2 with zero steady 
state errors. 

Proof: When we substitute Rθ$  with ωR, Lθ$  with ωL, and consider (16), we can write another 

form of (13) and (14): 
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ωR and ωL  can be expressed in terms of ω and v as: 
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Then, equation (18) can be transformed to: 
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and further to: 
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Following equations could be easily derived from (20): 
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It is obvious that transfer functions G1 and G2 are static with gains equal to "1", which 
completes the proof. 
The velocity control loop structure is shown in Fig. 1, as an inner loop. From the simulation 
results obtained (Figs. 3 and 4), it can be seen that the proposed PI controller successfully 
tracks the given linear and angular velocity profiles. 
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Figure 3. Linear velocity step response 
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Figure 4. Angular velocity step response 

The controller parameters used for this simulation are K1=129.7749, K2=41.0233, Ti1=11.4018, 
Ti2=24.1873, which are tuned using standard GA. 
The design of position controls of mobile robot, backstepping and fuzzy logic controllers, 
will be described in the next section.    
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3. Position control of mobile robot 

The trajectory position tracking problem for a mobile robot is formulated with the 
introduction of a virtual reference robot to be tracked (Egerstedt et al., 2001) (Fig. 5). The 
tracking position error between the reference robot and the actual robot can be expressed in 
the robot frame as: 
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where T
yxq eee ]  [ θ=e .  

The position error dynamics can be obtained from the time derivative of the (23) as: 

 121 uee += ω$ ,   312 sin evee r+−= ω$ ,  23 ue =$ , (24) 

where 13cos uevv r −= and 2ur −= ωω . 
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Figure 5. The concept of tracking of a virtual reference robot 

3.1. Backstepping controller design 

In paper (Lacevic & Velagic, 2006) we proposed the following position control law that 
ensures stability  
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where p and q are positive real constants, and α > 1 and f(x) and g(x) are functions of some 

vector x∈Rm, m∈N, satisfying the condition: ∃L>0:  f(x), g(x)≥L, ∀ x∈ Rm. 
Our theorem which proved this statement is derived as follows. 
Theorem 2. Control law, given in (25), provides stability of the mobile robot model, respect 

to the reference trajectory (i.e., ( ) ),)(lim0)()(lim 3
2
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2
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kkttt

tt
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Proof: 
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Consider the Lyapunov function candidate: 
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Deriving (26), and using the expressions from error dynamics (24), we obtain: 

 
32

12
2

2
1

231
12

2
2
1321

sin)(2                    

)sin()(2),,(

eveeep

uequeepeeeV

r
−

−

++

++=

α

α

α

α$
. (27) 

Substituting u1 and u2 from (25) we get: 
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Thus, function ),,( 321 eeeV$  is uniformly continuous, ),,( 321 eeeV  tends to some positive 

finite value and ||ep(t)|| is bounded. Using Barbalat lemma, ),,( 321 eeeV$  tends to zero. 

From (28), it is obvious that ( ) ( ) Ζ∈==
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u
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. From the expression for u2 in (25) one can 

conclude that ( ) 0lim 2 =
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. 

The “obstacle” for global asymptotical stability of the system is the lack of guarantee that the 
error e3 will converge to zero. In the worst case scenario, the robot will track the reference 
cart by moving backwards. This behaviour however, was not observed in any of case 
studies. 
The parameters of both velocity and position controllers are encoded into binary 
chromosome (here, functions f and g are assumed as constants) is shown in Fig. 6. Each 
parameter is presented with 12 bits. Each individual was assigned an objective value, based 
on the following functional: 
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where 

1,16,1,5,1 321 ====== LRs aataaa . 

It is obvious that the better individual has smaller value of F. The second part of the 
expression represents penalty for the great values of control torques. The objective value for 
each individual is evaluated upon the simulation run that includes the tracking of reference 
trifolium trajectory (Figures in simulation results section). 
Simple GA with population size 51, tournament selection, uniform crossover, bit mutation, 
and elitism has been used. 
Evolution yielded following values: 
p = 1.9934,  q = 0.0530,  f = 9.8615, g = 2.9956,  K1 = 128.444,  Ti1 = 60.9756,  K2 = 29.048, Ti2 = 
31.4465. 
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Figure 6. Mapping the set of tunable parameters into chromosome 

It has been noticed, that, at the beginning of tracking, the control torques increase rapidly if 
the initial position of reference robot does not belong to the straight line, determined with 
the robot and its initial orientation (Lacevic and Velagic, 2005) (Fig. 7). 
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Figure 7. Tracking robot doesn't "see" virtual robot 

3.2. Hybrid backstepping controller design 

For improving the mentioned weakness a hybrid backstepping position controller is 
designed.  For that purpose, the following control law, which provides velocity servo 
inputs, is proposed (Lacevic & Velagic, 2005): 
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Function ωs(t) is produced, as the output of the following system (Fig. 8). 
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Figure 8. Producing ωs(t) 
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The function d(t) is given with: 

 ))())(),((atan2(sgn)( ttetetd xy θ−= . (31) 

Function α(t) is determined with the following differential equation: 
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where z(t) is practically a step function given with: 
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This way, the robot doesn't start tracking virtual robot instantly; it first rotates around its 
own axis with increasing angular velocity ωs(t), until it "sees" the virtual robot (Fig. 9). 
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Figure 9. "Seeking" a virtual robot 

In the next subsection the design procedure of proposed fuzzy position controller will be 
described. 

3.3. Design of fuzzy controller 

In order to reduce the control torques and velocity inputs, fuzzy position controller is 
designed. Fuzzy system based on Sugeno inference model with 2 inputs and 2 outputs is 
used instead of classical backstepping controller (Fig. 10). 
Inputs i1 and i2 are following signals: 
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  where f is given with: 
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Input i1 represents the distance between the mobile robot and the reference cart. Input i2 is 
the angle formed by the straight line defined with the orientation of the robot, and the 
straight line that connects the robot with the reference cart. Function f ensures that variable 

i2 belongs to the interval (-π, π] (Fig. 11). Outputs o1 and o2 represent linear and angular 
velocity inputs respectively.  

 

Figure 10. Fuzzy controller with 2 inputs and 2 outputs 
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Figure 11. Diagram of the function f 

Inputs i1 and i2 will be modeled with two trapezoidal and five triangular shape membership 
functions, respectively. Random initial setups of mentioned variables are shown in Figs. 12 
and 13. The parameters of input variables are (a1) and (b1, b2, b3, b4, b5 i b6). Outputs o1 and o2 
are represented by singleton functions with five and three membership values (Figs. 14 and 
15). These outputs are described with parameters (c1, c2, c3, c4 and c5) and (d1, d2 and d3), 
respectively. Parameters ai, bi, ci and di that determine the membership functions are 
encoded into binary chromosome in Fig 16 (the same as in a previously described 
algorithm), while the rules set remained invariant during the GA run. Parameters of velocity 
controller kept their values, obtained previously. 
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D
eg

re
e 

o
f 

m
em

b
er

sh
ip

 

i2

GN

-π π 0b2 b3 b4 b5 b6

SN Z SP GP

b1

1 

 

Figure 13. Random initial setup of input variable i2 
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Figure 14. Random initial setup of output variable o1 

www.intechopen.com



Nonlinear Motion Control of Mobile Robot Dynamic Model 

 

541 

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

 

o2

CW 

-2  0 2 

ST CCW

d1 d3d2

1 

 

Figure 15. Random initial setup of output variable o2 
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Figure 16. Representation of binary chromosome of parameters 

Finally, the rules that complete the inference model are: 
If (i1 is S) and (i2 is GN) then (o1 is B) (o2 is CW) 

If (i1 is S) and (i2 is SN) then (o1 is F) (o2 is CW) 

If (i1 is S) and (i2 is Z) then (o1 is S) (o2 is ST) 

If (i1 is S) and (i2 is SP) then (o1 is F) (o2 is CCW) 

If (i1 is S) and (i2 is GP) then (o1 is B) (o2 is CCW) 

If (i1 is G) and (i2 is GN) then (o1 is FB) (o2 is CW) 

If (i1 is G) and (i2 is SN) then (o1 is FF) (o2 is CW) 

If (i1 is G) and (i2 is Z) then (o1 is FF) (o2 is ST) 

If (i1 is G) and (i2 is SP) then (o1 is FF) (o2 is CCW) 

If (i1 is G) and (i2 is GP) then (o1 is FB) (o2 is CCW) 

Evolution of membership functions parameters is performed by identical way as in the case 
of backsteping controller design (subsection 3.1). The GA with population size 101, 
tournament selection, uniform crossover, bit mutation, and elitism has been used. Also, the 
objective function is same as in (29). Resulting membership functions for input and output 
variables are shown in Figs. 17-20. 
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Figure 17.  Membership functions for i1 
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Figure 18. Membership functions for i2 
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Figure 19. Membership functions for o1 (fast backwards, backwards, stop, forward and fast 
forward) 
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Figure 20.  Membership functions for o2 (clockwise, straight, counter clockwise) 

Important characteristic of this controller is that its outputs are inherently limited. 
Disadvantage of this concept lies in its inavility to ensure tracking of the reference cart that 
has velocities which are bigger than those that fuzzy controller can "suggest". Advantage 
lies in the fact that control velocities (and consequently, the control torques) cannot exceed 
certain limits (see simulation results in the next section). Resulting control surfaces are 
shown in Figs. 21 and 22. 

 

 

 

 

 

Figure 21.  Control surface for o1 
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Figure 22. Control surface for o2 

4. Simulation results 

The validation of proposed fuzzy controller will be tested in the comparison with 
backstepping control algorithm. The effectiveness of the both controllers is demonstrated in 
the case of tracking of a lamniscate and trifolium curves. The overall system is designed and 
implemented within Matlab/Simulink environment. We consider the following profiles: 
position, orientation, linear and angular velocities and torques. 

4.1 Simulation results with backstepping controllers 

The control performance of the ordinary and hybrid backstepping controllers will be 
illustrated in this subsection through their comparative analysis. The simulation results 
obtained are shown in Figs. 23-26.  
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 (a) (b) 
Figure 23. Tracking a lemniscate trajectory with (a) hybrid and (b) ordinary controllers 
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Figure 24. X and Y coordinate errors 
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Figure 25. Orientation error 
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 (a)  (b) 
Figure 26. Control torques of ordinary (a) and hybrid (b) backstepping controllers 
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(b) 
Figure 26. Requested power of DC motors: (a) hybrid and (b) ordinary backstepping 
controllers (ordinary controller - the first second of tracking) 

These results demonstrate the good position tracking performance (Figs. 23-25), but with 
unsatisfactory control torques values, in the case of ordinary backstepping controller, 
particularly at the beginning of tracking (Fig. 25). Both torques of ordinary backstepping 
controller, for left and right wheels, exceed 50 Nm and they can produce the unnecessary 
actuators behavior. However, the hybrid controller ensures much less values of the control 
input torques for obtaining the reference position and orientation trajectories (Fig. 25). 
Consequently, the requested power of DC motors is also much less in the case of control by 
using the hybrid controller (Fig. 26).    

4.2 Simulation results with fuzzy logic controller 

The effectiveness of the fuzzy controller is demonstrated in the case of tracking of a more 
complex trajectory then lemniscate, such as trifolium curve. The simulation results obtained 
by fuzzy logic position controller are illustrated in Figs. 27-33. From figures 27-29, it can be 
concluded that satisfactory tracking results are obtained using this controller. Also, the 
fuzzy controller ensures much less values of the control input velocities (Fig. 30) then 
ordinary backstepping controller (Fig. 31) for obtaining the reference position and 
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orientation trajectories in comparison with the backstepping controller. Consequently the 
significant decreasing of wheel torques with fuzzy control is achieved (Figs. 32). The 
absolute torque values of both wheels not exceed 2 Nm. These values are 30-40 times less 
then torque values achieved with backstepping controller. The time response of wheel 
torques of ordinary backstepping controller is shown in Fig. 33. 

 
Figure 27. Tracking the trifolium trajectory 
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Figure 28. Time history of x and y coordinates 
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Figure 29. Orientation of the robot 
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Figure 30. Linear (v) and angular (w) velocity outputs of fuzzy controller 
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Figure 31. Linear (v) and angular (w) velocity outputs of ordinary backstepping controller 
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Figure 32. Right and left wheel torques of fuzzy 
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Figure 33. Right and left wheel torques of ordinary backstepping controller (first five 
seconds) 

5. Conclusions 

The experience of the design of the nonlinear position control confirmed the remarkable 
potential of backstepping and fuzzy logic in the development of effective decision laws 
capable of overcoming the inherent limitations of model-based control strategies. This paper 
focuses on design of hybrid backstepping and fuzzy position logic controls of mobile robot 
that satisfied a good position tracking performance with simultaneously satisfactory control 
of velocities, which has an impact on wheel torques. In our previously designed 
backstepping controller a good tracking performance was obtained. However, its main 
shortcoming is unsatisfactory control velocities values, particularly at the beginning of 
tracking. Control parameters of backstepping controller and membership functions of fuzzy 
controller are adjusted by genetic algorithms. Advantage of the proposed fuzzy controller, 
and also hybrid backstepping controller, lies in the fact that control velocities (and 
consequently, the control torques) cannot exceed certain limits. Consequently, these 
controllers radically decreased the control velocities without major impact on tracking 
performance. Finally, from the simulation results obtained, it can be concluded that the 
proposed hybrid backstepping and fuzzy design achieve the desired results. Future work 
will include the investigation of a fuzzy stability of the proposed fuzzy logic position 
system. 
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