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Psychological Evaluation for Rough Shape  
and Biped Walking of Humanoid Robots  

Using Virtual Reality 
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1Yamagata University, 

2Osaka University, 
 Japan 

1. Introduction 

Japan is becoming an aging society composed largely of elderly people, and the proportion 
of aged people in the population is increasing year by year. There is an increasing need for 
robots that can coexist with people and help them in their daily lives: housekeeping robots, 
nursing care robots, etc. Such robots are required to have “physical safety” and “mental 
safety”. Physical safety means that robots do not injure humans. Mental safety means that 
humans do not feel fear or anxiety toward robots. In addition, it is important that humans 
do not have feelings of unpleasantness or aversion toward robots. Accordingly, when 
designing robots coexisting with people and planning their motions, it is necessary to 
consider the influences of the robots on human impressions and psychology. Mental safety 
has not yet been fully discussed. This is because the parameters of robots (shape, size, color, 
motion, speed, etc.) that may affect human psychology have not been clarified, and the 
method of measuring and evaluating human psychology for the robots has not been 
established. 
There have been some researches on the evaluation of human psychology about robots and 

the interaction between robots and humans. Goetz et al. conducted questionnaire about 

matching between tasks and appearance of humanoid robots (Goetz et al., 2003). Robins et 

al. investigated the attitudes of autistic children for robots (Robins et al., 2004), and Woods 

et al. discussed the design of robots from children’s viewpoint (Woods et al., 2004). Some 

psychological experiments for wheeled humanoid robot “Robovie” were conducted (Kubota 

et al., 2003; Kanda & Ishiguro, 2004; Sakamoto et al., 2004). Seal robot “Paro” was also 

psychologically evaluated worldwide (Shibata et al., 2003; Shibata et al., 2004). Kanda et al. 

investigated the impressions on real robots with different appearance by the semantic 

differential method when they did the same tasks (Kanda et al., 2005). These researches are 

significant because they evaluate the psychological suitability of the existent robots as 

partner robots or human-friendly robots. But they are not enough to analyze which 

parameters of robots bring desirable psychological effects. 

For the purpose of clarifying the relationship between the parameters and their 

psychological effects, we have proposed the evaluation of human impressions and 
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psychology for robots coexisting with people using virtual reality (Nonaka et al., 2004; Inoue 

et al., 2005a; Inoue et al., 2005b; Ujiie et al., 2006; Inoue et al., 2007). CG robots are presented 

to human subjects using head-mounted displays or projection-based immersive 3D 

visualization system “CAVE” (Cruz-Neira et al., 1993), and the subjects and the robots 

coexist in the virtual world. The subjects answer questionnaire about their impressions or 

psychology for the robots and their motions; the questionnaire answers lead to the 

psychological evaluation. By using virtual reality, the parameters of robots can be easily 

changed and tested. It is also possible to experiment in various situations and environments. 

In the present article, we describe the recent two subjective evaluations about humanoid 

robots using CAVE: human impressions for rough shape of humanoid robots (Inoue et al., 

2007) and human impressions for the way of biped walking (Ujiie et al., 2006) of one type of 

humanoid robot. Based on these results, we comprehensively discuss the rough shape and 

the way of biped walking of humanoid robots which bring desirable psychological effects as 

service robots. 

2. Psychological evaluation of robots using virtual reality 

When designing robots coexisting with people and planning their motions, it is necessary to 

consider the influences of the robots on human impressions and psychology. The purpose of 

the psychological experiments is to analyze the relationship between robot parameters 

(shape, size, color, motion, speed, etc.) and human psychology: what kind of psychological 

effects the parameters have. If we can obtain such knowledge, we can determine the 

parameters so that they may bring desirable psychological effects. For this purpose, it is 

required to investigate and compare human psychological reactions to many kinds of robots 

and their various patterns of motion. But, because we aim at designing new robots, real 

robots do not exist. Hence, if we perform psychological experiments using real robots, we 

must make many new robots with different parameters and control them only for the 

experiments, not for practical use. Making and controlling real robots, however, requires 

much cost and time. In addition, human psychology for the robots may depend on the 

situation. But preparing various real environments for the tests is difficult, and some 

situations are dangerous (e.g., on a street). 

For these reasons, we have proposed to evaluate human impressions and psychology for 

robots using virtual reality. Fig. 1 shows the experimental system using CAVE. CAVE is one 

of immersive visualization systems. It consists of four screens and a projector for each. The 

screens are placed on the front, left, right and floor, thus surrounding a subject. The size of 

this space is about 3[m]x3[m]x3[m]. The projectors project 3D computer graphics on the 

screens. The subject wears stereoscopic glasses and stands inside the CAVE to see a 

stereoscopic view. By measuring the pose of the subject’s head, the graphics seen from the 

point of view of the subject is always projected. As a result, the subject feels like he or she is 

existing inside the virtual world. CAVE can give a higher realistic sensation to humans than 

head-mounted displays. As shown in Fig. 1, a 3D CG robot in real scale is presented to a 

human subject using CAVE. The subject answers the questionnaire about his or her 

impressions or psychology about the robot; that leads to the psychological evaluation. 

Because we do not have to make real robots, the proposed method allows us to change the 

parameters of robots easily and to evaluate many kinds of robots and their different motions 
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in various situations. We do not have to measure the locations of the robots using some 

sensors or measurement systems. We can keep the same experimental conditions and 

display the same motions repeatedly; this is suitable for the experiments which require 

many subjects. Accordingly, this method is suitable to evaluate new robots and to analyze 

the psychological effects of the robot parameters. On the other hand, this system cannot deal 

with situations where the subject has physical contact with the robot: for example, a 

nursing-care robot. The movable area of the subject is limited inside CAVE. 

As we mentioned, this method applies virtual reality to the problem where experiments 

using real objects are difficult to perform. But, in order to obtain similar results to human 

psychology in real world, experimental settings using virtual reality should resemble real 

case as much as possible. Especially when we evaluate robots which work around people, 

the robots should be displayed to subjects in correct size and 3-dimensionally, and the 

distance between the robots and subjects should be the same as real case. Accordingly this 

method uses CAVE as the virtual reality environment.  

 

evaluation by
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head pose

detector

3D CG robot

in real scale

human subject

stereoscopic
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screen (x 4)

projector (x 4)

graphics

controller
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Fig. 1. Psychological evaluation of robots using CAVE 

In the previous work (Nonaka et al., 2004), we evaluated holding-out motion of humanoid 
robots: a robot reaches out for the cup placed on a side table, and holds out it for a subject 
sitting in front of the robot (this experiment used a head-mounted display). Then we 
showed the effects of the rotation of the robot’s head and body on the human psychology. In 
the previous work (Inoue et al., 2005a), we evaluated passing-by motion of humanoid 
robots: a robot approaches a subject from the front and passes near him or her in a corridor. 
Then we showed the effects of the head motion and walking speed on the human 
psychology; these could be a sign of indicating that the robot is aware of the subject. The 
work (Inoue et al., 2005b) compared virtual and real mobile manipulators.  
Humanoid robots are candidates for robots coexisting with people because they have 

human-like structures. We describe the recent two experiments about humanoid robots. 
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3. Psychological evaluation for rough shape of humanoid robots 

3.1 Robot model 

Appearance is an important factor for impressions. Here we investigate human impressions 
for rough shape of humanoid robots. 
The appearance of a humanoid robot is determined by a large number of parameters: 
height, width, ratio of links, ratio of link thickness, shape of links, color, material, and so on. 
But it is impossible to change all parameters. In this study we select a) thickness of head, b) 
thickness of body, and c) thickness of legs. The thickness of arms is changed together with 
the thickness of body. Thus the parameter b) includes the thickness of arms. We call these 
parameters a), b) and c) “rough shape parameters’’.  
When we investigate psychological effects of rough shape parameters, it is better to reduce 

the influences of the other parameters on human psychology. From this reason, we make 3D 

CG robot models in real scale by combining simple solid elements: gray spheres and 

cylinders. We change the thickness of head, body and legs by changing the diameters of the 

spheres and cylinders. The purpose of this experiment is to find how human impressions 

change when the rough shape parameters change. It is not absolute impressions on the 

simplified robot models. Accordingly we define a standard robot and make other robots 

with different thickness of head, body and legs. Then we evaluate the impressions for these 

robots relative to the standard robot.  
 

AF HF UF LF

AS HS US LSK

AF HF UF LF

AS HS US LS

AF HF UF LF

AS HS US LSKK
 

Fig. 2. Standard robot “K” and eight robots to be evaluated 

 

robot head body legs

K standard standard standard

AF fat fat fat

AS slim slim slim

HF fat standard standard

HS slim standard standard

UF standard fat standard

US standard slim standard

LF standard standard fat

LS standard standard slim

robot head body legs

K standard standard standard

AF fat fat fat

AS slim slim slim

HF fat standard standard

HS slim standard standard

UF standard fat standard

US standard slim standard

LF standard standard fat

LS standard standard slim  

Table 1. Rough shape parameters of eight robots 
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Fig. 2 shows the standard robot “K”. Its height (1.54[mm]) and the ratio of the links are the 

same as those of existing humanoid robot “HRP-2”(Kaneko, 2004). Notice that the standard 

robot does not mean a typical humanoid robot. It defines standard for relative evaluation of 

impressions. We generate eight robots shown in Fig. 2 by doubling the thicknesses of head, 

body and legs of the standard robot or reducing them to half. All robots have the same 

height of the standard robot. In this figure, the first symbol represents the changed 

parameter: “A” = all parameters, “H” = head, “U” = body, “L” = legs. The second symbol 

represents thickness: “F” = fat (double), “S” = slim (half). Table 1 summarizes the rough 

shape parameters of these robots. Changing three parameters (head/body/legs) in three 

levels (standard/flat/slim) generates 27 robots in total. But evaluating all of them by 

psychological experiment requires too much time per subject; it is impossible because of 

subject’s fatigue. Thus we select 8 robots to see the effects of each parameter and overall 

thickness.  

 

1[m]

standard robotrobot to be evaluated

subject

1[m]

standard robotrobot to be evaluated

subject

1[m]

standard robotrobot to be evaluated

subject
 

Fig. 3. Setting of experiment for evaluating rough shape 

3.2 Experimental method 

Fig. 3 shows a bird's-eye view of the setting of the virtual environment and a scene of the 
experiment using CAVE. Each of the eight robots and the standard robot stand upright and 
side by side. Each subject sits on a chair in front of the robots; the distance between the 
robots and the subject is 1[m]. The relationship between the height of the robots and the eye 
level of the subject may affect his or her impression. Sitting on the chair reduces the 
differences of the eye level among the subjects and makes all subjects look up at the robots. 
The robots are rotating so that the subject can see them from all angles. The standard robot 
is always displayed, and the eight robots are displayed one by one. All subjects see the eight 
robots. In order to cancel out the order factor, the eight robots are presented in randomized 
order for each subject. The subjects are 8 men and 17 women (total 25 subjects) between the 
ages of 19 and 66. 

3.3 Psychological evaluation 

After seeing each of the eight robots, the subject answers the questionnaire about his or her 
impression of the presented robot relative to the standard robot. The questionnaire by the 
semantic differential method consists of 38 adjective pairs, summarized in Table 2. We pick 
up some of these adjective pairs from those already used in the similar psychological 
experiments, and add the others which seem suitable to this experiment. The subject 
evaluates each adjective pair according to seven rating grades. In this table, positive 
adjectives are arranged on the left side. Some adjective pairs in the questionnaire sheet are 
swapped so that the pairs may be balanced. The sheet is written in Japanese. 
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yasashii kowai -0.391 0.678 0.263

ningentekina kikaitekina -0.152 0.412 0.276

kouitekina tekitaitekina -0.354 0.705 0.240

karui omoi -0.526 0.148 0.732

chiseitekina chiseinokaita -0.119 0.382 0.661

shigekitekina taikutsuna 0.598 0.061 0.102

yoi warui 0.111 0.665 0.353

atarashii furui 0.022 0.229 0.589

chiisai ookii -0.567 0.113 0.683

anshin-na fuan-na 0.390 0.469 -0.234

hakkirishita bonyarishita 0.531 -0.079 -0.096

yuukan-na okubyouna 0.774 -0.111 -0.500

sensaina soyana -0.512 0.351 0.653

shitashimiyasui shitashiminikui -0.021 0.754 0.078

kimochinoyoi kimocihnowarui -0.058 0.756 0.226

youkina inkina 0.517 0.329 -0.236

uchitoketa katakurushii 0.144 0.683 0.195

chikazukiyasui chikazukigatai -0.076 0.778 0.211

yukaina fuyukaina 0.149 0.654 0.029

sukina kiraina 0.150 0.824 0.211

hayai osoi -0.081 0.109 0.785

subayai noroi -0.117 0.150 0.759

hadena jimina 0.608 -0.141 0.020

binkan-na donkan-na -0.272 0.063 0.787

sekkyokutekina shoukyokutekina 0.801 -0.061 -0.030

surudoi nibui -0.134 0.198 0.776

anzen-na kiken-na -0.150 0.660 -0.050

utsukushii minikui -0.020 0.567 0.462

omoiyarinoaru wagamamana -0.118 0.604 0.048

nigiyakana sabishii 0.664 0.095 -0.219

tsuyoi yowai 0.718 -0.129 -0.559

katudoutekina fukappatuna 0.711 0.116 0.059

rippana hinjakuna 0.747 0.014 -0.441

danseiteki joseiteki 0.546 -0.274 -0.552

tanomoshii tayorinai 0.702 0.008 -0.465

odayakana hageshii -0.541 0.517 0.228

shihaitekina fukujuutekina 0.678 -0.403 -0.300

namerakana gikochinai -0.016 0.497 0.481

Adjective pairs

in Japanese
Factor 1 Factor 2 Factor 3

yasashii kowai -0.391 0.678 0.263

ningentekina kikaitekina -0.152 0.412 0.276

kouitekina tekitaitekina -0.354 0.705 0.240

karui omoi -0.526 0.148 0.732

chiseitekina chiseinokaita -0.119 0.382 0.661

shigekitekina taikutsuna 0.598 0.061 0.102

yoi warui 0.111 0.665 0.353

atarashii furui 0.022 0.229 0.589

chiisai ookii -0.567 0.113 0.683

anshin-na fuan-na 0.390 0.469 -0.234

hakkirishita bonyarishita 0.531 -0.079 -0.096

yuukan-na okubyouna 0.774 -0.111 -0.500

sensaina soyana -0.512 0.351 0.653

shitashimiyasui shitashiminikui -0.021 0.754 0.078

kimochinoyoi kimocihnowarui -0.058 0.756 0.226

youkina inkina 0.517 0.329 -0.236

uchitoketa katakurushii 0.144 0.683 0.195

chikazukiyasui chikazukigatai -0.076 0.778 0.211

yukaina fuyukaina 0.149 0.654 0.029

sukina kiraina 0.150 0.824 0.211

hayai osoi -0.081 0.109 0.785

subayai noroi -0.117 0.150 0.759

hadena jimina 0.608 -0.141 0.020

binkan-na donkan-na -0.272 0.063 0.787

sekkyokutekina shoukyokutekina 0.801 -0.061 -0.030

surudoi nibui -0.134 0.198 0.776

anzen-na kiken-na -0.150 0.660 -0.050

utsukushii minikui -0.020 0.567 0.462

omoiyarinoaru wagamamana -0.118 0.604 0.048

nigiyakana sabishii 0.664 0.095 -0.219

tsuyoi yowai 0.718 -0.129 -0.559

katudoutekina fukappatuna 0.711 0.116 0.059

rippana hinjakuna 0.747 0.014 -0.441

danseiteki joseiteki 0.546 -0.274 -0.552

tanomoshii tayorinai 0.702 0.008 -0.465

odayakana hageshii -0.541 0.517 0.228

shihaitekina fukujuutekina 0.678 -0.403 -0.300

namerakana gikochinai -0.016 0.497 0.481

Adjective pairs

in Japanese
Factor 1 Factor 2 Factor 3

yasashii kowai -0.391 0.678 0.263

ningentekina kikaitekina -0.152 0.412 0.276

kouitekina tekitaitekina -0.354 0.705 0.240

karui omoi -0.526 0.148 0.732

chiseitekina chiseinokaita -0.119 0.382 0.661

shigekitekina taikutsuna 0.598 0.061 0.102

yoi warui 0.111 0.665 0.353

atarashii furui 0.022 0.229 0.589

chiisai ookii -0.567 0.113 0.683

anshin-na fuan-na 0.390 0.469 -0.234

hakkirishita bonyarishita 0.531 -0.079 -0.096

yuukan-na okubyouna 0.774 -0.111 -0.500

sensaina soyana -0.512 0.351 0.653

shitashimiyasui shitashiminikui -0.021 0.754 0.078

kimochinoyoi kimocihnowarui -0.058 0.756 0.226

youkina inkina 0.517 0.329 -0.236

uchitoketa katakurushii 0.144 0.683 0.195

chikazukiyasui chikazukigatai -0.076 0.778 0.211

yukaina fuyukaina 0.149 0.654 0.029

sukina kiraina 0.150 0.824 0.211

hayai osoi -0.081 0.109 0.785

subayai noroi -0.117 0.150 0.759

hadena jimina 0.608 -0.141 0.020

binkan-na donkan-na -0.272 0.063 0.787

sekkyokutekina shoukyokutekina 0.801 -0.061 -0.030

surudoi nibui -0.134 0.198 0.776

anzen-na kiken-na -0.150 0.660 -0.050

utsukushii minikui -0.020 0.567 0.462

omoiyarinoaru wagamamana -0.118 0.604 0.048

nigiyakana sabishii 0.664 0.095 -0.219

tsuyoi yowai 0.718 -0.129 -0.559

katudoutekina fukappatuna 0.711 0.116 0.059

rippana hinjakuna 0.747 0.014 -0.441

danseiteki joseiteki 0.546 -0.274 -0.552

tanomoshii tayorinai 0.702 0.008 -0.465

odayakana hageshii -0.541 0.517 0.228

shihaitekina fukujuutekina 0.678 -0.403 -0.300

namerakana gikochinai -0.016 0.497 0.481

Adjective pairs

in Japanese
Factor 1 Factor 2 Factor 3

 
 

Table 2. Adjective pairs and factor loadings for rough shape experiment 
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3.4 Factor analysis 
We quantify the results of the questionnaire in the range of 1 to 7 so that the positive 
adjective has higher score. Then we apply factor analysis. Factor analysis is a statistical data 
reduction technique used to explain variability among observed variables in terms of fewer 
unobserved variables called factors. The observed variables are modeled as linear 
combinations of the factors:  

 eAfx +=   (1) 

 [ ]Tnxxx ,,, 21 L=x   (2) 

 [ ]Tmfff ,,, 21 L=f   (3) 

 [ ]Tneee ,,, 21 L=e   (4) 
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where ( )nixi ,,1L= : observed variable, ( )mjf j ,,1L= : common factor, ( )niei ,,1L= : 

specific factor, ( )mjniaij ,,1;,,1 LL == : factor loading. In this case, the observed variable is 

score of adjective pair, and n=38. 
After extracting factors by the repetitive principal factor method, we determine that a three-
factor solution, m=3, is suitable based on the following factors and the difference in 
eigenvalues. Table 2 summarizes the factor loadings of factor 1, 2, and 3 after normalized 
Varimax method. Focusing on the adjective pairs whose absolute value of factor loading is 
0.60 or more, we interpret the meanings of the three factors. 
(a) The adjective pairs which have higher factor loadings of factor 1 and lower factor 

loadings of the other factors are divided into two groups. The first group contains 
“rippana (grand)”, “tanomoshii (dependable)”, etc. This group is related to the 
impression of leaders. The second group contains “sekkyokutekina (aggressive)”, 
“katsudoutekina (active)”, etc. This group is related to the impression of active person. 
Hence we call factor 1 “leadership-activity” factor.  

(b) Factor 2 has higher factor loadings for “sukina (favorite)”, “chikazukiyasui 
(accessible)”, “kimochinoyoi (amiable)”, etc. Accordingly, we interpret factor 2 as a 
familiarity with or good feelings about the robot, and call factor 2 “friendliness” factor. 

(c) The adjective pairs which have higher factor loadings of factor 3 and lower factor 
loadings of the other factors are “hayai (fast)”, “subayai (quick)”, “binkan-na 
(sensitive)”, etc. These are related to the speed of the motion; we call factor 3 
“quickness” factor. 

3.5 Discussions about effects of rough shape on human impressions 
Fig. 4 shows the mean value of the standard factor score for each of the eight robots with 
respect to each factor. The meanings of the symbols in the graphs are described in 3.1 and 
Table 1. We apply the T-test (5% level) to all combinations of these results. 
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Fig. 4. Standard factor scores of eight robots  

(a) With respect to the quickness factor (factor 3), the fat one (F) and the slim one (S) differ 
significantly for all parameters (A, H, U, L). Regardless of the parameters, the slim one 
(S) gives the impression of higher quickness than the standard robot “K”, and the fat 
one (F) gives the impression of lower quickness than the standard robot “K”. When the 
overall thickness of robot (A) is changed, the difference between the fat robot “AF” and 
the slim robot “AS” is largest. 

(b) With respect to the leadership-activity factor (factor 1), changing the thickness of head 
(H) makes little difference. For other parameters (A, U, L), the fat one (F) and the slim 
one (S) differ significantly. The fat one (F) gives the impression of higher leadership-
activity than the standard robot “K”, and the slim one (S) gives the impression of lower 
leadership-activity than the standard robot “K”. When the thickness of body (U) is 
changed, the difference between the fat body “UF” and the slim body “US” is largest. 
That is more effective than changing the overall thickness of robot (A).  

(c) With respect to the friendliness factor (factor 2), the difference between the fat one (F) 
and the slim one (S) is smaller than the cases of the quickness and leadership-activity 
factors. Only for the legs (L), the fat legs “LF” and the slim legs “LS” differ significantly.  

(d) When the overall thickness of robot (A) is changed, the factor scores of the friendliness 
nearly equal zero. It means that the impressions for the fat robot “AF” and the slim 
robot “AS” are almost same as the standard robot “K”. This result suggests that keeping 
the ratio of the overall thickness gives little influences on the friendliness factor.  

(e) The slim body “US” and the slim legs “LS” give almost the same impression of the 
friendliness as the standard robot “K”. But the fat body “UF” and the fat legs “LF” give 
the impression of lower friendliness than the standard robot “K”.  

(f) Both the fat head “HF” and the slim head “HS” have greater factor scores of the 
friendliness than zero. They give the impression of higher friendliness than the 
standard robot “K”. Fig. 5 shows the average rating grades of each robot on the 
adjective pairs related to the friendliness factor. The slim head “HS” gets high grade 
with respect to “yoi (good)”, and the fat head “HF” gets high grade with respect to 
“yukaina (pleasant)”. Accordingly the reason why the friendliness increases is different 
when the head is made fat (F) and slim (S). 
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Fig. 5. Rating grades of eight robots on adjective pairs related to friendliness 

4. Psychological evaluation for biped walking of humanoid robots 

4.1 Purpose of experiment 

When robots are introduced into human society in the future, the robots and humans will 

pass each other frequently. Hence, it is important that the humans do not feel uncomfortable 

or insecure around the moving robots. While the work (Inoue, 2005a) investigates the head 

motion and walking speed as a sign of awareness, this experiment evaluates the way of 

biped walking for its own sake. The walking motion of current humanoid robots is mainly 

intended for stable walking. But various walking motions will be possible for humanoid 

robots: walking with the knees bent, walking with the body swaying, walking with long 

strides, and so on. How do the differences in walking motions influence human 

impressions? If we can obtain some knowledge on this relationship, this knowledge will be 

useful for designing and planning suitable walking motions for the humanoid robots which 

will move around in our society. 

It is not easy to develop a new method of biped walking and to make real humanoid robots 

walk stably. This is because the performances of current humanoid robots are limited and 

the effects of a disturbance (e.g., irregularity of the ground) must be compensated. But 

psychological experiments aim at investigating visual effects of walking motions on human 

psychology. For these reasons, we evaluate human impressions for biped walking of 

humanoid robots using virtual reality. 

4.2 Experimental method 

Fig. 6 shows the model of humanoid robot HRP-2 used in the experiment and a bird's-eye 

view of the settings. The robot is 1.54 [m] in height and 0.62 [m] in width. A 3D CG model of 

this robot in real scale is presented to subjects through CAVE. The width of the virtual 

corridors is 2.3 [m]. Each subject sits on a chair placed at the intersection of two corridors. 

The robot starts from the position of 1 [m] in front and 3 [m] on the left of the subject, and it 

cuts in front of him or her along the corridor. The distance between the subject and the 

robot’s path is 1 [m]. The subject sees the walking robot from its side (not from the front) so 
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that he or she can see the whole body motion of the robot. The walking speed is constant at 

0.17 [m/s]. The sound of the robot’s walking, which is a recording of a real HRP-2, is also 

presented. 
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Fig. 6. Humanoid robot HRP-2 and setting of experiment for evaluating biped walking 

 

(a) Knees bent

(b) Knee stretched

(a) Knees bent

(b) Knee stretched
 

Fig. 7. Biped walking motions with knees bent or stretched 

There are many parameters that define biped walking motion. In this experiment, the 

following two parameters, which are commonly seen in the walking of current humanoid 

robots, are selected: 1) the knees are bent or stretched, and 2) the body is side-swaying or in 
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an upright posture. Fig. 7 illustrates the difference in (a) knees bent and (b) knees stretched. 

Fig. 8 illustrates the difference in (a) body side-swaying and (b) body in an upright posture. 

Combining them, we generate four walking motions. In all motions, the head and body are 

facing in the walking direction. All subjects see these four walking motions. In order to 

cancel out the order factor, these are presented to subjects in randomized order. 

 

(a) Body side-swaying

(b) Body in upright posture

(a) Body side-swaying

(b) Body in upright posture
 

Fig. 8. Biped walking motions with or without body side-swaying 

4.3 Psychological evaluation 

After seeing each motion, the subject answers the questionnaire about his or her impression 

on the robot’s motion. The questionnaire by the semantic differential method consists of 29 

adjective pairs, summarized in Table 3. Each adjective pair is evaluated according to five 

rating grades. In this table, positive adjectives are arranged on the left side. Some adjective 

pairs of the questionnaire sheet are swapped so that the pairs may be balanced. The sheet is 

written in Japanese.  

The subjects are 34 men and 13 women between the ages of 14 and 32; they do not get a 

chance to see real humanoid robots.  

4.4 Factor analysis 

We quantify the results of the questionnaire in the range of 1 to 5: the positive adjective is 5, 

and the negative adjective is 1. Then we apply the factor analysis. After extracting factors by 

the repetitive principal factor method, we determine that a three-factor solution is suitable 

based on the following factors and the difference in eigenvalues. Table 3 summarizes the 
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factor loadings of factor 1, 2, and 3 after Varimax normalized. Focusing on the adjective 

pairs whose absolute value of factor loading is 0.60 or more, we interpret the meanings of 

the three factors.  

(a) Factor 1 has high factor loadings for many adjective pairs. Among them, the factor 
loadings of other factors for “shitashimiyasui (friendly),” “kawairashi-i (lovable),” and 
“yukaina (pleasant)” are small. Accordingly, we call factor 1 the “friendliness” factor.  

(b) Factor 2 has high factor loadings for “hayai (fast),” “subayai (quick),” and “binkan-na 
(sensitive),” which concern the speed of the robot motion; we call factor 2 the 
“quickness” factor.  

(c) Factor 3 has high factor loadings for “hageshi-i (intense)” and “hadena (showy),” which 
concern the activity of the robot motion; we call factor 3 the “activity” factor. 
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Table 3. Adjective pairs and factor loadings for biped walking experiment 
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Fig. 9. Standard factor scores of four biped waking patterns 

4.5 Discussions about effects of biped walking on human impressions 

Fig. 9 shows the mean value of the standard factor score for each walking motion with 

respect to each factor. Here “L” means knees bent, “H” means knees stretched, “S” means 

body side-swaying, and “N” means body in an upright posture. Thus, the four walking 

motion patterns are expressed as “LS,” “LN,” “HS,” and “HN.”  

It seems that the walking motions are divided into two groups with respect to each factor. 

We apply the T-test (5% level) to these results. 

(a) With respect to the friendliness factor, the motions seem divided into the group (HS, 
LS) and group (HN, LN). This means that the friendliness factor depends on the body 
side-swaying. But, according to the results of the T-test, all pairs for the four motions 
are not significantly different.  

(b) With respect to the quickness factor, the pairs HS-LS, HS-LN and HN-LN differ 
significantly; but the pair HN-LS is not significantly different. Hence, the motions are 
generally divided into the group (HS, HN) and group (LS, LN).This means that the 
quickness factor mainly depends on knee bending. Furthermore, walking with the 
knees stretched (H) has a higher quickness than walking with the knees bent (L).  

(c) With respect to the activity factor, the pairs HS-LS, HS-LN, HN-LS and HN-LN differ 
significantly. Hence, the motions are divided into the group (HS, LS) and group (HN, 
LN). This means that the activity factor depends on body side-swaying. Walking with 
the body side-swaying (S) has a higher activity than walking in an upright posture (N). 

Because significant differences cannot be seen directly in the friendliness factor, we calculate 

the mean value of the grade for each walking motion with respect to each of 10 adjective 

pairs related to the friendliness factor. The results are shown in Fig. 10, where the horizontal 

axis represents the mean value of the grade. With respect to “uchitoketa (relaxed),” the 

motion HN is different from the others. Thus, combining the knee stretched and the upright 

posture gives a relaxed impression. With respect to the pair “akarui (cheerful),” the motions 

seem divided into the group (HN, LN) and group (HS, LS). Hence, body side-swaying gives 

a more cheerful impression than does an upright posture. With respect to “kawairashi-i 

(lovable),” the motion LS is different from the others. Thus, combining the knees bent and 

body side-swaying gives a lovable impression. 
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Fig. 10. Rating grades of four biped walking patterns on adjective pairs related to 
friendliness 

5. Summary  

Human impressions of humanoid robots are investigated using immersive 3D visualization 

system CAVE. In the first experiment, human impressions for rough shape parameters 

(thickness of head, body and legs) of humanoid robots are investigated. In the second 

experiment, human impressions for walking humanoid robots are evaluated, because robots 

and humans will pass each other frequently in future human-robot coexisting society.  

Notice that factor analyses found the similar factors of the impressions for appearance 

(rough shape parameters) and motion (way of biped walking): friendliness, quickness and 

(leadership-)activity. Among them, the friendliness factor is an important property for 

robots coexisting with people. We obtain the following knowledge on the friendliness factor, 

which will be useful to design rough shape of humanoid robots as service robots and to 

generate their biped walking motion:  

(a) Making the overall thickness of robot fat or slim (or keeping the ratio of the thickness of 
head, body and legs) gives little influences on the friendliness.  

(b) Making the body or legs fat deceases the friendliness.  
(c) Making the head fat or slim increases the friendliness. The reason why the friendliness 

increases is different for the fat head and slim head. The slim head gives good 
impression, and the fat head gives pleasant impression.  

(d) Combining the knees stretched and the upright posture gives a relaxed impression, and 
combining the knees bent and the body side-swaying gives a lovable impression. The 
body side-swaying gives a more cheerful impression than does the upright posture. 
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These experiments limit the parameters of humanoid robots to two or three. The reason is to 

reduce the time of the experiment per subject and to make the difference between the robot 

shapes clearly understandable. In the future, we will continue with experiments on the 

influences of other parameters on human impressions. 
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