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1. Introduction 

In order to perform motion planning it is usually necessary to define some representation of 
the environment and have some method of determining the robot’s location in that 
environment.  Mapping is the problem of determining the representation, while localization 
is the problem of finding the robot’s position.  Many probabilistic techniques for localization 
depend on the map being defined as a finite sized set of landmarks which the robot’s 
sensors observe, giving their relative displacement from the robot.  However, physical 
sensors do not usually detect landmarks unambiguously.  Instead, they report the distance 
to the nearest obstacle, or return an image of the environment.  In order to use a landmark 
based algorithm, the sensor readings must be pre-processed in a separate step to convert the 
raw sensor data into a set of detected landmarks, such as in [Leonard and Durrant-Whyte 
1991].  The additional step introduces more error into any algorithm, as well as discarding 
much of the sensor information which does not detect any landmark.   
One of the primary drawbacks of landmark based maps is the data association problem.  
Because raw sensor data is not labelled with the correct landmark detected, the sensor 
processing must somehow determine exactly which landmark was observed.  If mistakes are 
made the localization and mapping algorithms which depend on the sensor data will fail.  In 
order to compensate for the data association problem, many localization and SLAM 
algorithms include a method for determining the associations between the sensor data and 
the landmarks, however these techniques add significantly to the complexity of the 
solutions.  Also, they do not solve the problem of actually finding landmarks in the raw 
sensor readings.  Some examples of these algorithms include GraphSLAM [Folkesson and 
Christensen 2004] and Sparse Extended Information Filters (SEIF) [Thrun et al. 2004], both of 
which can be implemented to handle data associations in a probabilistic way as described in 
[Thrun et al. 2005].  Even with these integrated solutions, the data association problem adds 
a significant amount of error. 

2. Occupancy Grid Maps 

One common technique for map representation that does not suffer from data associations is 
to use occupancy grid maps to approximate the environment.  An occupancy grid map 
represents the environment as a block of cells, each one either occupied, so that the robot 
cannot pass through it, or unoccupied, so that the robot can traverse it.  Unless your 
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environment is composed entirely of cubes, occupancy grid maps cannot be absolutely 
accurate, but by choosing a small enough cell size they can provide all the necessary data.  
Any sensor will report the status of a set of grid cells that can be checked without reference 
to the rest of the map.  An early implementation of occupancy grid maps was used in 
[Moravec 1988] to automatically generate a map of the environment.  Sensor readings are 
compared to the map, altering the probability that observed cells are occupied.  For 
example, a sonar sensor returns the closest object within a cone, so the cells in the volume of 
the cone closer than the reading are probably unoccupied.  Moravec represents each cell as a 
probability of being traversable and initializes them to an unknown value.  He describes a 
probabilistic technique to update cells for various types of sensors and gives a technique to 
allow the map to be updated as the robot moves.  Unfortunately, this technique is not 
actually localization and does not help the robot know its own position.  The map is 
maintained relative to the robot, rather than in a global frame of reference.  In other words, 
the robot is assumed to be at a fixed location, while the map moves around it.  As the robot 
moves, the map is blurred according to the motion.  The robot’s sensors can correct the map 
in its immediate area, but unobserved portions of the map must blur into uselessness.  There 
is also no way to discover the robot’s location in reference to previously visited locations. 
Although the technique is problematic as a localization algorithm, it provides a very 
powerful way to represent the environment.  Using an occupancy grid map allows the raw 
sensor data to be used without trying to detect and identify landmarks.  Also, since raw data 
is used, no information is discarded because it does not correspond to a landmark.  The only 
problem is that there are a huge number of map features, one for each grid cell.  Algorithms 
which consider the relation of the robot to a set of distinct landmarks cannot be applied 
when the number of features is so large.  Thus, using occupancy grid maps limits the type of 
localization and mapping techniques that can be used. 

2.1 Mapping Technique 

To create an occupancy grid map it is necessary to determine the occupancy probability of 
each cell.  In order to do this efficiently the assumption is often made that map cells are 
independent.  Although this is not strictly accurate, especially when considering adjacent 
cells representing the same physical object, it greatly simplifies the mapping algorithm 
without significantly increasing the error.  As a result, the probability of a particular map, 
m, can be factored into the product of the individual probabilities of its cells.  The map 
depends on the robot’s location history, xt = {x0, …, xt}, and the sensor readings at each 
location in the path, zt 
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The probability of a particular cell is easy to determine given the robot’s position and sensor 
readings, since it is determined by whether the robot observes the cell as unoccupied or 
occupied.  Since the probability is determined by the robot’s entire history, all these sensor 
readings must be taken into account.  The mapping algorithm usually builds the cell 
probabilities up iteratively, considering each {xt, zt} from time t = 0 to the most recent 
reading.  Although these readings could be considered in any order, the iterative processing 
makes the most sense, allowing additional readings to be added and leading eventually to 
simultaneous mapping and localization (SLAM) solutions such as described in section 4. 
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With occupancy grid maps, the mapping step must determine the probability of each cell, as 
represented by equation (1).  Proceeding iteratively, the map cells are updated according to 
the position and sensor readings.  Of course, it would require significant processing to 
update the entire map on each step, but this is unnecessary.  Only the cells which are 
actually observed need to be updated.  Each cell that is perceived by the sensor given the 
robot’s position is updated depending on whether the sensor indicates it is occupied or 
unoccupied.  Although the map is defined by the occupancy probability, for simplicity the 
actual values for each cell, p(mn | xt, zt), are calculated in log odds form.  
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p(mn) is a constant prior occupancy probability, so the only important part of equation (3) is 
p(mn | xt, zt), which is called the inverse sensor model.  Although a highly accurate inverse 
sensor model is difficult to determine, a simplified implementation that returns a high value 
if the sensors report an object in the cell and a low value otherwise is often acceptable.  
Occupancy grid mapping updates a map according to a sensor reading at a location so that, 
as evidence accumulates, the map becomes correct.  Of course, the success of the mapping 
algorithm depends on the location xt being correct, just as the success of localization 
depends on an accurate map. 

3. MCL 

Monte Carlo Localization uses models of various sensors, together with a recursive Bayes 
filter, to generate the belief state of a robot’s location.  In fact, MCL is a specific instance of a 
POMDP (Partially Observable Markov Decision Process).  A standard form of MCL uses a 
motion model to predict the robot’s motion together with a sensor model to evaluate the 
probability of a sensor reading in a particular location.  The sensor model necessarily 
includes a static map of the environment.  The algorithm can be applied to virtually any 
robot with any sensor system, as long as these two models can be created.  One common 
implementation where MCL is very successful is on a wheeled robot using a range sensor 
such as a laser rangefinder.  A benefit of this combination is that the map and location used 
by the algorithm are in a human readable format.  Although I give the general algorithm in 
the following sections, which should be applicable to other robots, where application 
specific details are required, I assume the type of robot as described. 
Other localization algorithms than MCL exist, but they are currently much more limited 
than MCL and require specific environment features in order to be effective.  Most other 
localization algorithms require that the map be composed of discrete landmarks and often 
they increase in runtime with the size of the map.  Extended Kalman Filter (EKF) 
localization [Leonard and Durrant-Whyte 1991] is an alternative technique that has both of 
these problems, which are exacerbated when landmarks cannot be identified exactly.  Even 
with various optimizations to improve execution, such as using the unscented transform 
(UKF localization) [Julier and Uhlmann 1997] or multi hypothesis tracking (MHT), the 
algorithm still applies primarily to feature based maps [Thrun et al. 2005].  Since a large, 
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indoor environment is unlikely to have discrete, unambiguous features, these techniques are 
ineffective for the type of problem we are considering.  In order to apply them it is usually 
necessary to preprocess the map as in [Leonard and Durrant-Whyte 1991] to create an 
artificial landmark based map.  The map processing step introduces additional error and 
discards much of the information provided by the original map.  Another serious problem is 
that these alternative techniques cannot handle multiple hypotheses of the robot’s location.  
Each one maintains only a single Gaussian representation of position.  MCL, in contrast, can 
maintain multiple separate locations.  Markov localization using probabilities over a grid is 
also possible, however it increases in runtime with the size of the state space.  Since a robot 
in a real, dynamic environment requires a real valued state space, true Markov grid based 
localization is usually impossible.  Because of these drawbacks, MCL is currently one of the 
most effective localization techniques and the most commonly used, especially for real 
robots operating in real environments. 

3.1 Recursive Bayes Filter  

MCL is an implementation of a recursive Bayes filter.  The posterior distribution of robot 
poses as conditioned by the sensor data is estimated as the robot’s belief state.  A key detail 
of the algorithm is the Markovian assumption that the past and future are conditionally 
independent given the present.  For a robot, this means that if its current location is known, 
the future locations do not depend on where the robot has been.  In virtually any 
environment this is the case, so making the assumption is reasonable in general. 
To produce a recursive Bayes filter, we represent the belief state of the robot as the 
probability of the robot’s location conditioned by the sensor data, where sensors include 
odometry (ut). 

 
),...,,,...,,|()( 0101 uuuzzzxpxBel tttttt −−=  (4) 

xt represents the robot’s position at time t, zt the robot’s sensor readings at time t and ut is 
the motion data at time t.  To simplify the subsequent equations we use the notation at = {at, 
…, a0}. 
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While this equation is a good representation of the problem, it is not much use since it 
cannot be calculated as is.  By applying a series of probabilistic rules, together with the 
Markovian assumption, equation (5) is converted into a more usable form.   
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Obviously, p(xt-1 | zt-1, ut-1) is Bel(xt-1), giving us the recursive equation necessary for a 

recursive Bayes filter.  η is a normalization constant that can be calculated by normalizing 
over the state space.  p(zt | xt) is the sensor model, representing the probability of receiving 
a particular sensor reading given a robot’s location.  Finally, p(xt | xt-1, ut) is the motion 
model.  It is the probability that the robot arrives at location xt given that it started at 
location xt-1 and performed action ut.  The sensor and motion model are representations of 
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the physical components of the robot and must be determined experimentally for each robot 
and sensor device. 

3.2 Particle Approximation 

It would appear that, given the two models, equation (6) is all that is necessary to perform 
localization with MCL.  Unfortunately, a problem occurs with the integral.  The equation 
requires integrating over the entire state space.  Although we can evaluate the models at any 
point in the space, there is no closed form to the integral.  Further, even a simple robot 
moves in a continuous, 3 dimensional state space with an x and y location together with an 
angle of rotation.  Calculating the integral over this space is impossible, especially for a real 
time algorithm.  In order to solve this problem, we approximate the continuous space with a 
finite number of weighted samples. 
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The integral over the space becomes a sum over the finite number of particles. 
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Of course, approximating the space results in a certain amount of error when low 
probability locations are not represented.  If the robot is really at one of these locations it can 
never be localized.  However, if the number of particles is well chosen MCL works properly 
in most situations. 

3.3 Resampling 

One problem with using a finite set of particles to represent an infinite space is that the 
weight of particles representing a low probability location will quickly decrease and is 
unlikely to ever increase again.  Similarly, if there are too few particles representing a high 
probability location, they will disperse and eventually lose the robot’s position.  What is 
needed is a method for relocating low probability particles to high probability locations and 
recalculating their probability.  The method used in MCL is resampling.  After the particles 
are weighted by the sensor model they are resampled to represent the high probability 
locations.  N particles are chosen randomly from the list of N weighted particles, with 
probability according to their weight.  These particles are chosen with replacement, so that 
after a particle is chosen it remains in the original list and has the same probability of being 
sampled again.  A high probability particle might be selected several times and so multiple 
copies might occur in the new list, while a low probability particle might never be chosen at 
all and its location would die out.  The resampled list will thus have multiple particles in 
high probability locations and none in low probability ones.  Another effect of resampling is 
to set all the sample weights to 1 / N.  Instead of having individual weights representing the 
probability of a location, the number of particles indicates the probability.  A high 
probability location will have many particles and thus, if the robot is present, it is likely to 
be tracked as it moves.  Of course, low probability locations will die out and be 
unrepresented, so localization will fail if the robot is truly at one of these positions.   
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3.4 Bias 

Representing an infinite space with a finite number of samples necessarily introduces some 
error.  In order to accurately represent high probability locations, the particle filter discards 
lower probability regions as their low likelihood particles are not selected during the 
resampling process.  Bias is the name given to the problem that MCL tends to consider only 
the highest probability locations, letting others be removed.  The effect is that MCL is biased 
towards areas that have a large number of particles, tending to converge, over time, to a 
single cluster in the highest probability location.  However, in most situations the high 
probability location contains the robot and so the convergence provides the correct result. 

3.5 Algorithm 

As the robot moves, it reports its odometry and sensor data to the MCL algorithm.  After 
each reported move every particle is moved according to the random motion model, based 
on the motion actually reported.  The particles are then updated with a weight determined 
by the sensor model for the particle’s location.  Finally, the particles are resampled by 
repeatedly choosing samples randomly, with replacement, from the current set, according to 
the weights assigned by the sensor model. 

1: Create a set {xt[n], wt[n]} from Xt-1 by repeating N times: 

1.1:  Choose a particle xt-1[n] from Xt -1.  Because of the resampling step this 
particle may be selected either iteratively or randomly. 

1.2:  Next, draw a particle xt[n] ~ p(xt | ut, xt-1[n]).  This particle is the result of a 
random motion according to the motion model. 

1.3:  Set the weight of the particle using the sensor model: wt[n] = p(zt | xt[n]). 

2: Resample randomly according to weight from {xt[n], wt[n]} into Xt, which causes the 
particle weights to become uniform. 

Table 1. MCL Algorithm 

The effect of resampling is to replace the weight of the individual particles with the number 
of particles at that location.  On the robot’s next move the particles at a high probability 
location will spread out as they are moved randomly according to the motion model, with at 
least one landing in the robot’s new location.  Then the resampling will cause more particles 
to appear at the correct location, while incorrect locations die out.  Assuming that the 
models and map are accurate, MCL will correctly track the robot’s changing location.  
Various parameters can be tuned manually to adjust the rate of convergence and the 
behaviour of the models.  Once the belief over the robot’s location is generated, a single 
location for the robot can be found by looking at the mean of the particles. 

3.6 Sensor Model 

Corrections to the robot’s location as determined by dead reckoning are made according to 
the robot’s other sensors.  The sensors, usually some type of rangefinder device, determine 
the weight of each particle.  The weight is calculated according to p(zt | xt) which represents 
the sensor model, the probability of getting a particular sensor reading given a suggested 
robot location.  The sensor model depends heavily on the exact physical sensors installed on 
the robot, so there can be no general equation.  Since the model is not sampled as is the 
motion model, it is often implemented as a large, precalculated table, where any particular 
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sensor probability can be quickly looked up.  A table implementation allows a more 
complex function to be used than could be calculated in real time.  One function that is 
sometimes used for a laser rangefinder device gives the probability of each possible 
returned range value, given each possible actual distance to a wall.  Such a function can be 
composed of a Gaussian distribution centered on the actual wall distance, since that distance 
is the most probable return value, together with other functions depending on the features 
of the physical device.  Common additions are an exponential function multiplied by a 
linear one representing false negative values and another exponential function representing 
false positives.  The overall probability of a laser reading, which is composed of multiple 
range values in different directions, is the product of the probability of each range value.  
Given a robot position, the distance to the wall along each sensor ray can be determined 
from the map and the probability of the range value returned given that distance can be 
looked up from the table.  These probabilities are then multiplied together to get p(zt | xt). 

3.7 Motion Model 

The motion model p(xt | xt-1, ut) is a critical part of MCL.  Unlike the sensor model, which 
gives the probability of getting a specific sensor reading at a particular location, it is 
necessary to sample from the motion model.  Given a starting location and a reported 
motion (xt-1 and ut), MCL requires that we be able to choose a final location randomly 
according to the motion model.  This requirement precludes us from using any motion 
model that is very complex.  In fact, most motion models are a combination of simple 
Gaussian distributions.  For a holonomic wheeled robot, the most common representation is 
with two kinds of motion leading to three kinds of error.  Each movement of the robot is 
represented as a linear movement followed by a stationary turn.  Although a particular 
robot probably does not follow these exact motions, if we break the robot’s motion into 
small increments we can use them as an approximation.   
These two motions are often implemented using two Normal distributions for many 
common robots.  However, the algorithms described in this section should work for any 
model, provided it is possible to sample from it.  In general, some collection of Gaussians 
works well, since they are often good approximations to a physical system while at the same 
time being easy to sample from and optimize. 

3.8 Raytracing 

Calculation of the sensor model p(zt| xt) involves determining the probability of receiving a 
particular sensor reading given the location in the environment.  For a laser rangefinder the 
readings are distance measurements.  Given a robot’s possible location in the map, the 
expected distance to the wall is usually determined by raytracing from the robot to the 
nearest wall.  The robot’s physical sensors determine its actual distance to the wall and, once 
the distance from the map and the distance from the world are known, the probability can 
be calculated either mathematically or by a table lookup. 

4. FastSLAM 

4.1 SLAM Problem 

The problem of determining the map and robot position at the same time is called 
Simultaneous Localization and Mapping, (SLAM).  It involves finding the distribution over 
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a state space which includes both robot position and the complete map.  The given data is 
the sensor and odometry information from the start until the current time.  Even the 
definition of SLAM results in two different problems.  Determining the map and location 
during operation of the robot requires finding only the current location xt as well as the 
static map m.  That results in the problem of online SLAM, which is intended to localize the 
robot during operation while also creating the map.  Online SLAM is concerned with 
determining p(xt, m | zt, ut), which is the state at the current time.  Using new information 
to update old estimates is not part of online SLAM, even though new information could 
update the map so that past localization could be corrected.  The other SLAM problem is 
called the full SLAM problem, and it involves finding the complete pose history of the robot 
and the map.  The probabilistic formula is p(xt, m | zt, ut), since we want all of the robot’s 
states, instead of just the current one.  The difference is that full SLAM uses current data to 
correct past estimates.  Online SLAM is used to localize the robot dynamically while full 
SLAM is often an offline algorithm concerned with finding out what the robot has already 
done.  If the robot needs to make decisions based on its location, then it is necessary to use 
online SLAM.  If the objective is to determine where a robot controlled by some other 
method, for example a human driver, has been, then full SLAM is more powerful.  Both the 
problems have an application and the various solutions are similar, although not identical.  
In fact, online SLAM is the result of removing the past poses from the full problem using 
integration. 
Although SLAM is technically the definition of a particular problem, it is also the name 
given to the current set of solutions to the problem.  These solutions all have several 
common elements which are shared by all effective solutions to both the online and full 
problems.  One of the most important factors of the SLAM solutions is correspondences.  
Since SLAM considers the map as well as the robot pose, there must be some definition of a 
correct map.  In SLAM, maps are defined as sets of objects and a correct map is one that has 
each object in the correct location.  Of course, sensors do not report the location of specific 
objects, so it is necessary to find which object each sensor reading corresponds to.  
Unfortunately, it may be difficult to determine exactly which object is being observed.  As 
we have seen, heuristic methods can be used to filter the raw sensor data into object 
locations, but any such technique will have a certain percentage of errors.  Some SLAM 
algorithms explicitly take correspondence probabilities into account, adding yet another 
term to the posteriors.  If we define ct to be the set of correspondences between sensor 
readings and objects at time t, the online SLAM problem becomes p(xt, m, ct | zt, ut), while 
the full problem is p(xt, m, ct | zt, ut).  Of course, increasing the size of the state space 
significantly increases the complexity of the problem and thus the run time of the solution.  
Many SLAM algorithms can be proved to eventually converge to the correct map, but only if 
the objects can be identified correctly.  If identification is not certain, the guarantee of 
convergence is lost.  The problem of determining which object is detected by a sensor 
reading is called the data association problem and it is the central drawback to SLAM 
algorithms.  In effect, SLAM usually creates a landmark based map, rather than a pure 
occupancy grid map.  As we have seen, correctly identifying landmarks in localization is a 
difficult problem, which can be overcome by using raw sensor readings in the MCL 
algorithm.  However, the corresponding SLAM solution suffers from additional problems. 

www.intechopen.com



Occupancy Grid Maps for Localization and Mapping 

 

389 

4.2 FastSLAM Derivation 

Simultaneous Localization and Mapping is divided into two slightly different domains.  The 
first, called online SLAM, is the problem of finding the robot's current pose xt and the map 
m, given the sensor readings zt and odometry ut.  The more complex problem is to find the 
robot's path xt = {x1, …, xt} given the same data.  Finding the complete path is called the full 
SLAM problem.  Obviously, full SLAM is the more complete problem but online SLAM can 
be derived from full by integrating out the past poses, as shown in equation (10). 

 Full SLAM : ),|,( ttt uzmxp  (9) 
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The reduced problem is called online SLAM because it is simplified enough to be solved in 
real time, whereas most full SLAM solutions require offline processing. 
One of the benefits of FastSLAM [Montemerlo et al. 2002] is that it simultaneously solves 
both the online and full SLAM problems.  Of course, any solution to the full SLAM problem 
also produces a solution to online SLAM, but FastSLAM, although it works in real time, 
solves for the entire path of the robot.  The key to FastSLAM is that if the robot's location is 
known, the locations of objects in the environment are independent.  Thus, the SLAM 
problem can be factored into localization and mapping problems.  
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The first term is obviously a localization problem which requires finding the robot's path xt 
given its odometry and sensor data.  The second term is the mapping problem which finds a 
particular feature's position, mn, given the robot's path and sensor readings.  Equation (11) 
leads to an iterative algorithm for FastSLAM where the robot's position is calculated, and 
then the map is updated based on that position.  Unfortunately, it is unlikely that at every 
step a single location for the robot can be derived.  Nor can the algorithm rely on a 
probabilistic position, since the factoring is only valid given a fixed xt.  These requirements 
lend themselves to a technique that represents the robot's location as a finite collection of 
exact states.  Fortunately, such a technique, Monte Carlo Localization (MCL), exists. 

4.3 Occupancy Grid FastSLAM 

Unlike most SLAM algorithms, it is possible to use FastSLAM on an occupancy grid map 
directly, without first processing it for landmarks.  Since the algorithm updates the map 
with reference to a given robot position, the specific representation of the map as Gaussian 
landmarks is not required.  Instead, an occupancy grid can be used and updated according 
to the standard techniques.  As in [Moravec 1988], observed cells are updated according to 
whether the sensors observed them as occupied or unoccupied.  However, since each 
particle represents an exact robot path, there is no need to blur past readings.  The grid cell 
implementation even overcomes the data association problem, since landmarks can no 
longer move, the cell being observed is exactly determined by the robot’s location.  An 
implementation called DP-SLAM, [Eliazar and Parr 2004] was able to successfully localize 
and map a real environment including a large loop. 
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The only serious problem with FastSLAM occurs with the difficult situation of loop closure.  
In other algorithms, when the robot re-enters known territory it becomes necessary to search 
a much larger set of landmarks for correspondences, possibly the entire set.  However, 
FastSLAM represents all possible robot positions in a finite set of samples.  When it closes a 
loop, it can only be successful if some particle has followed the true path.  The longer the 
loop, the greater the uncertainty of the robot’s position.  As uncertainty increases, the 
number of particles necessary to represent the belief also increases.  Eventually, there will 
not be enough particles to represent the distribution and the correct location may be lost.  
FastSLAM alone suffers the problem, since all other SLAM solutions use the correlations to 
determine the position.  The problem with particle filters is that they only represent the 
highest probability region of a distribution, whereas the Gaussian distributions used by 
other techniques represent the entire distribution.  Of course, particles can represent much 
more complex and nonlinear distributions than is possible with Gaussians.  The drawback 
to using particle filters in FastSLAM is that the number of particles maintains the diversity 
of the robot’s position, and as soon as the uncertainty goes beyond the number of particles, 
the algorithm may fail.  Thus, the size of the particle set must be tuned to the environment, 
based on the size of the longest loop, and increasing the number of particles to this extent 
may make the algorithm inefficient. 
Grid based FastSLAM is performed by combining the MCL particle filtering with the 
occupancy grid mapping algorithm using Rao-Blackwellized particle filters [Montemerlo et 
al. 2002; Thrun et al. 2005].  Each particle consists of both the robot's state and an occupancy 
grid map.  Of course, particle filtering could be used over the entire state space.  However, 
this would require a number of particles exponential in the number of state variables, in this 
case the number of cells in the map.  Instead, the factorization in equation (11) is used to 
separate the robot state from the map.  The particle filter is only used for the robot's state, 

often x, y and orientation (θ) for a terrestrial indoor robot.  The map for each particle is 
updated according to the occupancy grid mapping algorithm, with the position fixed at the 
position of the particle.  This separation allows the occupancy grid algorithm to work with a 
guaranteed position, while still allowing for uncertainty in the robot's pose.  By looking at 
the highest probability location we can determine the current best guess of the robot's 
position and the map.  At each step, the set of N particles Xt-1 is updated to Xt according to 
the following algorithm: 

1: for k = 1 to N 
2:  xt[k] ~ p(xt | xt-1[k], ut, m) 
3:  wt[k] = p(zt | xt[k], m) 

4:  ∀n. 
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5:  Xt' = Xt' ∪ <xt[k], mt[k], wt[k]> 
6:  endfor 
7: for k = 1 to N 

8:  draw i from Xt' with probability α wt[i] 

9:  Xt = Xt ∪ <xt[i], mt[i]> 
10: endfor 

Table 2. Occupancy Grid FastSLAM algorithm 
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Line 2 updates the set of particles by randomly choosing a new location for each one based 
on the previous location of the particle and the motion model.  The sensor model is used to 
determine a weight for the new location based on the sensor readings in line 3.  The primary 
difference from MCL occurs in line 4, where the occupancy probability of the map attached 
to the particle is updated according to the sensor readings used at the particle's new 
location.  Of course, these maps are maintained via the log odds ratio as in section 2.1.  
Finally, in the loop of lines 7 - 10, the updated particles are resampled.  N new particles are 
chosen randomly according to the weights, with replacement, to make the new particle set.  
Resampling has the effect of replacing the particle weight with the number of samples at a 
location.  Thus, low probability locations die out while high probability locations gather 
enough particles that, on the next update, the correct location will be selected by the motion 
model in line 2. 

5. Dynamic Maps in MCL 

One drawback to localization with MCL is that it requires a static map of the environment.  
Sensor readings are compared with the expected values from the map and the comparison 
generates the probability of the robot’s location.  Errors in the map are partially 
compensated for by increasing the error that is assumed for the sensors.  Another way to 
compensate for map errors is that the number of correct sensor readings will probably 
overrule incorrect ones.  However, because MCL combines sensor error and map error, as 
map error increases, the allowable sensor error decreases until finally the algorithm fails and 
the map must be rescanned. Each error in the map is usually a minor matter for a localized 
robot; it is the combination of minor errors that can cause problems. 
A localized robot rarely becomes mislocalized due to map errors, but this is not true of 
global localization, where the robot’s initial location is unknown.  Especially in symmetric 
environments, global localization can easily fail due to minor map errors that would be 
ignored by a localized robot. 
The approach described in this section is based on the idea that if a robot is localized it may 
reasonably expect its sensor data to reflect the environment.  If that is the case, then it 
should be possible to update the map according to the sensor data.  If a known error in the 
map is fixed, then the robot will have a greater ability to deal with any subsequent errors.  
Since global localization may depend heavily on minor features, having an updated map 
can be a great benefit. 
Violating the static map assumption and detecting changes allows localization to be more 
accurate and more robust to error.  It also provides additional information that may be 
useful in planning the robot’s activities.  Detecting opening doors and moving objects makes 
path planning more reliable, because it will be based on a more accurate representation.  
Further, when a new opening into an unexplored are is detected, the robot can add the new 
region to the map.  The dynamic map algorithm described here makes it far easier for a 
robot to be deployed long term in an environment where other agents, including humans, 
are present and making changes. 
Dynamic maps for MCL can also be implemented by identifying binary objects, such as 
doors, and tracking their status using similar probabilistic methods [Avots et al. 2002].  
There are several benefits of having explicit objects.  Since an object consists of multiple cells 
that have the same probability, each scan provides more information about the object, 
allowing its state to be altered more quickly.  Also, since most of the map is not dynamic, the 
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probability of objects can be changed much more rapidly, since changes in the objects 
probably will not be able to change the map to make an invalid location match the sensors.  
However, explicit objects need to be manually defined before execution, adding to the work 
of defining maps.  Since objects are binary, either present or absent, a moving object must be 
represented explicitly by creating a binary object at each possible location.  With the 
dynamic maps described here, an object can appear anywhere without user interference.  
Finally, the method in [Avots et al. 2002] involves a different importance factor, which 
increases the runtime logarithmically in the number of objects, making it unsuitable for 
having each map cell dynamic. 
Algorithms for simultaneous localization and mapping (SLAM) have the ability to localize 
the robot and generate the map simultaneously in real time [Montemerlo et al. 2002].  These 
algorithms are meant to dynamically alter the map in the same way as dynamic map MCL.  
Many of these methods use an algorithm which is guaranteed to converge to a correct 
solution.  However, they suffer from the data association problem.  On every sensor scan it 
must be possible to uniquely identify which feature of the map is responsible for each sensor 
reading.  If this is impossible, then the guarantee of correctness does not hold. SLAM does 
not discover and use cell correlations, so the rate of update is slower if the map changes, 
since each cell must be considered independently.  Further, SLAM involves significantly 
more processing than MCL, using up computing power that may not be necessary, 
especially after the map is generated.  Dynamic map MCL was created specifically to 
provide an accurately changing map without incurring any significant overhead.  Since it is 
a constant time addition to MCL, the map can be updated without requiring any more 
computing power than ordinary localization.  Of course, the map cannot be generated from 
nothing as it can with SLAM, but once the map exists it can be kept up to date almost 
without cost.  SLAM also, in common with ordinary MCL, makes the assumption that the 
map is static.  Over time, the algorithm becomes more certain of the map and any changes 
will take longer to appear.  Dynamic MCL explicitly makes the assumption that the map 
will change. 
Algorithms that consider dynamic environments typically assume a static map with 
dynamic elements, such as people, which must be eliminated from consideration.  In effect, 
these algorithms assume a static map but allow an additional form of sensor noise in the 
form of moving people.  [Hahnel et al. 2003] describes a method for creating a map, using 
standard EM SLAM techniques, which can discover the static map of the environment 
despite dynamic elements.  Similarly, [Fox et al. 1999] gives an algorithm for using MCL in 
an environment with many moving objects.  Although both these papers give a method for 
handling a dynamic environment, they both assume an underlying static map.  The benefit 
of dynamic MCL is that the static map assumption is no longer necessary.  As the algorithm 
runs, it changes the map to correspond to the environment.  Since dynamic MCL is 
implemented as an augmentation to ordinary MCL, there is no reason that other 
augmentations could not be used if warranted by the problem.  For example, the algorithm 
described in [Fox et al. 1999] to discard readings relating to dynamic objects during MCL 
can coexist with my algorithm for modifying the map in accordance with changes in the 
environment.  Dynamic MCL allows fundamental changes to be accounted for, as opposed 
to merely ephemeral objects that are only observed once. 
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5.1 Dynamic Maps 

In order to alter the map, it needs to be added to the MCL formula.  Consider each cell of the 
map to be an independent object, which can be either present or absent.  Although 
independence is usually not entirely valid, it is an assumption that is often made.  Consider 
yt = {y1,t,…,yK,t} the set of individual cells in the map.  Since we are considering these cells to 

be independent, if the location is known, then p(yt| xt,zt) = ∏p(yk,t| xt,zt).   
With this background, the new state equation is p(yt, xt| zt, ut).  Unfortunately, it turns out 
that this equation cannot be factored, since the map state is not fully determined with only 
the current location.  However, notice that each sample in MCL represents not only a 
current location, but also the history of locations that lead to that location.  Since each 
particle is only moved according to the motion model, they may be considered as xt instead 
of xt with no change to the algorithm.  If we use the equation p(yt, xt| zt, ut), then it is 
possible to factor it and we can also use the MCL algorithm without significant changes.  
The factorization used is similar to the one in [Avots et al. 2002], which was used to add the 
state of doors into the MCL algorithm. 

5.2 Factoring 

The size of the state space of (yt,xt) is exponential in the size of yt, so we need some way of 
factoring the posterior in order to reduce the state space. 
First, Bayes rule and the Markovian property give us:  
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Now, consider the 3 parts of equation (12). 
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Remembering that cells in the map change status independently in the model, and again 
using the Markovian assumption, we get: 
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Finally: 
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Recombining these three equations and simplifying we get the factorization:   
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Which contains the original MCL posterior and a new probability for the cells in the map.  
See [Avots et al. 2002] for more details about the factorization. 
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5.3 Binary Object Bayes Filtering 

Since the method for calculating p(xt| zt, ut) is already known in the MCL algorithm, the 
only new method needed is to calculate the probability of each cell in the map.  These cells 
are binary objects since they are either present or absent.  Each yk,t can be either 0 or 1 with 
the probability of each summing to 1.  Thus, the method for calculating the probabilities is 

the same as in [Avots et al. 2002].  Let πk,t = p(yk,t = 1|xt,zt,ut).  Then 
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where 
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In equation (17) the only unknown probability is p(zt|xt,zt-1,ut) in the denominator.  Rather 

than trying to calculate it, we exploit the fact that yk,t is binary so (1 – πk,t) can be calculated 

in the same way as πk,t using yk,t = 0 instead of yk,t = 1.  The two equations are then divided 
to cancel the unknown quantities. 

 
−

+

=

=−

=−

=

−
=

tk

tk

tk

tk

tttk

tttk

tk

tk

yp

yp

zxyp

zxyp

,

,

,

,

,

,

,

,

)1(

)1(1

),|1(1

),|1(

)1( π

π

π

π
 (19) 

The result, equation (19), consists entirely of known quantities.  p(yk,t=1) is the prior 
probability that a cell is occupied.  The various p(yk,t|yk,t-1) values are the transition 

probabilities for a cell, πk,t-1 are, of course, the prior occupancy probabilities and finally, 
p(yk,t=1|xt,zt) is the probability of occupancy given robot location and sensor data.  To get a 

useful value from the odds ratio, we use the equality πk,t = 1 – (1 + πk,t/(1 - πk,t))-1. 

The representation of πk,t is actually in closed form, so it requires only a constant time 
operation to calculate.  Since p(yk,t=1|xt,zt) involves sensor values and raytraces which are 
already used for MCL, little additional processing should be required.  It is possible to 
modify the importance factor, as in [Avots et al. 2002], to take into account the new map 
data, where each cell is not merely present or absent but has a probability of presence.  
Using this data results in a runtime increase at least logarithmic in the number of binary 
objects.  The probability of a location becomes the sum of the probabilities of that location 
for both states of all visible objects, multiplied by the probability of the object states.  While 
that is acceptable if there are only a small number of objects, such as doors, if the objects are 
the cells of a map, the number becomes unmanageable.  However, most map data used for 
MCL is actually represented as probabilities in an occupancy grid map, but is thresholded to 
be either present or absent.  I decided to use the same simplification for my algorithm and 
consider each cell as either present or absent depending on a threshold value on its 
probability.  The processing time therefore remains unchanged, since the importance factor 
is calculated in the same way. 

5.4 Cell Correlations 

In order to perform the factorization, it is necessary to assume that map cells change 
independently of each other.  However, this assumption is not entirely accurate.  In fact, 
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groups of adjacent cells that represent the same objects are likely to be completely 
dependent. To some extent ordinary MCL also assumes cells are independent, but it only 
becomes relevant when the cell probabilities are changed in dynamic MCL.  It is easy to 
model correlations by annotating the map with correlation probabilities between adjacent 
cells, however, using this information is more difficult.  Methods such as loopy belief 
propagation or variational methods [Jordan et al. 1999] can propagate belief through a 
connected graph, but they are time consuming and sometimes do not converge.  Since 
dynamic MCL must run in real time without being much slower than ordinary MCL, these 
techniques are not sufficient.  However, it should be noticed that the cell correlations in a 
map are of restricted types.  Small groups of adjacent cells are highly correlated, while being 
uncorrelated with their neighbours.  Because of the limited correlation, it is possible to use a 
modified variational technique in order to implement cell correlations.  When a cell is 
updated, the update is propagated to adjacent cells along the links, but the propagation is 
not permitted to flow back to a cell that has already been modified.  Also, the flow stops 
when the accumulated correlation probability falls below a threshold.  In practice, only a 
few steps occur, but these achieve a significant improvement in the results. 
The key to using cell correlations is to perform operations using two different and 
conflicting sets of assumptions.  Each set of assumptions reduces one part of the problem to 
a solvable operation but makes the other part intractable.  We have already seen that, by 
assuming cells to be independent, we can factor the belief as: 
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This factorization is used to update the individual cells according to the robot’s sensors.  
However, once the update is performed we discard both the assumption and the resulting 
factorization.  Instead, we assume that each cell depends on its neighbours and is 
independent of the robot’s sensors and position.  According to this set of assumptions: 
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The determination of the robot’s position is unchanged, but the map cells now depend on 
their neighbours and not on the robot.  By making this assumption any changes made to the 
map can be propagated to the adjacent cells and the weight of the cell correlations adjusted.  
Separating the algorithm into two phases with different assumptions allows the algorithm 
to consider additional dependencies without having to deal with the intractable problems 
caused by the interaction of the new dependencies with the old.  In effect, during the first 
phase of the algorithm, as represented by equation (20), we assume that cells are influenced 
only by the robot, with additional effects coming from some unknown source.  During the 
second phase, shown by equation (21), we assume that cells are only affected by their 
neighbours, with other changes caused by external, unconsidered, forces.  Of course, two 
sets of contradictory assumptions cannot possibly be a reflection of reality, however, each 
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assumption is a reasonable simplification and using both sets iteratively results in less 
simplification than either set exclusively. 
In dynamic MCL, it is necessary to modify the cell correlation probabilities dynamically on 
each cycle.   However, given the nature of the sensors used, it is unlikely that adjacent map 
cells will be observed on a single scan.  The solution to the problem is to cache observed 
changes to each cell until an adjacent cell has also been observed.  At that point, the 
difference in the changes of the cells can be used to adjust the correlation between them. 
Adding cell correlations significantly improves the dynamic MCL algorithm since a 
correlated group of cells can change together whenever any member of the group is 
observed.  The result is that although the update of individual cells must be slow to allow 
localization to work, if a group of cells change they will update very quickly, since each 
observation will correlate them, and as they become more correlated every observation of a 
member of the group will update the entire group.  Thus, an object can appear or vanish 
more quickly than any single cell. 

5.5 Algorithm 

The preceding formulae can be used to augment an implementation of MCL in order to 
modify the map dynamically during processing.  The MCL algorithm must raytrace along 
all sensor paths to calculate the probability of a particle.  However, if the robot’s position is 
known with high probability, then any differences between the sensor reading and the 
raytrace are more likely to be errors in the map than in the sensors.  In that case, the logical 
action is to correct the map. 

The method I used is to consider each cell of the map to be present with probability πk,t.  On 
each step of the MCL algorithm an augmented raytracer is used for the robot’s most likely 
location.  The augmented raytracer follows a ray normally, passing through each map cell 
along the ray.  However, at each cell along the path, the probability of that cell is altered 
according to equation (19).  Although the augmented raytracer could be run on all samples, 
it is more productive to determine the most likely location and use the augmented raytracer 
only on it.  When the robot’s location is not known, the new raytracer is not used.   
For calculating the sensor probability of each cell, the simplifying assumption that either 
that cell or the existing wall is correct is used.  The assumption is necessary because the 
normalizer for the sensor probabilities is not known, so some method must be used to 
normalize the values.  In practice, when a new cell becomes occupied, it exceeds the 
threshold before any other cell, and then the assumption becomes valid again.  The short 
period during which it is invalid for some cells does not affect the operation of the 
algorithm. 
In order to find the robot’s most likely location, the sample with the highest importance 
factor is used.  Other locations are possible, including the weighted average of all samples.  
The algorithm cannot run if the robot’s location is unknown. 
These implementation details do not change the fundamental algorithm, which is a 
implementation of MCL together with the binary object formulae as described above.  The 
only simplification to equation (19) is in the calculation of p(yk,t = 1|xt,zt), a value which is at 
best a numerical approximation to the error in a physical sensor device. 
The following pseudocode summarizes the algorithm for dynamic MCL. 
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1: Repeat N times 
2:  Draw a random particle 
3:  Move particle according to the motion model 
4:  Annotate particle with a weight from the sensor model 
5: Resample a new set of particles from the annotated set 
6: Find the most probable location (mean of particles) 
7: For each sensor reading 
8:  Raytrace to the nearest occupied cell 
9:  For each cell on the path 
10:   Alter the occupancy probability of the cell 

11: 
  Alter the occupancy probability of neighbouring cells according 
to influence 

12:   Mark cell as observed 
13:   If neighbouring cell marked observed 
14:    Adjust influence between cells 
15:    Unmark cells as observed 

Table 3. Dynamic MCL algorithm 

5.6 Experimental Evaluation 

The dynamic map algorithm was implemented and tested using real data collected in our 
building.  The data was created using a Pioneer 2Dxe robot equipped with a laser 
rangefinder.  The objective of the tests was to show that the map could be updated correctly 
without introducing errors or causing localization to fail.  Since the algorithm has an almost 
constant runtime there is no tradeoff necessary between the time required to update the 
map and the benefit obtained by doing so.   
Dynamic map MCL is designed to gradually update the map of the environment used for 
localization.  Ordinarily, MCL uses a static map which, in a dynamic environment, 
gradually becomes less accurate.  The experiments were selected to validate the dynamic 
algorithm by demonstrating that over time the map becomes a more accurate representation 
of the environment.  Obviously, localization and global localization will perform better on a 
more accurate map.  However, the improvement is a greater tolerance for other sources of 
error and is not detectable from the results of localization.  The experiments demonstrate 
that the map is updated correctly, the benefit obtained from this update depends on the 
specific problem.  

 

Figure 1. Before and after 2 passes through the environment 

Figure 1 shows the map of the environment used to generate the test data.  Changes were 
made to the environment after the map was scanned by opening and closing doors and by 
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placing boxes in the corridors.  After 1 pass through the changed environment the robot has 
mostly added the new features to the map and has correlated the changed objects, allowing 
them to be completed very quickly. 
After 2 passes, all changes have been completely added to the map.  The rate of update is 
slower than in [Avots et al. 2002] because each cell must be observed several times, instead 
of each object.  However, without correlations it takes at least 5 passes to completely adapt 
the map.  Allowing cells to become correlated permits much faster updating without 
compromising localization.  In [Avots et al. 2002] the dynamic objects can be updated in a 
single pass because they are manually defined ahead of time and are known to be 
completely correlated.  Since dynamic MCL has no predefined objects or correlations, it is 
necessarily slower, but because it can discover the correlations it can still update very 
quickly. 

 

Figure 2. Before and after 5 passes through the environment using a schematic map 

Another test, shown in Figure 2, was to use the same data but starting with a map consisting 
of the minimum possible information.  From a schematic map consisting of only the walls 
and partitions, the algorithm was able to adapt it with all the features that were missing.  
Those portions of the map that were observed were corrected properly.  The benefit of being 
able to start with a limited map is that it may not be necessary to scan a map manually with 
a robot.  Instead, the map could be entered using blueprints of the environment and, as the 
robot passed through, it could correct the map until it was accurate.  Usually, MCL uses the 
most accurate map possible, since it will lose accuracy over time, but with a dynamic map 
the accuracy of the map increases as the robot traverses the environment.  Of course, 
portions of the environment that were insufficiently observed were not completely added to 
the map, so the result is not identical to the environment.  However, observed areas have 
become more accurate and the map will only become a better reflection of the environment 
as the robot traverses it over time. 
Another feature noticeable in Figure 2 is that some of the objects in the corridor are 
somewhat more diffuse than they appeared in Figure 1.  Since the map is less accurate to 
begin with, localization is necessarily less accurate.  As the map is corrected and localization 
becomes better, the location of the objects becomes clearer.  After 5 passes, the objects are 
almost completely defined in the map, but some of them obviously require several more 
passes to full correct them.  The benefit of dynamic MCL is that the robot can operate 
independently of this process.  As it performs its task, the map becomes more accurate.  All 
other data files tested exhibited similar behaviour, with the observed portions of objects 
being added to the map and no new errors introduced. 
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5.7 FastSLAM Comparison 

The dynamic MCL algorithm is very similar to FastSLAM, with the major difference being 
that FastSLAM keeps the map state separately for each particle, while dynamic MCL 
maintains a single global map.  The single map results in two significant changes in the 
behaviour of the algorithm.  First, the run time over ordinary MCL is only increased by a 
constant in terms of the number of particles.  Regardless of how many particles are 
necessary for localization, dynamic map MCL requires the same amount of additional 
processing.  FastSLAM requires additional processing that is at least linear in the number of 
particles, disregarding the work necessary to continuously copy the maps.  Dynamic MCL 
thus requires significantly less processing power than FastSLAM. 
The per particle map is what allows FastSLAM to determine a map from nothing while 
localizing, since it can maintain multiple hypotheses until the robot observes a 
distinguishing feature.  However, these map hypotheses necessarily include some unlikely 
maps.  When the environment is mostly known these borderline maps are unnecessary.  The 
basis of dynamic MCL is that the map is mostly known.  In this case, the robot’s position can 
be determined and the map can be altered based on the single correct position, instead of 
updating based on multiple hypothesized positions.  In the case with a pre-existing map, 
FastSLAM’s ability to update the map is provided by dynamic MCL without the drawback 
of having to consider maps based on multiple conflicting paths.  Of course, if the map is 
unknown considering multiple paths is necessary for success, so dynamic MCL is in no way 
a replacement for FastSLAM, it merely uses similar ideas to apply to a situation that 
FastSLAM does not handle well.  If the map of the environment is mostly known in 
advance, dynamic MCL provides an efficient solution to handling dynamic elements and 
previously unobserved areas, without causing additional uncertainty. 
To discover if dynamic MCL provides appreciable efficiency gains over FastSLAM when the 
appropriate map is available, the FastSLAM algorithm was run on the same data set as in 
Figure 1.  FastSLAM was able to generate a map, but it took 428 seconds and, of course, did 
not include the areas that were not visited.  In contrast, dynamic MCL completed the 2 
passes in 68 seconds, an 84% improvement.  When only minor features need to be updated 
in a mostly complete map, it is unnecessary to incur the cost of FastSLAM, since in these 
cases dynamic MCL is far more efficient while providing the same result.  Dynamic MCL 
also allows previously visited areas to remain in the map, even if the robot has not observed 
them. 

6. Skeletal FastSLAM 

While FastSLAM is a good solution for localization and mapping, it suffers from some 
problems, notably the loop closure problem. As the robot travels around a loop in the 
environment, it has no way to incrementally correct its position.  Only once the robot arrives 
at the end of the loop can it realize that the correct path is the one that arrives in the right 
place so that the map joins up.  Because particle filtering only represents the highest 
probability locations, over a long loop the correct path may be lost.  Surviving this problem 
requires a number of particles relative to the size of loops in the map, which means the 
algorithm increases in runtime and memory with the size of the map. 
SLAM is normally defined as generating a map from total uncertainty about the 
environment.  However, there is often some information available about the map, especially 
in an indoor environment.  Unless your robot is a bulldozer, it is constrained to follow 
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certain paths indoors, corresponding to the building's corridors.  These corridors are 
relatively easy to describe based on a simple floor plan, or even by observing the 
environment.  In this section, I demonstrate how minimal information about the skeleton of 
the environment can be used to improve FastSLAM and reduce the loop closure problem, 
requiring only enough particles for the local areas of uncertainty.  Skeletal FastSLAM 
provides an intermediate step between pure localization with a static map and pure SLAM 
with total uncertainty about the environment.  Many problems with some preexisting 
knowledge might benefit from this approach.  
The primary contribution of skeletal FastSLAM is to bridge the gap between the total 
knowledge required by MCL and the complete uncertainty that is the initial condition for 
SLAM.  Although these two algorithms are powerful, there are many situations that are 
somewhere between the two conditions.  For these problems, the choices are to accept the 
error caused by the uncertainty in MCL or to discard the initial information in SLAM.  The 
algorithm described in this chapter allows FastSLAM to take advantage of some initial 
information.  Similarly to the dynamic map MCL algorithm in Section 5, skeletal FastSLAM 
applies to problems with partial knowledge of the environment.  The ability to use partial 
knowledge increases the usefulness of FastSLAM to situations that would ordinarily be 
much more difficult. 
The key to using a skeleton map of the environment in FastSLAM is to realize that, 
especially in an indoor environment, the robot must follow certain paths.  Obviously, a 
particle whose path corresponds to one of these corridors in the environment is more likely 
than one traveling at a tangent to the corridor.  Of course, this only applies if the particle is 
close enough to the corridor, but when one of the corridors affects the robot's path, it can act 
as a very useful indication of the correct path. 

6.1 Monte Carlo Localization with Paths 

Although MCL is originally defined to solve for only the robot's current position, as in 
section 3 and [Dellaert et al. 1999], it is trivial, by recording the past poses of each particle, to 
alter it to track the robot's entire path.  The derivation is similarly easy to alter, again using 
the Markovian assumption, producing models identical to ordinary MCL. 
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6.2 Derivation of FastSLAM with Skeleton 

In order to consider a topological map in FastSLAM, we need to add it to the equations in a 
form that can be easily calculated.  Let S be the skeletal map, then the FastSLAM 
factorization becomes: 
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We assume the map is independent of the skeleton, which only affects the robot's position.  
Thus, the occupancy grid mapping portion of FastSLAM is unchanged.  Only the 
localization needs to take S into account. 
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Note that, because the map is independent of the skeleton, the skeleton does not affect the 
sensor readings zt, which depend only on the robot's state, including the map. 
The new motion model for localization is p(xt | ut, xt-1, S).  However, it is not obvious how to 
sample from this model as required by MCL.  Fortunately, given that the distance between 
xt and xt-1 is small, we can factor the model into our original model and an additional term 
representing the motion probability of the motion given the skeleton map. 
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Equation (26) can be greatly simplified using the Markovian assumption again.  Also, notice 
that the same operation as in equation (23) produces the ordinary motion model in the 
second term, while still leaving the entire path for use with the skeleton map. 
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Having factored the motion model from the skeleton, all that remains is to convert p(S | xt) 
into a form that can be calculated. 
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Putting equation (29) back into the localization formula of (25) results in localization which 
takes into account the skeleton map. 
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The final equation indicates that the modification to the motion model alters the weight of 
each particle.  Thus, the localization step continues as normal while the probability of the 
particle's motion based on the skeleton map is multiplied with the sensor probability to 
determine the likelihood of the sample.  The result will be to make particles which travel 
according to the skeleton more likely to be resampled then those which conflict. 
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6.3 Creating the skeleton map 

Of course, the first step in implementing this technique is to define what exactly is meant by 
a skeleton map.  The skeleton is defined by a series of line segments marked by their 
endpoints.  Each line segment marks a corridor that constrains the robot's direction of travel.  
It is not necessary for every possible path to be represented, only those composing major 
loops in the environment.  The skeleton gives the direction and length of each corridor, 
including the structure of their intersections.  Such a map is very easy to construct, 
especially in an indoor environment where a schematic diagram is often available.  Also, 
buildings are usually constructed with corridors at right angles, making it easy to determine 
the intersections of the skeletal map.  In such an environment, any user could easily define 
the necessary skeleton with minimal understanding of the underlying algorithm. 

6.4 Defining the skeleton model 

In order to actually implement skeletal FastSLAM as defined in equation (30), we need to 
create a method of calculating the model p(xt | S).  Fortunately, this model does not need to 
be sampled from as does the motion model, allowing more flexibility in its creation.  Since 
the objective is to more highly weight paths the closer they are to the corridor, some type of 
probability based on the difference in angle between the path and the skeleton is the 
obvious choice.  The model used is a Gaussian distribution centered at 0 degrees mixed with 
a uniform distribution according to a gain value.  The smaller the difference between the 
angle of the robot's path and the angle of the line segment of the map, the more probable the 
particle.  Of course, this only applies as the particle travels along the particular corridor.  If 
the robot turns away from the corridor it is probably exploring some area not represented 
by the skeleton.  In that case, the probability is a uniform distribution.  Also, the current 
segment of the skeleton map that the robot is following is determined by which segment is 
closest.  However, if the distance between the robot and the line is too great, then the 
probability is once again uniform, since a particle must be within a corridor to be affected by 
it.  The result is a model that increases the probability of particles traveling along the 
skeleton and decreases the probability of those traveling at a tangent to it, while leaving 
those that are not following the skeleton unchanged.  The model for particles within range 
of a skeleton line segment is illustrated in Figure 3.  However, note that the actual values 
depend on the parameters selected for gain, variance, and threshold angle. 

 

Figure 3. Skeleton map probability model 
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6.5 Algorithm 

Given the derivation in section 6.2 and the model from 6.4, the actual implementation of 
skeletal FastSLAM is relatively straightforward.  In order to reduce errors caused by minor 
corrections in the robot's heading while it follows a corridor, linear regression is used to 
track the line which best fits the robot's path.  The regression is restarted every time the 
robot changes its current closest line segment.  Then, the difference between the robot's 
course and the direction of the skeletal line segment is simply the difference between the 
angle of two lines, a straightforward algebraic computation.  With that angle, the skeleton 
map model can be evaluated and the only change in the algorithm in Table 2 occurs on line 
3, which becomes wt[k] = p(zt | xt[k], m) * p(xt[k] | S). 
It is, of course, necessary to provide various parameters, notably the variance and gain of 
the skeleton model as well as the threshold distance for the robot to be within a corridor and 
the threshold angle for the model.  However, most of these parameters depend on the 
physical features of the environment and good values can be determined by examining its 
structure.  The threshold distance depends on the corridor width, while the threshold angle 
depends on the relative corridor angles.  Finally, the gain depends on how well the 
environment is represented by the skeleton map.  These values probably do not need to 
change between different environments or robots, unless there are radical differences in the 
map.  Even then, convergence will probably only require more particles, rather than failing. 
Compared to ordinary FastSLAM, using a skeletal map adds runtime that is linear in the 
number of line segments in the skeleton.  Since the topology of an indoor environment is 
usually fairly simple, the increase in processing required is minimal.  If skeletal FastSLAM 
can reduce the number of particles required for convergence in an environment then the 
gains in processing time will more than offset the increase required to implement the 
algorithm. 

6.6 Experimental Evaluation 

In order to validate skeletal FastSLAM with occupancy grid maps it was tested against data 
sets gathered using a real robot in an indoor environment, as well as with various simulated 
data sets.  The simulated data demonstrates the benefits of the algorithm in various 
situations, while the physical data sets show that it really does generate improvement in a 
real environment.   
Loop closure is one of the major problems with FastSLAM and the skeletal algorithm is 
designed to reduce the processing required for loops in certain environments.  The 
experiments were chosen to show the actual reduction provided by the skeleton in specific 
environments.  From the results presented here we can determine that skeletal FastSLAM 
will provide a benefit in a wide range of circumstances where the fundamental assumption 
of fixed corridors applies.  Since we cannot specifically test an algorithm’s loop closure 
ability, we rely on tests of the minimum processing required to develop a map with the 
correct structure as determined by a human observer.  Although this criteria is somewhat 
vague, there was no problem in making the decisions since the maps tended to either 
converge correctly or diverge to random nonsense.  The minimum number of particles 
necessary to generate a correct solution was used to determine the minimum run time for 
each algorithm.  Since skeletal FastSLAM and ordinary FastSLAM require approximately 
the same amount of processing the skeletal algorithm must converge on fewer particles to 
provide a benefit.  Comparing the minimum run times for convergence proves the benefits 
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of using the skeleton do not outweigh the extra processing required to compare particles to 
the skeleton map. 

6.6.1 Simulated data 

Data sets generated from simulated environments test the basic behaviours of the skeletal 
algorithm in standard situations.  One of the most basic environments is a wide, straight 
corridor.  A 40 meter long corridor is typically a very difficult situation for FastSLAM 
because there is no indication as to the correct direction.  A straight corridor gives almost 
exactly the same readings as one that curves slightly.  Since the robot does not turn as it 
traverses the corridor there is no way for FastSLAM to correct the readings.  Because of this, 
it required a minimum of 210 particles for ordinary FastSLAM to converge correctly using 
the data set.  Compared to that, a single corridor is a very easy environment for skeletal 
FastSLAM, which required only 100 particles to converge.  The run time for convergence of  
skeletal FastSLAM was 156 seconds for this data set, an improvement of 45% over regular 
FastSLAM’s 283 seconds.  Skeletal FastSLAM provides a serious advantage when an 
environment provides little information about global orientation. 
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Figure 4. Error in position over time for normal FastSLAM vs. skeletal in a simple loop 

The next data set was a large loop around a 40 meter square.  Because the turns allow the 
robot to see back along its course, this environment was easier for FastSLAM to handle.  
Ordinary FastSLAM required 100 particles to converge with the data, while the skeletal 
algorithm was successful with 30.  The time for convergence of 181 seconds for skeletal 
FastSLAM was a 67% improvement over ordinary FastSLAM’s 558 seconds.  In Figure 4 we 
can see the results of this test.  For normal FastSLAM the error drifts, generally increasing 
over time, until the final section where the loop is closed.  At that point, the error drops 
abruptly.  In contrast, skeletal FastSLAM tends to retain a relatively constant error, changing 
only at the corners of the map, marked by the vertical lines, where the skeleton algorithm 
does not apply.  The error is so much smaller when the loop is closed that it quickly 
decreases back to almost 0.  Normal FastSLAM only managed to converge by shifting the 
entire map, thus retaining a larger error.  By reducing the error increase in the corridors, 
skeletal FastSLAM is able to correct the position much more quickly when the loop is finally 
closed.  The simulated data indicates that the algorithm provides a major benefit in the 
situations where it applies and leaves more leeway for handling the remaining situations, 
such as the corners. 
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6.6.2 Real data 

 

Figure 5. Two real environments with skeleton maps 

Data from a 180 degree laser scanner mounted on a Pioneer 3Dxe differential drive 
holonomic robot was collected from two different real environments.  Since there was no 
way to get the ground truth of the robot's position, I instead observed the minimum number 
of particles necessary for the map to converge to a representation which corresponded to the 
correct map.  The primary observation about a correct map is that all of the loops are closed, 
connecting to the appropriate corridors.  In practice, convergence was easy to determine, 
since, if the map did not converge, it instead diverged radically, becoming reduced to 
nonsense. 
In the first environment in Figure 5, regular FastSLAM required at least 160 particles to 
converge, while using the skeleton map only required 100.  The 60% larger set of particles 
for ordinary FastSLAM is necessary because the environment contains many long loops.  
Without the skeleton, more particles are necessary to allow these loops to close properly.  
The runtime of skeletal FastSLAM was a 58% improvement over the ordinary algorithm, 
converging in only 466 seconds compared to 737. 
The second environment only has a single corridor and the robot travels through two 
rooms.  Although the path into the rooms is marked by the skeleton, the path between them 
is not.  The greater area that is not represented by the skeleton, coupled with fewer loops, 
results in less of an improvement.  Skeletal FastSLAM needed 110 particles to converge in 
this environment, while ordinary FastSLAM needed 140, an increase of 27%.  There was also 
an improvement of 23% in the runtime, with skeletal FastSLAM reducing the necessary time 
from 511 seconds to 391. 
The improvements demonstrate that skeletal FastSLAM provides a significant improvement 
over ordinary FastSLAM, correctly converging with fewer particles, and thus less 
computation, using real data sets.  Coupled with the simulated data, the results show that 
using a skeleton map is an effective addition to FastSLAM. 
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 Original Skeletal % improvement 

 particles runtime particles runtime particles runtime 

Simulated 
corridor 

210 283.672s 100 156.329s 52.4% 44.9% 

Simulated loop 100 558.078s 30 181.078s 60% 67.6% 

Real 
environment 1 

160 737.016s 100 466.938s 37.5% 36.6% 

Real 
environment 2 

140 511.047s 110 391.031s 21.4% 23.5% 

Table 4. Experimental comparison of skeletal FastSLAM algorithm vs. original 

6.7 Conclusion 

Performing most tasks on a real robot, including path planning, requires knowing the 
configuration of the environment and the robot’s position within it.  One of the most 
adaptable representations is an occupancy grid map, which allows most types of 
environment to be accurately modeled.  However, using occupancy grid maps limits the 
types of localization and mapping algorithms that can be used.  Of the possible techniques, 
particle filter based methods are very effective.  MCL provides accurate real-time 
localization while FastSLAM is a good solution for simultaneous localization and mapping.  
However, the basic implementations of these techniques have drawbacks in certain 
situations. 
Section 5 describes an augmentation to MCL which allows the map to be updated according 
to the sensor measurements of a localized robot without a serious increase in running time.  
By considering each cell of the map to be an independent binary object and by making some 
simplifying assumptions, the static map required by MCL can be modified dynamically 
without requiring any user intervention.  Instead of becoming less accurate over time, the 
map becomes more accurate as the robot traverses the environment.  Experiments with real 
datasets show that the map can be updated properly without introducing errors.  A change 
in the environment can be reflected in the map after very few passes by the robot.  The result 
of the algorithm, having an accurate map, will always benefit the accuracy of MCL. 
Dynamically correcting the map causes the largest source of error in MCL to decrease over 
time.  Ordinarily, the best possible situation is for this error to remain constant, however in 
environments with dynamic elements, especially people, it is more likely that gradual 
changes occur.  As the physical environment changes, errors build up in MCL, reducing its 
ability to handle any additional error.  With dynamic updates the error is instead reduced 
over time, making localization more robust to other problems.  Also, recognizing changes in 
the map might allow certain circumstances to be detected and considered in planning.  For 
example, doors could be detected when they open and the robot could be sent to explore the 
new area.  Also, new routes could be discovered as objects are moved.  Removing the static 
map assumption greatly increases the power of MCL to handle real situations with dynamic 
elements.  Furthermore, recognizing changes in the environment allows further 
improvements to be made at higher levels of control. 
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FastSLAM is an effective solution to both the online and full simultaneous localization and 
mapping problem in indoor environments where individual features are hard to determine.  
However, it suffers from problems in loop closure which require progressively more 
particles as the size of loops in the environment increase.  By adding an easily created 
skeletal map into the algorithm, it is possible to significantly obviate this problem, allowing 
the FastSLAM algorithm to solve local uncertainties while aiding it in closing loops.  A 
skeleton map indicates the direction that the robot must be taking so that, instead of wasting 
particles on multiple divergent trajectories, the algorithm can concentrate them around the 
correct path, significantly reducing the need for additional particles.  As the corridors 
increase in length, ordinary FastSLAM requires an increasing number of particles, while 
skeletal FastSLAM continues to require only enough for the local uncertainties, becoming 
independent of the overall size of the map. Using a skeletal map is a low cost improvement 
to FastSLAM that is very useful in indoor environments whose overall configuration is 
known, even though the exact map may not be. 
Skeletal FastSLAM, like dynamic map MCL, allows FastSLAM to handle situations with 
partial knowledge of the environment.  Since initial knowledge no longer needs to be 
discarded, the behaviour of the algorithm is improved.  By allowing additional information 
to be applied in the FastSLAM algorithm the technique can be very effective in specific 
situations where ordinary FastSLAM would require much more work.  These methods of 
skeletal FastSLAM and dynamic map MCL lead to localization and mapping techniques that 
can generate a map and path from any type of starting information.  Once the map and 
robot location are accurately known, it is possible to proceed with path planning and any 
other tasks the robot must perform. 
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