
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


10 

Laban Movement Analysis using a Bayesian 
model and perspective projections 

Joerg Rett1, Jorge Dias1 and Juan-Manuel Ahuactzin2 
1Institute of Systems and Robotics - University of Coimbra,  2Probayes SAS, Montbonnot 

1Portugal, 2France 

1. Introduction   

Human movement is essentially the process of moving one or more body parts to a specific 
location along a certain trajectory. A person observing the movement might be able to 
recognize it through the spatial pathway alone. Kendon (Kendon, 2004) holds the view that 
willingly or not, humans, when in co-presence, continuously inform one another about their 
intentions, interests, feelings and ideas by means of visible bodily action. Analysis of face-to-
face interaction has shown that bodily action can play a crucial role in the process of 
interaction and communication. Kendon states that expressive actions like greeting, threat 
and submission often play a central role in social interaction. 
In order to access the expressive content of movements theoretically, a notational system is 
needed. Rudolf Laban, (1879-1958) was a notable central European dance artist and theorist, 
whose work laid the foundations for Laban Movement Analysis (LMA). Used as a tool by 
dancers, athletes, physical and occupational therapists, it is one of the most widely used 
systems of human movement analysis. 
Robotics has already acknowledged the evidence that human movements could be an 
important cue for Human-Robot Interaction.  Sato et al. (Sato et al., 1996), while defining the 
requirements for 'human symbiosis robotics' state that those robots should be able to use 
non-verbal media to communicate with humans and exchange information. As input 
modalities on a higher abstraction level they define channels on language, gesture and 
unconscious behavior. This skill could enable the robot to actively perceive human behavior, 
whether conscious and unconscious. Human intention could be understood, simply by 
observation, allowing the system to achieve a certain level of friendliness, hospitality and 
reliance. Fong, Nourbakhsh and Dautenhahn (Fong et al., 2003) state in their survey on 
'socially interactive robots' that the design of sociable robots needs input from research 
concerning social learning and imitation, gesture and natural language communication, 
emotion and recognition of interaction patterns. Otero et al. suggest (Otero et al., 2006) that 
the interpretation of a person’s motion within its environment can enhance Human-Robot 
Interaction in several ways. They point out, that a recognized action can help the robot to 
plan its future tasks and goals, that the information flow during interaction can be extended 
and additional cues, like speech recognition, can be supported. Otero et al. state that body 
motion and context provide in many situations enough information to derive the person’s 
current activity. 
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1.1 Related works on computational Human Movement Analysis 

There has been an interesting work which also used movement descriptors and a 
probabilistic framework. Bregler (Bregler, 1997) introduced mid-level descriptors embedded 
in a thorough probabilistic framework that produced a robust classification for human 
movements. The concept of multiple hypothesizes is kept from low-level motion clusters to 
high-level gait categories producing good classification results even for noisy and uncertain 
evidences in natural environments. Model parameters are learned from training data using 
the EM-algorithm. The work points towards the concept of atomic phonemes and words 
used in speech recognition. Bregler defines his 'movemes' as simple dynamical categories, 
i.e. a set of second order linear dynamical systems. A Hidden Markov Model (HMM) is used 
to classify three different gait categories: running, walking, and skipping. The critical point 
on this approach were the ‘movemes’ themselves. The 'movemes' appear limited in their 
expressiveness. This might have been caused by their simplicity and that no relations are 
drawn to models and data of physiological studies of human movements. To overcome this 
weakness we have tied our descriptors to a well established notational framework: Laban 
Movement Analysis. 
That probabilistic methods can produce very good classification results was also 
demonstrated for the application of sign language recognition. Starner & Pentland (Starner 
& Pentland, 1995) based their system on real-time tracking of the hands using color gloves 
and a monocular camera with 5 frames per second. The learning and classification of the 40 
words (signs) was embedded in 400 sentences (sequence of signs) for learning and 100 
sentences for classification. The results compared the accuracy when using grammar rules 
(99.2%) or when not using them (91.3%). The results showed that when constraints can be 
applied like colored marker, a spatially well defined trajectory and rules that help to deal 
with a sequence of symbols, high accuracies can be reached. In this approach no mid-level 
descriptors were needed as the sign language has very well defined spatial pathways and 
grammars. The application of this approach as a general interface for Human-Robot 
Interaction is difficult, as it requires the person to learn the sign language.  

1.2 Related works on computational Laban Movement Analysis 

A long tradition in research on computational solutions for Laban Movement Analysis 
(LMA) has the group around Norman Badler, who already started in 1993 to re-formulate 
Labanotation in computational models (Badler et al., 1993). The work of Zhao & Badler 
(Zhao & Badler, 2005) is entirely embedded in the framework of Laban Movement Analysis. 
Their computational model of gesture acquisition and synthesis can be used to learn motion 
qualities from live performance. Many inspirations concerning the transformation of LMA 
components into physically measurable entities were taken from this work. As the final 
application was the back-projection of the LMA parameters to an animated character, Zhao 
(Zhao, 2002) made no attempt to address the problem of gesture recognition. For the same 
reason video capture was presented for a controlled environment (human wearing black 
cloth in front of black curtain). The application of LMA to the classification of movements, 
especially in unconstrained environments is the main goal of our contribution. 
In (Nakata et al., 2002) Nakata  et al. reproduced expressive movements in a robot that could 
be interpreted as emotions by a human observer. The first part described how some 
parameters of Laban Movement Analysis (LMA) can be calculated from a set of low-level 
features. They concluded further that the control of robot movements oriented on LMA 

www.intechopen.com



Laban Movement Analysis using a Bayesian model and perspective projections 

 

185 

parameters allows the production of expressive movements and that those movements leave 
the impression of emotional content to a human observer. The critical points on the 
mapping of low-level features to LMA parameters was, that the computational model was 
closely tied to the embodiment of the robot which had only a low number of degrees of 
freedom. For our solution we have chosen low-level features that can be used for an 
arbitrary object (human full body, body parts, etc.). 

1.3 The contribution of this work 

This work poses the automatic movement classification task as a problem to recognize a 
sequence of symbols taken from an alphabet consisting of motion-entities. The alphabet and 
its underlying model is well defined though Laban Movement Analysis. The LMA 
parameters serve as mid-level descriptors that can be produced and understood by the 
system. Our Tracking process is two-fold, the technique use for learning based on the active 
markers of our positioning device produces a robust representation of each object as points. 
For the visual tracking we use the central point of a boundary box containing the pixels or 
regions found in the figure–ground segmentation process. The relationship between the two 
approaches is established through a geometric model (Rett & Dias, 2007-B). This work 
emphasizes probabilistic methods, i.e. Bayesian approaches, as a tool to model the concept 
of Laban Movement Analysis (LMA), learn its parameters and classify the movements. The 
process of segmentation and tracking of image data is also based on a probabilistic method, 
i.e. the CAMshift algorithm (Bradski, 1998).  This work provides a new skill for machines 
that analyze human movements, i.e. computational Laban Movement Analysis. The system 
has been implemented in our social robot, 'Nicole' to test several human-robot interaction 
scenarios (Rett & Dias, 2007-A). 

2. Laban Movement Analysis 

Laban Movement Analysis (LMA) is a method for observing, describing, notating, and 
interpreting human movement. It was developed by a German named Rudolf Laban (1879 
to 1958), who is widely regarded as a pioneer of European modern dance and theorist of 
movement education (Zhao, 2002). The general framework was described in 1980 by 
Irmgard Bartenieff a scholar of Rudolf Laban in (Bartenieff & Lewis, 1980). While being 
widely applied to studies of dance and application to physical and mental therapy 
(Bartenieff & Lewis, 1980), it has found little application in the engineering domain. Most 
notably the group of Norman Badler, who already started in 1993 to re-formulate 
Labannotation in computational models (Badler et al., 1993). More recently a computational 
model of gesture acquisition and synthesis to learn motion qualities from live performance 
has been proposed in (Zhao & Badler, 2005). Also recently but independently, researchers 
from neuroscience started to investigate the usefulness of LMA to describe certain effects on 
the movements of animals and humans. Foround and Whishaw adapted LMA to capture 
the kinematic and non-kinematic aspects of movement in a reach-for-food task by human 
patients whose movements had been affected by stroke (Foroud & Whishaw, 2006). It was 
stated that LMA places emphasis on underlying motor patterns by notating how the body 
segments are moving, how they are supported or affected by other body parts, as well as 
whole body movement. 
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The theory of LMA consists of several major components, though the available literature is 
not in unison about their total number. The works of Norman Badler's group (Chi et al., 
2000); (Zhao, 2002) mention five major components shown in Figure 1.  

 

Figure 1. The major components of LMA are Body, Space, Effort, Shape and Relationship 

Relationship describes modes of interaction with oneself, others, and the environment (e.g. 
facings, contact, and group forms). As Relationship appears to be one of the lesser explored 
components, some literature (Foroud & Whishaw, 2006) only considers the remaining four 
major components. Body specifies which body parts are moving, their relation to the body 
center, the kinematics involved and the emerging locomotion. Space treats the spatial extent 
of the mover's Kinesphere (often interpreted as reach-space) and what form is being revealed 
by the spatial pathways of the movement. Effort deals with the dynamic qualities of the 
movement and the inner attitude towards using energy. Shape is emerging from the Body 
and Space components and focused on the body itself or directed towards a goal in space. 
The interpretation of Shape as a property of Body and Space might have been the reason for 
Irmgard Bartenieff to mention only three major components of LMA. Like suggested in 
(Foroud & Whishaw, 2006) we have grouped Body and Space as kinematic features 
describing changes in the spatial-temporal body relations, while Shape and Effort are part of 
the non-kinematic features contributing to the qualitative aspects of the movement as shown 
in Figure 1. This article concentrates on the Space component in order to establish a basis for 
comparison with subsequent works that include also other components. 

2.1 Space 

The Space component presents the different concepts to describe the pathways of human 
movements inside a frame of reference, when "carving shapes in space" (Bartenieff & Lewis, 
1980). Space specifies different entities to express movements in a frame of reference 
determined by the body of the actor. Thus, all of the presented measures are relative to the 
anthropometry of the actor. The concepts differ in the complexity of expressiveness and 
dimensionality but are all of them reproducible in the 3-D Cartesian system. The following 
definitions were taken from Choreutics (Laban, 1966) and differ in some aspects from those 
given in Labanotation (Hutchinson, 1970). The most important ones shown in Figure 2 are: I) 
The Levels of Space - referring to the height of a position, II) The Basic Directions - 26 target 
points where the movement is aiming at, III) The Three Axes - Vertical, horizontal and 

sagittal axis, IV) The Three Planes - Door Plane (vertical) πv, Table plane (horizontal) πh, and the 
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Wheel Plane (sagittal) πs each one lying in two of the axes, and V) The Icosahedron - used as 
Kinespheric Scaffolding.  
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Figure 2. The Space component defines several concepts: a) Levels of Space, Basic Directions, 
Three Axes, and b) Three Planes and Icosahedron 

The Kinesphere describes the space of farthest reaches in which the movements take place. 
Levels and Directions can also be found as symbols in modern-day Labanotation (Bartenieff 
& Lewis, 1980) 
Labanotation direction symbols encode a position-based concept of space. Recently, 
Longstaff (Longstaff, 2001) has translated an earlier concept of Laban which is based on lines 
of motion rather than points in space into modern-day Labanotation. Longstaff coined the 
expression Vector Symbols to emphasize that they are not attached to a certain point in space. 
The different concepts are shown in Figure 3. 

High

Medium

Low

< >

..

Left Right

a) b)
 

Figure 3. Two different sets of symbols to describe the Space component presented through 
the Door Plane. a) Position based symbols of Labanotation represent the ‘height’ through 
shading and the horizontal position through shape. b) Direction based vector symbols of 
Choreographie use different shapes for each direction 

The symbols of Labanotation correspond to positions in space like Left-High while the Vector 

Symbols describe directions. Figure 3 represents a 2-D view of the vertical (door) plane πv 
and thus shows only a fraction of the set of symbols (8) which describes movements in 3-D 
space. It was suggested that the collection of Vector Symbols provides a heuristic for the 
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perception and memory of spatial orientation of body movements. The thirty eight Vector 
Symbols are organized according to Prototypes and Deflections. The fourteen Prototypes divide 
the Cartesian coordinate system into movements along only one dimension (Pure 
Dimensional Movements) and movements along lines that are equally stressed in all three 
dimensions (Pure Diagonal Movements) as shown in Figure 2 a). Longstaff suggests that the 
Prototypes give idealized concepts for labeling and remembering spatial orientations. The 
twenty four Deflections are mentally conceived according to their relation to the prototype 
concepts. The infinite number of possible deflecting orientations is conceptualized in a 
system based on eight Diagonal Directions, each deflecting along three possible Dimensions. 

2.2 Labanotation and Effort Notation 

The need to develop some means of recording for the perceptions of movements led to a 
notation system known as Labanotation. It is built of symbols which describe the structure 
and progression of the movement (shown in Figure 4.). The spatial definitions (Hutchinson, 
1970) vary from those stated in Choreutics (Laban, 1966). In Labanotation the three Levels of 
Space are circular causing the distances e.g. centre-L and centre-LD to be equal. Moreover, 
distinct frames of reference are defined for the different groups of body parts. e.g. placing 
the origin of the arm-hand group at the shoulder joint. The symbols reflect which body part 
does what in space and time and with what kind of dynamic stress. In particular it contains 
when the movement starts and its duration. The so called Staff organizes the body parts in 
columns where the time proceeds from the bottom up along the length. The placement of a 
symbol shows that the body part is active, its shape indicates the direction of the movement, 
its shading shows the level and its length, the duration of the movement. From a properly 
notated movement sequence, the skilled reader can see at one glance what is happening at 
any moment in every part of the body. 
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Figure 4. Labanotation: a) The staff is used to place the symbols. b) The horizontal 
placement of the symbol indicates the body part. c) Shading of the symbol is used to indicate 
the Level (height) of the 3-D position. d) Different shapes of the symbols are used to indicate 
the position in the Table Plane 

The example in Figure 5 shows the ballet figure, Port de Bras. For the sake of readability we 
rotated the staff by 90 degrees. Reading from the right (usually bottom), one sees the basic 
position of neutral standing, arms hanging down. Then move your arms forward middle 
(shoulder level), followed by an open side movement (for two counts), followed by lowering 
the arms. 
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Figure 5. Example of a ballet "Port de Bras" figure. The staff in the center holds the symbols 
to represent the sequence of positions performed by the actor. Verify with the previous 
figure: Mainly the left and the right arm symbols are written, the sequence starts and 
concludes with Level=low 

2.3 Database of Expressive Movements 

We have created a database of 'expressive movements'. Some of the movements are based 
on suggestions mentioned in (Bartenieff & Lewis, 1980) and (Zhao, 2002) others are 
commonly used gestures with anticipated Effort qualities. In this work we will concentrate 
only on movements with distinct Space component. Table 1 shows such movements. 

Movement Description πprin 

Lunging Lunging for a ball XY 

Maestro Conducting an orchestra YZ 

Stretch Stretch to yawn YZ 

Ok OK-sign gesture YZ 

Point: Pointing gesture XY 

Byebye Waving bye-bye YZ 

Shake Reach for someone's hand XZ 

Nthrow Waving sagittally (approach sign) XZ 

Table 1. Expressive movements from our database (HID) with principal plane πprin i.e. the 
plane where the movement can be observed best 

Their distinctive Space component can be verified by observing the trajectories (see Figure 6). 
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Figure 6. Two movements with distinct Space component. a) Horizontal waving (byebye) and 
b) Sagittal waving (nthrow) 

The byebye gesture represents a horizontal waving, while nthrow represents a sagittal 
waving. Both movements are oscillatory and in the case of byebye the primary signal can be 
described by a sequence of left to right R and right to left L Vector Symbols. In the case of 
nthrow the primary signal would be described by a sequence of forward (F) and backward 
(B) Vector Symbols.  
The case of non-oscillatory movements like the ok sign and reaching for someone's hand 
(shake) can be seen in Figure 7. 
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Figure 7. Two movements with distinct Space component. a) Showing the ok sign and b) 
Reaching for someone's hand (shake) 
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These two cases can be distinguished by a greater influence of forward (F) and backward (B) 
vector symbols in the case of shake. The shown trajectories present one trial of one person. 
The whole set of trials can be seen in (Rett, 2008). 
In the case of lunging for a ball (lunging) the Space component consists mainly of forward (F) 
and backward (B) Vector Symbols for both hands as shown in Figure 8. 
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Figure 8. Two movements with distinct Space component. a) Forward dab (Lunging for a 
ball) and b) Upward wring (Stretching to yawn) 

The mainly appearing Vector Symbols for the 'stretch to yawn' (stretch) movement are 
upward (U) and downward (D). 

3. Human Movement Tracking 

Laban Movement Analysis is essentially defined in a 3-D space related whether with a 
world frame of reference {W} or an egocentric frame of reference {H} of the human under 
observation. With a magnetic tracker precise movement data from body parts related to 
both {W} and {H} can be collected. This kind of sensor system is useful for a stationary 
Human-Computer-Interface, as it requires a certain preparation-effort from the user (e.g. 
attaching the sensors). For a mobile robot a visual-based system is more useful as it does not 
require any preparation, though on the cost of precision, as depicted in Figure 9. Our 
solution is based on a system which uses both, 3-D magnetic tracker data and 2-D visual 
data. The relationship between LMA parameters, Low-Level features and the types of 
movement will be learned by a synchronous acquisition of 3-D tracking and 2-D image data. 
Additionally, a probabilistic model for the geometry of the frames of reference will be 
established. The mobile robot will be equipped with a monocular camera only, but 
additionally with the knowledge from the previous learning. 
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Figure 9. Different sensor modalities and their characteristics 

Some sets of movement data have already been introduced in section 2.3. The corresponding 
database is called Human Interaction Database (HID) and is accessible through WWW (Rett, 
et al. 2007). The database consists of image sequences, high precision 3-D position data and 
results from our visual tracker and classifier. 
Our geometric model needs to address the appearance of sensors and objects in the 
interaction scenery, i.e. define their frames of reference. Figure 9 shows the frames of 
reference: the camera referential {C} in which the image is defined and some world 
coordinate system {W}. 

{C}

{W}{M}

 

Figure 10. Frames of reference of the scene 

In the experimental setup for collecting movement data we have the world frame of 
reference {W} coinciding with the one of the magnetic tracker {M}. 
Using a 6-DoF magnetic tracker provides 3-D position data with a sufficiently high accuracy 
and speed (50Hz). We use a Polhemus Liberty™ system with sensors attached to several 
body parts and objects. From the tracker data a set of features is calculated and related to the 
Laban Movement Parameters (LMP). The 3-D position data is projected in the following step 
to 2-D planes from which the low-level features are computed. 
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3.1 Geometric model of the camera 

As the learning of human movements is based on a synchronous acquisition of 3-D tracking 
and 2-D image data we need to establish the geometric relationship in a model. The presen-
ted model considers the frame of reference of the world {W} and of the camera referential 
{C}. As shown in Figure 11 we placed the origin of {W} on the ground level aligned with the 
gravitational vertical and the sagittal axis of the person. 

{W}

{C}

Wxl_h

Cxr_h

Cxl_h

Wxr_h

Wxh

Cxh

 

Figure 11. Projection of head and hands position in the camera plane 

Any generic 3-D point WX = [X  Y  Z]T and its corresponding projection imgX = [u  v]T on an 
image-plane can be mathematically related using projective geometry and the concept of 
homogeneous coordinates through the following equation, the projective camera relation, 
where s represents an arbitrary scale factor (Hartley & Zisserman, 2000): 
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Matrix A is called the projection matrix, and through its estimation it is possible to make the 
correspondence between any 3-D point and its projection in a camera's image-plane. We can 
likewise express the matrix A by using the parameters of the projective finite camera model, 
as stated in (Hartley & Zisserman, 2000). 

 [ ]}{
}{

}{
}{

W
C

W
C

tRCA
G

=  (2) 

Where {C} is the camera's calibration matrix, more frequently known as the intrinsic 
parameters matrix, while the camera's extrinsic parameters are represented by the rotation 
orthogonal matrix R and the translation vector t that relates the chosen {W} to the camera 
{C}. 
The projective camera presents us, in fact, with the solution for the intersection of planes 
πcam1 and πcam2 which, assuming X* = [X Y Z 1]T (i.e. homogeneous coordinates), can be 
proven from its projection expression to be given by (3) (Dias, 1994). 
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This solution is called the projection or projecting line, which can be alternatively 
represented by equation (4) (Dias, 1994). 

 ( ) ( )3231 aaaan vu −×−=
G

 (4) 

These relations indicate that all 3-D points on the projecting line correspond to the same pro-
jection point on the image-plane. A unique correspondence between WX and CX could only 
be established through additional constraints, such as the intersection with the surface of a 
sphere, a plane, etc. 

3.2 Low-level features 

The selection of 'good' features is a general and long known problem in pattern recognition. 
For the description of the Space component we have chosen a feature based on the 
displacement angle. This physical measurable entity represents the Space component of LMA 
very well and the process of computation is simple. When using a low cardinality we can 
expect a good performance of the Bayesian method for learning and classification.  
Displacement angles, which also have been used by (Zhao, 2002) can be calculated easily 
from two subsequent positions. They describe the trace of a curve quite well and are 
independent from the absolute positions. As the position data is projected to planes, each 
plane produces a sequence of displacement angles with a certain sampling rate and 
discretization. 
All computations are based on the raw tracking data inside our Human Interaction Database 
(HID). The tracking data consists of: I) the 2-D or 3-D position Xbp of a point belonging to a 
body part bp and II) the timestamp ti given by some timer function of the system. The 

position is defined in a frame of reference φ indicated by φX. This usually indicates the 
sensor used for input like the camera {C} or the commercial motion capture device {W}. 
With the sampling (frame) index i the sampling interval Δti+1 can be calculated between two 
conescutive frames i and i+1. In order to treat 2-D and 3-D data equally the first step is to 
project the 3-D data to some suitable planes. Usually the three principal planes Door Plane 

(vertical) πv, Table plane (horizontal) πh, and the Wheel Plane (sagittal) πs are used. To allow 
for a fast computation we are discretizing the low-level features to a low cardinality.  The 
continuous displacement angles are discretized into directions D with a cardinality of eight. 

 { }D 180 , 135 , 90 , 45 , 0 , 45 , 90 , 135 8       ∈ ° ° ° ° ° − ° − ° − ° < >  (5) 

With this we get one discrete variable D per body part and plane. Considering the two most 
important body parts ‘left hand’ lh and ‘right hand’ rh and the three principal planes we get 
six directions:  

 lh
xz

lh
yz

lh
xy

rh
xz

rh
yz

rh
xy DDDDDD ,, ,,,  (6) 

The angular values of D are then translated into the Vector Symbols Abp, Bbp and Cbp. Figure 

12 shows this transformation for the Door Plane (vertical) πv and the right hand rh using a 
‘byebye’ movement as an example. 
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Figure 12. Vector Symbols for the Door Plane and the right hand by means of a ‘byebye’ 
movement. a) The displacement is converted into the Vector Symbol Brh. b) Grid of Vector 
Symbols superimposed on the movement trajectory. c)  The continuous computation results 
in a stream of Vector Symbols 

In Figure 12 a) the scheme for the conversion from the displacement to the displacement angles 
to the direction Dyzrh and finally to the Vector Symbol Brh is shown. In Figure 12 b) the grid of 
Vector Symbols is superimposed on the movement trajectory. As a result of the continuous 
computation we get a stream of Vector Symbols as shown in Figure 12 c). Figure 12 shows 
both representtations for the Vector Symbols, the signs taken from (Longstaff, 2001) and the 
letters used by our algorithm. 

4. Bayesian Models for Movement Perception 

The concepts of Laban Movement Analysis (LMA) and the characteristics of our system to 
track human movements can be mathematically and computationally modeled using a 
common framework. The Bayesian theory gives us the possibility to deal with 
incompleteness and uncertainty, make predictions on future events and, most important, 
provides an embedded scheme for learning. 
Included in the Bayesian framework are specialized models which have a long tradition in 
many areas and are known under the names, Hidden Markov Models (HMMs), Kalman 
Filters and Particle Filters. Bayesian models have already been used in a broad range of 
technical applications (e.g. navigation, speech recognition, etc.). Recent findings indicate 
that Bayesian models can also be useful in the modeling of cognitive processes. Research on 
the human brain (and in its computations for perception and action) report, that Bayesian 
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methods have proven successful in building computational theories for perception and 
sensorimotor control (Knill & Pouget, 2004). 
In the course of our investigation and development we found, that the process of prediction 
and update during classification represents an intrinsic implementation of the mental 
concept of anticipation. Using the property of conditional independence the dimensionality 
of the parameter space that describes the human movements can be reduced. Bayesian nets 
offer the possibility to represent dependencies, parameters and their values intuitively 
understandable, which is a frequently expressed request from non-engineers (Loeb, 2001). 
Furthermore these methods have already proven their usability in the related field of 
gesture recognition (Starner, 1995); (Pavlovic, 1999). 
Probabilistic reasoning needs only two basic rules. The first is the conjunction rule, which 
gives the probability of a conjunction of propositions. 

 
( ) ( ) ( )

( ) ( )baPbP

abPaPbaP

|

|

×=

×=
 (7) 

The second one is the normalization rule, which states that the sum of the probabilities of a 

and ¬a is one. 

 ( ) ( ) 1=¬∧ aPaP  (8) 

The two rules are sufficient for any computation in discrete probabilities. All the other ne-
cessary inference rules concerning variables can be derived such as the conjunction rule, the 
normalization rule and the marginalization rule for variables (Rett, 2008). 

4.1 Global Model 

The global model to describe the phenomenon of computational Laban Movement Analysis 
(LMA) is shown in Figure 13.  

Space

Physical

Space

Laban

Space

Concept

Space

LLF

Space

model

M

 

Figure 13. Bayes-Net of the global model with three levels of abstraction (i.e. Concept Level, 
Laban Space and Physical Space)  

Having the concept of a movement represented by the variable M certain characteristics will 
be exhibited through the sets of variables of LMA (Space). The sets of LMA can be observed 
through the set of low-level features LLF. This concept is accompanied by different levels of 
abstraction by introducing the 'Concept space', the 'Laban space' and the 'Physical space'. 
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The nodes represent variables (e.g. movement M) and sets of variables (e.g. low-level fea-
tures LLF). The arcs describe the dependencies between the nodes. The movement M repre-
sents the parent node which effects the child nodes in the 'Laban space'. The node on the 
'Laban space' is a parent for the set of low-level features LLF. The dependencies can also be 
expressed as a joint distribution and its decomposition while omitting the conjunction 

symbol ∧ as: 

 ( ) ) |  | M) P(P(M) P(M P SpaceLLFSpaceLLF Space =  (9) 

In the following section the Space model will be discussed in detail. Additionally a temporal 
model will be discussed which tackles issues concerning the duration of a movement and 
the frames of inflection (phase). 

4.2 Space Model 

The Space component of LMA is modeled using the concept of Vector Symbols. As defined in 
the 'global model' (see section 4.1) two sets of variables are used in the model: 

 { }CBA ,,∈= SpaceLLF  (10) 

It can be seen that LLF and Space are equal which is due to the fact that the variables {A, B, 
C} are both, LMA descriptors and low-level features. 
The Vector Symbols receive one additional value from the velocity variable, i.e. the indication 
of no movement v = 0. As we describe the spatial pathway of a movement by 'atomic' 
displacements, we refer to the Vectors Symbols sometimes as atoms. Movements which are 
parallel to one of the axes are expressed as up, down, left, right, back and forward 
movement resulting in the values U, D, L, R, B and F respectively.  This represents the 
concept of Pure Dimensional Movements within LMA, while the concepts of Pure Diagonal 
Movements and Deflections are described as combinations of Pure Dimensional Movements.  
Of particular interest are the atoms B, occurring in the frontal Door Plane (YZ-plane) as they 
convey most of the information found in gestures. The variables and their sample space are 
shown in 

 

{ }

{ }

{ }

{ }

{ } 9

9

9

1

8

maxmax

BF,D,DB,B,UO,U,UF,F,DC
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II,,I

,lungingbyebye,M

bp

bp

bp

∈

∈

∈

∈

∈

…

…

 (11) 

The model of LMA-Space assumes that each movement M = m produces certain atoms Abp = 
a, Bbp = b and Cbp = c at a certain point in time, i.e. frame I = i and for a certain body part bp. In 
this model a certain movement m is 'causing' the atoms a, b and c at the frame i. The evidences 
that can be measured are the atoms a, b, c and the frame i. The model might be applied to 
any number of body parts bp which are treated as independent evidences a thus expressed 
through a product as shown in the joint distribution as 

 ( ) { }∏=

bp

bpbpbp IMCPIMBPIMAPIPP(M)CBAIMP )|()|()|()(  (12) 
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Figure 14 shows the corresponding representation in a Bayes-net. 

Movement

Vector Symbols (atoms)

IM

Frame

A B CAlh Arh

C
o

n
c
e
p

t

S
p

a
c
e

L
a

b
a
n

S
p

a
c

e

P
h

y
s
ic

a
l

S
p

a
c
e

Table Door WheelRight Left

 

Figure 14. Bayes-Net for the Space component of LMA. The movement M belongs to the 
concept space while the Vector Symbols are part of both, the Laban space and the physical space. 
Their instances are in the principal planes Table, Door and Wheel and the left and right hand. 
The frame I is associated with the physical space only 

Table 2 summarizes the variables used in this model. 

Variable Symbol Description  

Movement  M Set of movements 

Frame  I Frame index 

Body part bp e.g. rh (right hand) 

Abp Vector Symbols (Atoms) in πh 

Bbp Vector Symbols (Atoms) in πv 
Vector 
 symbol 

Cbp Vector Symbols (Atoms) in πs 

Table 2. Space variables 

4.3 Temporal Model 

The Space model is based on the temporal sequence of atoms. Different paces and number of 
repetitions while performing the movement influence the classification result. One solution 
to deal with this problem is to introduce an additional uncertainty model. For each trial of 
movements the total length in frames imax can be determined. For all trials the mean and 
variance can be calculated. The uncertainty about the length imax of a performance can be 
expressed as a an uncertainty concerning the frame i itself. One may think of this as 
stretching and shrinking the length of the frames i so they may fit in a static length imax. 
Technically one can map an observed frame i_obs to a normal frame i, probabilistically we 
define a conditional probability 

 ( ) )obsN(iiobsiP iσ;_|_ =  (13) 

where for a certain frame i get probability values for all possible values of i_obs. It makes 
sense to assign the highest probability to the case i_obs = i and model the relationship as a 
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Gaussian distribution. The mean of the Gaussian will be the observed frame i_obs = i itself 
and the standard deviation may have a value  0 < σi ≤ σi _max. 
For each newly observed frame i_obs the mean of the distribution slides one step further as 
shown in Figure 15. 
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Figure 15. P(i_obs | i=i_obs) as a Gaussian distribution with 'sliding' mean 

One might notice that the standard deviation does not change, producing the relation of 
probabilities e.g. between P(i_obs | i=i_obs) and P(i_obs | i=i_obs+1) for any observed frame 
in the interval.  
The variables and their sample space are shown in (14). 

 
{ }

{ } maxmax

maxmax

__1_

1

obsIobsI,,obsI

II,,I

…

…

∈

∈
 (14) 

For the temporal model we assume that each frame I can show up as an observed frame I_obs 
with a certain probability. Thus, we have a conditional dependency of I and I_obs as can be 
seen in Bayes-net of Figure 16. 
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Figure 16. Bayes-Net of the temporal model which connects to the Space model 
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The I_obs variable is measured directly as hard evidence, the frame I can be interpreted as a 
soft evidence for the Space model. The joint distribution embedded Space model while 
omitting the body part index can be expressed as  

 
( )

))|_(

_

IM|P(CI)M|P(BI)M|P(AIobsIPP(I)P(M)

I A B CobsM IP

=
 (15) 

Table 2 summarizes the variables used in this model. 

Variable Symbol Description  

Frame   I Computed (soft) evidence 

Observed Frame I_obs Measured (hard) evidence 

Table 3. Variables used in the temporal model. 

4.4 Learning of probability tables 

The previous sections presented models through Bayesian nets and joint distributions. The 
latter appeared as a product of several conditional distributions which links the 
hypothesizes to the data. Thus, the distributions need to represent the data given a certain 
condition. The question is 'How can we find this distribution?' and the answer is 'Learning'. 
Many different techniques and forms of representations exist. 
The probability distribution can be learned by counting the observations a variable has a 
certain value (Histogram Learning). For a finite number of discrete values the process can be 
described as building a histogram. By dividing the counts for each value i of the variable V 
(V=i) by the total number of samples n a probability distribution can be computed as   

 [ ]( )
n

n
iVP i==*  (16) 

The assumptions that apply are: i) All samples n come from the same phenomenon. ii) All 
samples are from a single variable V. iii) The order of the samples is not important. 
When learning a probability distribution through the histogram some values of V might 
have zero probability, simply because they have never been observed. Whenever these 
values occur in the later classification stage the corresponding hypothesis(es) will receive 
also a zero probability. In continuous classifiers, that are based on multiplicative update of 
beliefs, this leads to an immediate and definite out-rule of the hypothesis(es). Most of the 
time this is not desirable and appears 'unnatural'.  
One way of solving this is to use an equation which produces a minimum probability for 
non-observed evidences. Equation (17) is based on the Laplace Succession Law and it can be 

seen that it will produce a minimum probability of 1/(n+ ⎣V⎦).  

 [ ]( )
⎣ ⎦Vn

n
iVP i

+

+
==

1
*  (17) 

The atom variable Arh has nine values ⎣V⎦ = 9 and by learning from six samples n=6 each 
non-observed value will receive a probability of P*(V) = 0.0667 for all values i where ni = 0. 
The learned table P (Atom | M I) holds the probability distribution of the Variables Atom e.g. 
Table Plane right hand atom Arh. The variable has two conditions, the movement M and the 
frame I. Figure 17 represents this multidimensional table.  
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Figure 17. Learned table for generic movements of the type P(Atom | M I). The movements 
m1 and m2 have a dominating atom (4 and 3) during certain phases (middle and beginning) 
while movement m3 shows no spatial pattern at all 

When stacking the probabilities for each value one over each other, patterns can be observed 
along the time given by the frame I and between the movements M. From the hypothetical 
example one can conclude, that in movement M = m1 at frame I = 5 most probably atom 4 
will show up. This shows that after learning the data can be presented in a way that allows 
an evaluation of both, the hypothesis and the data. The generic movement m2 has its 
dominating atom 3 at the beginning. Movement m3 can be seen as a 'white noise' movement 
where no spatial pattern can be observed along the time. The size of the table is given by the 
cardinality of Atom i.e. nine, the maximum number of frames, e.g. forty and the number of 
movements, e.g. four. In this example the table will have 1440 entries. 

4.5 Continuous classification of movements 

Classification is the final step after the model has been established and the tables have been 
learned. Given our joint distribution (17) we need to formulate a question, i.e. what we want 
to classify and what we can observe. In our case we are interested to classify an unknown 
movement from the evidences observed in the Physical Space. In the following we continue 
with a simplified question, i.e. classifying a movement M taking into account only the Vector 
Symbols (atoms) A and the frame I. 
The previous step of learning provided us with the possibility to determine the probability 
that the atom A has value a given a frame i from all possible frames I and a given a 
movement m from all possible movements M, i.e. P(a | m, i). The table P (A | M, I) holds the 
probability distribution for all possible values of atom A given all possible movements M 
and frames I. 
Knowing the conditional probability P (A | M, I) together with the prior probabilities for the 
movements P (M) we are able to apply Bayes’ rule and compute the probability distribution 
for the movements M given the frame I and the atom A with 

 ( ) ( ) ( )IMAMAIM || PPP ∝  (18) 

It is possible to compute how likely it is that an observed sequence of n atoms was caused by 
a certain movement m. To compute the likelihood we assume that the observed atoms are 
independently and identically distributed (i.i.d.). In (19) the sequence of n observed values 
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for atom a is represented by a1:n. For each movement m the joint probability will be the 
product of the probabilities from frame i = 1 to i = n, where the j-th frame of the sequence is 
indicated by ij. 

 ( ) ∏
=

=

n

j

jjnn imaPimaP

1

:1:1 )|(|  (19) 

We can formulate (19) in a recursive way and for all movements M and get 

 ( ) ( ) ( )11:11:11 ||| ++++ = nnnnnn iMaPiMaPiMaP  (20) 

The likelihood computation (20) can be plugged in our question (18). Assuming that each 
frame i a new observed direction symbol arrives we can continuously (online) update our 
classification result. 

 ( ) ( ) ( )111:11:11 || +++++ ∝ nnnnnn iMaPMPaiMP  (21) 

We can see that the prior of step n+1 is the result of the classification of step n. Given a 
sufficient number of evidences (atoms) and assuming that the learned tables represent the 
phenomenon sufficiently good, the classification will converge to the correct hypothesis. 
This will happen, regardless of the probability distribution of the 'true' prior for n=0, if there 
are no zero probabilities assigned to any of the hypothesizes. 
The final classification result is given by the maximum a posteriori (MAP) method. Several 
questions can be formed and compared against each other. The following Table 4 presents 
some questions and their decompositions. 

Movement using 2-D (horizontal) Space model 

Question P(M | i a) 

Decomposition P(M)  P(a | M i) 

Movement using 2-D (vertical) Space with temporal model 

Question P(M | i_obs b) 

Decomposition P(M)  P(i_obs | i)   P(b | M i) 

Movement using 3-D Space model 

Question P(M | i a b c) 

Decomposition P(M)  P(a | M i)  P(b | M i)  P(c | M i) 

Table 4. Questions for classification and their decompositions 

In this example the query variable (usually M) is held in a capital letter, while the observed 
evidences have small letters. 

5. Online Movement Recognition System 

The previous sections of this article reflect the steps of designing a probabilistic model. The 
implementation of the processes and its results can also be organized in steps. The first step 
is the extraction and computation of the low-level features. In the second step probabilistic 
variables and conditional kernel tables need to be defined. The third step of learning fills the 
tables with data from a number of trials. In the fourth step several joint distributions and 
questions can be defined to investigate different types of models. The fifth and final step is 
to run the continuous classification and discuss the evolution of the probabilities and the 

www.intechopen.com



Laban Movement Analysis using a Bayesian model and perspective projections 

 

203 

confusion table for several trials. To emphasize the important characteristic of the system it 
is called Online Movement Anticipation and Recognition (OMAR) system. As this section 
emphasizes the technological aspects of the solution some technical terms will be used such 
as conditional kernel maps and -tables to represent a probability distribution. 

5.1 Learning conditional kernel maps 

The second step of implementation is the definition of the probabilistic variables and 
conditional kernel tables. As this has been done already in section 4 we can proceed to the 
third step of learning those tables. Figure 18 shows the flow chart of the learning process. 
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Figure 18. Learning process: Low level features are extracted each frame and 'adds' points to 
the histogram. After all trials are processed the conditional kernel maps are stored, e.g. in 
XML-format 

From the movement database (HID) a set of trials for learning is chosen and fed into the 
system for low-level feature extraction. The database consists of five trials per person and 
movement. Three trials are usually chosen for learning. Each trial produces one data point 
per feature and frame. Learning based on an histogram approach creates probabilistic tables 
simply by adding those points until all trials are processed. 

5.2 Results: Probability tables for Space 

Some of the movements from our database can be described as ‘gestures’. Figure 19 shows 
tables for two ‘gestures’, i.e. byebye and pointing with the nine atoms of the right hand.  
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Figure 19. Learned Table P(B | M I ) for gesture byebye and pointing 
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It represents the 'fingerprint' of the gesture prototype for waving byebye. The table preserves 
the possibility to evaluate what has been learned. Figure 19 uses a stacked representation of 
the probabilities to show which atoms are dominant during certain phases.  Two gestures 
are to be compared: byebye on the left and pointing on the right. During the first frames the 
most likely atoms to be expected are the ones that go upward and to the right, i.e UR and U. 
This is coincides with our intuition, that while we are starting to perform a gesture with the 
left hand we tend to move up and to the left to gain space to perform the gesture. This is 
similar for both gestures. From the fifth or sixth frame on, the gestures become distinct. The 
gesture byebey has mainly movements to the left and right (L and R) with some zero atoms 0 
at the points of inflection. The gesture pointing has mainly non-movement atoms (0) leaving 
the other probabilities at their minimum given by the Laplace assumption.  It can be 
concluded that the movement set ‘gestures’ has a high spatial distinctiveness and can be 
used for simple but robust command interaction with a robot. 

5.3 The process of recognition 

The fourth step of implementation has been presented in section 4. The joint distributions of 
interest are:  

• Movement classification using 2-D Space. 

• Movement classification using 3-D Space. 
The fifth and final step is the investigation of the evolution of probabilities and the 
confusion table that can be obtained for all trials of the test set. 
Figure 20 shows the flow chart of the classification process. 

Classification

result

Compile

Question 

Store to 

confusion 

table

Low level 

feature 

computation

Prior

Continuous update

replace()

next()

List of trials 

for testing

List of trials 

for learning

Movement 

database

Conditional 

Kernel

 

Figure 20. Classification process: The inner loop of continuous update produces the 
evolution of probabilities, the outer loop of next trial produces the confusion table 

The inner loop of continuous update produces the evolution of probabilities, the outer loop 
of ‘next trial’ produces the confusion table. Classification uses the same process for the 
computation of low level features as learning before. With the low level features and the 
previously stored conditional kernel maps it possible to compute the desired probability 
distribution. This goes according to the defined joint distribution and the desired question. 
Inside the probabilistic library the step is known as 'compiling the question'. Through 
feeding in (replacing) the result of the compiled question as the new prior a continuous 
update of the classification results for all frames can be obtained. The result of the 'last' 
frame gives the final result and while looping through all trials for testing a confusion table 
can be built.  
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We can conclude that the two processes of learning and classification are based on the same 
type of observations as shown in Figure 21. 

Classification

Learning

Conditional kernel map of 

the features F given the 

movements M and frame I

P(F | M I)

Probability distribution of 

the movements M given 

the features f and frame i

P(M | i, f)

L
o
w

 l
e

v
e

l 
fe

a
tu

re
s

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19

0
10

20
30

40

1
2

3
4

E 0

0.2

0.4

0.6

0.8

1

 

Figure 21. Switching between Bayesian learning and classification 

The previously presented scheme starts by learning and, after the conditional kernel maps 
have been build, continues with classification. An important feature of Bayesian histogram 
learning is that we can 'switch back' at any time to learn new and more data. This opens the 
possibility to create artificial agents that are able to continuously learn new data during their 
daily operation. 

5.4 Results: 3-D versus 2-D Recognition 

By representing movements using only one plane, some of the spatial information gets lost. 
This section investigates the loss by comparing the results of classification when using the 
Vector Symbols (atoms) of all the tree planes A, B, C to the results gained when only the atom 

B of the Door Plane (vertical) plane πv is used. The results are compared through a confusion 
table for eight movements, as already presented in Table 1. Table 5 shows the results for 

using the B atoms of the vertical plane πv. 

Movement 1 2 3 4 5 6 7 8 Σe 

1 lunging 7   5    1 6 

2 maestro  5    8   8 

3 stretch   12    1  1 

4 ok    8 1  4  5 

5 pointing    1 10  1  2 

6 byebye      13   0 

7 shake    4   9  4 

8 nthrow    4   1  5 

         31 

Table 5. Confusion table using only the 2-D (vertical) atoms 

The sum of all numbers in each row usually adds up to thirteen, though some movements 
have fewer trials. In the 2-D case 31 of 95 trials are classified wrongly leaving a recognition 
rate of 67%. The highest false-rate has the maestro sequence which is confused with the 
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byebye sequence shown in the second row. By comparing the traces of the two movements 

(see Figure 22) we can see that they are quite similar, though the vertical plane πv appears as 
the most distinctive one. 
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Figure 22. Comparing the traces of the movements byebye and maestro in 2-D and 3-D 

The confusion between the two-hand movement lunging and the one-hand gesture ok 
indicated in the first row of the table is partly due to the traces but also due to the model. 
From Figure 23 it can be seen that for 2-D the right hand traces (blue) are similar leading 
partly to the confusion.  
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Figure 23. Comparing the traces of the movements lunging and ok in 2-D and 3-D 

The model for the left hand is based on the assumption that we get mostly non-movement 
atoms which is true for both cases. The model can be easily improved by adding an evidence 
for not having moved at all. 
The confusion between the gesture ok and the movement shake indicated in the fourth row of 
the table is due to the traces for some trials. From Figure 24 it can be seen that trials where 
the hand does not reach towards the middle (sagittal plane), but goes straight forward, the 
2-D projection can be confused easily. 
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Figure 24. Comparing the traces of the movements lunging and ok in 2-D and 3-D 

In this case the confusion goes in both directions as can be seen in the seventh row.  
The final confusion occurs in the eight row. From Figure 25 it can be seen that the 2-D 
projecttion does not convey the information on the sagittal oszillation the right hand is 
performing. 
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Figure 25. Comparing the traces of the movements nthrow and ok in 2-D and 3-D 

Table 6 shows the results for using the A, B and C atoms of the all planes. 

Movement 1 2 3 4 5 6 7 8 Σe 

1 lunging 11   1   1  2 

2 maestro  2    11   11 

3 stretch   12 1     1 

4 ok    9   4  4 

5 pointing     10  2  2 

6 byebye      13   0 

7 shake    1   12  1 

8 nthrow        5 0 

         21 

Table 6. Confusion table using 3D (all planes) atoms 
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In the first row it can be seen, that the recognition rate has improved due to the additional 
evidences indicating the movement in the x-dimension. Similar is true for the seventh row 
where the hands are usually reaching further in the x-dimension when performing the shake 
movement as compared to the ok gesture. The nthrow movement is now recognized in all 
trials as the evidences of the sagittal waving are now processed. In the 3-D case 21 of 95 
trials are classified wrongly leaving a recognition rate of 78%. The maestro movement of the 
second row is significantly worse in 3-D which may be due to the fact that the x-dimension 
does not add additional information for distinction. 
We can conclude that the recognition rate improves in general when using evidences from 
all three planes (from 67% to 78%). Some movements can not be seen in certain planes, e.g. 

nthrow in the vertical plane πv. It appears that apart from the 'pure' spatial pattern also 
evidences from the temporal model effect the classification result. A further tuning of the 
temporal model (sliding mean was used) should improve the results. Further improvements 
are expected from a variable that indicates if a hand has not moved at all. 

6. Conclusions and future works 

The work presented in this article started with the premise that the field of computational 
Human Movement Analysis is in need of an annotated database for human movements. The 
second section of this article showed that Laban Movement Analysis (LMA) is a good choice 
for this descriptor. After a brief overview the Space component was discussed in detail and 
the descriptive language Labanotation was presented. This section concluded with examples 
from our Human Interaction Database (HID) to outline the applicability of LMA for an 
annotated database. 
To allow applications which involve autonomous mobile robots (e.g. 'social robots') a 
technical solution needed to be found to bring together monocular cameras and high 
precision data from a 3-D tracking device. The third section showed that we are able to base 
the computation of our low level features on two very different sensor types, i.e. monocular 
camera and commercial motion tracking device. This allows to work with a database of rich 
3-D position data and sensory input from (a) 2-D projection(s). The section presented the 
extraction and computation of low level features based on displacement angles. 
A suitable framework needed to be chosen which provides a scheme for learning as well as 
for classification and takes into account that LMA is based on human observations where 
incompleteness and uncertainty are issues. By suggesting a Bayesian approach in the fourth 
section the former issues have been taken into account. A probabilistic scheme for learning 
and classification using models that can be represented as Bayesian nets was shown. 
The fifth section presented the implementation as flow charts with some links to functions of 
the probabilistic library used. It was shown that the probabilistic approach provides the 
learned data in a way that allows its visual inspection and evaluation. The chosen 
histogram-based approach for learning provides a simple way of adding data points. The 
Human Interaction Database (HID) provides several sets of ‘expressive movements’. It was 
shown that 'gestures' has a high spatial distinctiveness and can be used for simple but 
robust command interaction with a robot. As a benefit of the modularity of the system 
results for movement classification could be presented and compared using 3-D Space and 2-
D Space. The recognition rate improved in general when using evidences from all three 
planes (from 67% to 78%). Some movements could not be seen in certain planes, e.g. nthrow 

in the Door Plane πv. 
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For the future the database of movements with annotated Laban Movement Analysis (LMA) 
descriptors will be extended by certain classes. The Bayesian models will be extended by 
additional components taken from LMA. A socially assistive robot will be designed to be 
used in rehabilitation that records human movements annotated with LMA descriptors. An 
interface for the smart infrastructure and the socially assistive robot will be designed to 
show the results of the recorded movement and the evolution of the rehabilitation process.  
The main goals of the future research will be to establish Laban Movement Analysis (LMA) 
as a general tool for the evaluation of human movements and provide those communities 
that collect large amounts of experimental data with technical solutions for labeled data sets. 
The research will be justified by showing that rehabilitation processes do benefit from 
evaluations based on LMA. That comparison of experimental data with very distinct 
experimental set-ups is possible by using the descriptors of LMA. Data from computational 
LMA opens the possibility to cluster motor deficits and neurological disorders that are 
similar with regards to LMA. 
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