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1. Introduction     

2.1 Background 

Wheelchairs are one of the most important mobility aids for disabled patients and elders. In 
general, wheelchairs are categorized as manual and powered types. From the viewpoints of 
movement behaviours, the powered wheelchair can be regarded as a mobile robot (Asai, 
2001) if additional environmental sensing components are built and an intelligent motion 
controller is included. Therefore, robotic wheelchairs (Luo et al., 1999) are proposed 
integrating novel sensing and intelligent control technologies to improve the convenience 
and comfort of mobility assistance.  
In general, robotic wheelchairs integrate the sensing, intelligent computing, and 
communication technologies to improve the autonomy when compared to the conventional 
powered wheelchairs. The assistive technologies resolve the problems of conventional 
powered wheelchairs of: 
1. Stable velocity control of wheels in terms of feedback motion control system. 
2. Comfortable wheelchair driving in terms of velocity adjustment of wheels for various 

degrees of turning.  
3. Collision avoidance of wheelchairs for approaching still and moving objects or person.  

2.2 State of the art 

In recent years, several robotic wheelchair projects and literatures were proposed. Their 
system focused on the autonomy, intelligence, safety, and navigation of robotic wheelchairs. 
The VAHM (French acronym for Autonomous Vehicle for people with Motor Disabilities) 
project proposed an autonomous wheelchair to assist the disabled people who are 
unpractical to drive a conventional powered wheelchair (Bourhis et al., 2001). The software 
architecture of VAHM robotic wheelchair is categorized as the physical, local and global 
levels. In the local level, the freespace detection, wall detection, and localization are 
implemented as the perception controller; the freespace search, direction following, wall 
following, path planning, motion control, obstacle avoidance are implemented as the 
navigation controller; and finally, the man-machine interface and command interpretation 
are implemented as the communication controller. The VAHM robotic wheelchair photo is 
shown in Fig. 1. 
The SENARIO (Sensor Aided Intelligent Wheelchair Navigation System) project developed 
an intelligent wheelchair navigation system (Bourhis et al., 1997), and it provided fully 

www.intechopen.com



 Service Robot Applications 

 

38 

autonomous and semi-autonomous control modes. In the fully autonomous mode, the 
control system is capable of accepting the user’s command. When the control system 
receives a “go to goal” command, it locates its current position and the target position from 
the map. Consequently, a path is generated, and the wheelchair executes by following the 
desired path. In addition, the wheelchair can avoid obstacles in terms of the ultrasonic and 
infrared sensors. In the semi-autonomous mode, the user’s command can override the 
action generating from the autonomous control mode, and the users can drive the 
wheelchair using a specified path in a special environment. The SENARIO robotic 
wheelchair photo is shown in Fig. 1. 
 

 

Fig. 1. Photo of robotic wheelchair for the VAHM project (Bourhis et al., 2001) 

 

 

Fig. 2. Photo of robotic wheelchair for the SENARIO project (Bourhis et al., 1997) 

The Bremen Autonomous Wheelchair project (Lankenau et al., 2001) developed a “Rolland” 

wheelchair, and it is implemented by following the skills of the driving and route assistants. 

The “Rolland” is capable of smooth speed control, turning around in an open space, turning 

around in a corner, obstacle avoidance, and doorway passage. It provides the mobility 

assistance for the handicapped people. The robotic wheelchair photo of ‘Rolland’ is shown 

in Fig. 3. 
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Fig. 3. Photo of Bremen autonomous wheelchair (Lankenau et al., 2001) 

At the same time, the SIAMO (Spanish acronym for Integral System for Assisted Mobility) 

project (Mazo et al., 2001) developed an electronic system to guide the autonomous 

wheelchairs for the disabled and elder people. The proposed autonomous wheelchair 

system integrates an innovative user-machine interface, a complete sensory subsystem 

(ultrasonic, infrared, vision, etc), and an advanced strategy of control and navigation system 

to guide the wheelchair with safety and comfort. Especially, the face and mouth positions 

can be traced properly. The SIAMO robotic wheelchair photo is shown in Fig. 4. 

 

 

Fig. 4. Photo of robotic wheelchair for the SIAMO project (Mazo et al., 2001) 

The autonomous wheelchair can be also developed as the omni-wheeled platform. Such a 

driving platform is not suitable for the narrow space with non-straight paths of indoor 

environments, such as patient rooms in hospitals. In that paper, an omni-wheeled platform 

(Kuo et al., 2006) is proposed as the robotic wheelchair platform. Due to the property of free 

movements in orientations, the robotic wheelchair can easily drive in a narrow space with 

non-straight paths. In addition to the omni-wheeled platform, the robotic wheelchair also 
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integrates obstacle detection sensors to perform autonomous navigations using the fuzzy 

control system. However, such an omni-wheeled platform can be used in the indoor 

environment. A heavy-duty omni-wheel with larger size and a four-wheel configuration can 

be further used to improve the mechanical reliabilities. The omni-wheeled  robotic 

wheelchair photo is shown in Fig. 5. 

 

   
 

Fig. 5. Photo of omni-wheeled  robotic wheelchair (Kuo et al., 2006) 

2.3 Practical considerations of mobility assistive robots 

Development of autonomous navigation system for robotic wheelchairs seems to be an 

important issue. However, most of navigation systems are developed based on personal 

computers such as desktops or laptops. Such a computational architecture increases the 

weight, cost and power consumption of the robotic wheelchair. Therefore, a chip based 

solution is discussed in this chapter to improve the feasibility of the robotic wheelchairs. 

Two important issues are proposed: 

1. Human-centered design for mobility assistive robots: the conventional robotic 
wheelchair constructs the autonomous navigation technologies, and the user may drive 
the robotic wheelchair without using his (her) hand. Such an autonomous operation is 
not feasible when complicated environment presents. Therefore, the user joystick input 
should be reserved, and the joystick input can be regarded as a ‘virtual’ goal for the 
autonomous navigations. In this manner, the user is capable of controlling the 
wheelchair, and the intelligent robotic wheelchair controller is used to justify the 
joystick command for the safety and comfort considerations.  

2. Low cost implementations: The cost for developing an autonomous wheelchair is quite 
expensive when compared to conventional powered wheelchair. The additional costs 
are ultrasonic sensors and personal computers. To reduce the cost, a distributed chip 
based robotic wheelchair supervisory controller is discussed in this work to improve 
the reliability, and to reduce the cost as well.  

Finally, this chapter is organized as follows: section 3 introduces the fuzzy based 

navigations; section 4 describes the human-centered navigations; section 5 illustrates the 

distributed chip based implementations; section 6 illustrates the experiments and 

verifications; and finally the conclusions and future works are discussed in section 7. 
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3. Fuzzy based navigations 

3.1 Fuzzy control system 
The fuzzy control system developed for the robotic wheelchair is to emulate a skilled 
powered wheelchair user. The skilled powered wheelchair user drives the wheelchair 
depending on the following situations: 
1. Goal direction and distance: the user drives the wheelchair in a higher velocity when 

the distance to the goal is long. The user reduces the velocity when the wheelchair 
rotates in a small radius for the safety and comfort concerns.   

2. The user changes the wheelchair direction smoothly when obstacles appear in front of 
the wheelchair.  

3. The user keeps a distance to the wall when a wall is beside the wheelchair.  
According to the previous situations, the driving behaviors of a skilled robotic wheelchair 
user can be modeled as an intelligent controller. The intelligent controller percepts distance 
information of obstacles, and makes decision for the wheelchair steering and velocity. 
Therefore, the intelligent controller is responsible of three navigation functions, including 
wall-following, goal-seeking, and obstacle avoidance.  
The fuzzy control system (Negnevitsky, 2005) uses the fuzzy sets and the membership 
functions to describe the facts with uncertainty. The inference engine is executed according 
to the input status and knowledgebase to determine the control policy. In this chapter, the 
robotic wheelchair uses the fuzzy logics as the kernel of the intelligent controller.  
The case study in this chapter uses 7 ultrasonic sensors, and they are used as the inputs of 
the fuzzy controller, as shown in Fig. 6. The operation of the navigation fusion is indicated 
as in Fig. 7. In this figure, three navigation functions are dynamically switching according to 
the distributions of close obstacles. The switching reference table is shown in Table 1. In this 
table, the u1 to u7 indicate the signals collected form the ultrasonic sensors. Note that ‘X’ 
indicates no obstacle detected; ‘O’ indicates an obstacle is detected; and ‘-‘ indicates ‘don’t 
care’. In addition, the steering (i.e., velocity allocations of two wheels) control policy can be 
inferred from the results of the wall-following, goal-seeking, and obstacle avoidance fuzzy 
functions. 
 

Ultrasonic

Sensor

Rear Wheel

Idle Wheel

S1
S2

S3

S4

S5S6

S7

Si indicates the ultrasonic sensor i
 

Fig. 6. Sensor allocations of case study 
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Ultrasonic Sensors

Goal-Seeking 
Mode

Obstacle Avoidance
Mode

Wall Following 
Mode

Steering Coefficient μ
Average Speed Vavg

Dynamic Switching

Right Wheel Velocity: VL Right Wheel Velocity: VR

 

Fig. 7. Fusions of navigation functions 
 

u1 u2 u3 u4 u5 u6 u7 Execution Function 

╳ ╳ ╳ ╳ ╳ ╳ ╳ Goal-Seeking 

╳ ╳ ╳ ╳ ○ ○ ╳ Goal-Seeking 

╳ ╳ ╳ ╳ ○ ╳ ╳ Goal-Seeking 

╳ ╳ ╳ ╳ ╳ ○ ╳ Goal-Seeking 

╳ ╳ ╳ ○ ○ ╳ ╳ Wall-Following 

╳ ╳ ╳ ╳ ╳ ○ ○ Wall-Following 

╳ ╳ ╳ ○ ○ — ○ Wall-Following 

╳ ╳ ╳ ○ ○ ○ — Wall-Following 

╳ ╳ ╳ — ○ ○ ○ Wall-Following 

╳ ╳ ╳ ○ — ○ ○ Wall-Following 

○ — — — — — — Obstacle Avoidance 

— ○ — — — — — Obstacle Avoidance 

— — ○ — — — — Obstacle Avoidance 

○ ○ — — — — — Obstacle Avoidance 

○ — ○ — — — — Obstacle Avoidance 

— ○ ○ — — — — Obstacle Avoidance 

○ ○ ○ — — — — Obstacle Avoidance 

Table 1. Navigation fusion table 
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3.2 Goal-seeking mode 

The goal-seeking mode is defined as none of the ultrasonic sensor detected obstacles, and 
the sensors in the same side of the robot (‘S4 and S5’ or ‘S6 and S7’) do not detect any 
obstacles simultaneously (as indicated in Table 1). For this navigation mode, the fuzzy rule 
table is shown in Table 2. Where θ is the angle between the direction of the wheelchair (ǂ) 
and the direction of from two rear wheels’ centre to the target (ǃ), as shown in Fig. 8; μ is the 
steering coefficient. The linguistic parameters of fuzzy control are also presented: NB 
indicates negative big; NM indicates negative medium; NS indicate negative small; ZE 
indicates zero; PS indicates positive small; PM indicates positive medium; and PB indicates 
positive big. The input membership function of θ and the output membership function of μ 
are shown in Fig. 9(a) and Fig. 9(b), respectively. 
 

Wheelchair
direction

Centre of 
two rear
wheels

˟

˞

Target

θ

If (˞ －˟ ) ᧺180°, then θ ᧹ ˞ －˟ －360°
If (˞ －˟ ) ᧸-180°, thenθ ᧹ ˞ －˟ ＋360°
Otherwise, θ ᧹ ˞ －˟
Where  0°᧸˞ ,˟ ᧸360° ; and -180°᧸θ ᧸180°

 

Fig. 8. Angle parameter definition for fuzzy controller 

(a)

(b)

 

Fig. 9. Goal-seeking mode membership functions 

www.intechopen.com



 Service Robot Applications 

 

44 

θ NB NM NS ZE PS PM PB 

μ NB NM NS ZE PS PM PB 

Table 2. Goal-seeking mode fuzzy rule table 

3.3 Wall-following mode 

The wall-following mode is defined as S1, S2, and S3 which do not detect any obstacles and 
two ultrasonic sensor pair in the same side (S4, S5 pair or S6, S7 pair) which detects 
obstacles. In this mode, the fuzzy rule table is shown in Table 3. Their membership functions 
are shown in Fig. 10. 
 

Condition 1: following the right wall 
 

Ds4 μ 
S M B L 

S NS PS PM PM 

M NS ZE PS PM 

B NM NS PS PM 
Ds5 

L NM NM ZE PM 

Condition 2: following the left wall 
 

Ds7 μ 
S M B L 

S PS NS NM NM 

M PS ZE NS NM 

B PM PS NS NM 
Ds6 

L PM PM ZE NM 

Table 3. Wall-following mode fuzzy rule table 

Input membership function (Dist)

Output membership function (μ)  

Fig. 10. Wall-following mode membership functions 
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3.4 Obstacle avoidance mode 

The obstacle avoidance mode is defined as at least one of the front ultrasonic sensors (S1, S2, 
or S3) which detect obstacles. In this mode, the fuzzy rule table is defined in Table 3. Their 
membership functions are shown in Fig. 11. Where Dsi is the distance measured from Si. 
 

Condition 1: if Ds1 is Small (S) 
 

Ds3 μ 
S M B L 

S PB PB PB PB 

M PB PB PB PB 

B PB PB PB PB 
Ds2 

L PB PB PB PB 

Condition 2: if Ds1 is Medium (M) 
 

Ds3 μ 
S M B L 

S PB PB PB PB 

M NB PB PB PB 

B NB PB PM PM 
Ds2 

L NB PB PM PM 

Condition 3: if Ds1 is Big (B) 
 

Ds3 μ 
S M B L 

S NB NB PB PB 

M NB NB PB PB 

B NB NM PM PM 
Ds2 

L NB NM PM PS 

Condition 4: if Ds1 is Large (L) 
 

Ds3 μ 
S M B L 

S NB NB NB PB 

M NB NB NB PB 

B NB NM NM PM 
Ds2 

L NB NM NS ZE 

Table 4. Obstacle avoidance mode fuzzy rule table 

3.5 Velocity justification model 

The navigation modes are executed in a mutual exclusion manner. The output of navigation 
mode is the steering coefficient, and it determines the degree of turning of the robotic 
wheelchair. Subsequently, the steering coefficient and the minimal distance of from 
wheelchair to desired target or nearest obstacle (denoted as dist) are further used to 
determine the average driving velocity (denoted as Vavg) of the robotic wheelchair. Such a 
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design aims to increase the safety of steering, and it is quite important to avoid the turnover 
of wheelchairs from their sides. In this manner, increasing steering angle will result in the 
decreasing in speed of the wheelchair. Such a design meets the behaviors of skill wheelchair 
user mentioned at the beginning of this section. Consequently, the fuzzy rule table is shown 
in Table 5. Their membership functions are shown in Fig. 12. 

Input m em bership function (Dist)

Output membership function (μ )  

Fig. 11. Obstacle avoidance mode membership functions 
 

dist 
Vavg. 

S M B L 

NB ZE ZE PS PM 

NM ZE ZE PS PM 

NS ZE PS PM PB 

ZE ZE PS PM PB 

PS ZE PS PM PB 

PM ZE ZE PS PM 

μ 

PB ZE ZE PS PM 

Table 5. Velocity justification fuzzy rule table 

4. Human-centered navigations 

Most of conventional robotic wheelchairs construct their intelligent navigation system using 
autonomous manners. However, such an autonomous operation is not feasible when in 
complicated environments. Therefore, the user joystick input should also be the best way to 
control the robotic wheelchair. Nevertheless, the joystick may be sensitive to user wrist 
input. Improper inputs may result in the dangers of users. The proposed fuzzy based 
navigation functions should be included to avoid dangerous situations and to improve 
safety and comfort before the wheel control command is made.  
From previous discussions, the fuzzy navigation model can be properly executed only when 
the target position is determined. For most of users, they have no idea about how to set the 
target positions. It is also inconvenient to force users to set the target positions for each 
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segmental path. More seriously, the global localization and map of environment is 
frequently not available for the robotic wheelchairs for most situations. Consequently, the 
autonomous navigation technology is not feasible for mobility assistances.  

Membership 

function of

Input 

parameter,μ

Membership 

function of

Input 

parameter, dist

Membership

function of

Output 

parameter,Vavg.

 

Fig. 12. Velocity justification model membership functions 

In this work, the intelligent navigation technology will be constructed without the global 
positioning and electric environment map. More specially, no target position is required for 
the robotic wheelchair. The wheelchair users can use their eyes to understand where they 
are and to use the joystick to determine where to go. The navigation functions are used to 
assist the user to control the robotic wheelchair in more safe and comfortable.  
Detailed description of the human-centered navigation is shown in Fig. 13. The joystick 
command will be normalized as (pos_x, pos_y). To determine the target of the navigation 
functions, the normalized joystick command will be further transformed as the virtual target 
position. In order to improve the comfortability and to reduce the sensitivity of the joystick, 
the joystick command will not be converted linearly.  
Instead, a hybrid function is proposed by combining exponential and parabolic functions, as 
shown in Fig. 14 . The hybrid function Y is defined as: 

 Y = emw - 1           (w <=  0.5 Jmax ) (1) 

 Y = aw2 + bw      (w >  0.5 Jmax ) (2) 

Where Y is the output of the hybrid function; w is smoothed signal of the joystick; a, b and 
m are constants. Note that Y can be used to determine target_x and target_y independently. 
Jmax is the maximum value of normalized pos_x or pos_y (i.e., unity). Consequently,  

 = − 2
max max(2 4 )/seta Y Y J   (3) 

 = − max max(4 )/setb Y Y J   (4) 
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 = +` max2 ( 1)/setm n Y J   (5) 

Where Ymax is the maximum meaningful distance to the target for x-and y-coordinates of 
the robotic wheelchair; and Yset is an adjustable parameter, and it is determined in terms of 
the health condition of the user. For example, the Ymax is set as 400 cm, and this setting 
indicates that target position in a distance (either x or y direction) larger than 400 cm should 
conduct similar results. Such a value can be regarded as the limit position of joystick in each 
direction.  

User Command
-Joystick Input-

Generating
Virtual Target

Navigation Functions:
Goal-seeking/

Wall-following/
Obstacle Avoidance

Ultrasonic
Sensors

Velocity Justification:
Left Wheel Velocity/
Right Wheel Velocity

Closed Loop
Motion Controller

(pos_x, pos_y)

(target_x, target_y)

(u1,u2,u3,u4,u5,u6,u7)

(TC)

(wl,wr)

 
Fig. 13. Detailed description of the human-centered navigation 
 

Jmax

Ymax

Yset

Jmax/2

Output Value

Joystick Command

 

Fig. 14. Hybrid function conversion for joystick input 

The target position cooperating with the ultrasonic sensor data will be used for the fuzzy 
navigation function to generate the steering coefficient (TC). Finally, the TC and the 
minimum distance of obstacle or the target are used to infer the angular velocities of two 
wheels. 
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5. Distributed chip based implementations 

As mention before, most of conventional robotic wheelchair control systems are constructed 
using the personal computers, and they are less reliable. At the same time, the cost and 
weight are also drawbacks. In this work, a distributed chip based robotic wheelchair 
supervisory controller is discussed. For this purpose, a low cost computing processor of the 
programmable system-on-chip (PSoC) (http://www.cypress.com, 2008) is selected. In 
general, the performance of low cost PSoC is limited.  
To extend computational capability of the PSoC, a distributed computing architecture is 
proposed. The individual navigation function are implemented in a task based PSoC. 
Consequently, the operations of the whole system achieve acceptable performance in real-
time. The proposed distributed computing architecture is shown in Fig. 15. The intra-
communications are established in terms of the I2C and the serial interfaces. There are 10 
PSoC modules used in this work, and they are marked using the gray rectangles. These 
modules are further elaborated as follows: 

Joystick Input/
Display Module

Ultrasonic Sensing
Module

Central Control
Module

Velocity
Module

Kinematics
Module

Closed Loop Motor
Control Module

Module Fusion
Module

Goal Seeking
Module

Wall-Following
Module

Obstacle
Avoidance Module

Power Drive
Module

 

Fig. 15. Distributed PSoC based computing architecture 

1. Joystick input/ display module: this module is responsible of collecting user’s joystick 
command. The hybrid function conversion for joystick input is implemented in this 
module. In addition, the display module shows the wheelchair status such as battery 
status, obstacle information, driving distance, etc. Especially, this module also provides 
the serial communication interface to connect with a personal computer or PDA.  

2. Ultrasonic sensing module: this module collects seven ultrasonic sensor data.  
3. Goal-seeking module: this module implements the fuzzy logic based goal-seeking 

navigation function 
4. Wall-following module: this module realizes the fuzzy logic based wall-following 

navigation function 
5. Obstacle avoidance module: this module implements the fuzzy logic based obstacle 

avoidance navigation function. 
6. Module fusion module: this module realizes the navigation fusions as shown in Fig. 7 

and Table 1. 
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7. Central control module: this module is responsible of coordinating the user joystick 
command, ultrasonic sensor data and autonomous navigation functions. 

8. Velocity justification module: this module implements the fuzzy logic based velocity 
justification function.  

9. Kinematics module: this module converts the steering coefficient and the average 
velocity as angular velocities of two motors.  

10. Closed loop motor control module: this module implements the closed loop angular 
velocity controller in terms of proportional-integral-differential (PID) control algorithm.  

Finally, the power drive module is responsible of driving the wheelchair motors. In 

addition, based on the proposed architecture, the user may drive the intelligent robotic 

wheelchair like as a conventional powered wheelchair; however, the goal-seeking, wall-

following, obstacle avoidance, and velocity control functions are continuously executing at 

the backend to perform more comfortable and safe driving.  

Based on the proposed distributed computing architecture, a prototype is fabricated in 

laboratory. Fig. 16 shows the control board. The size of this controller is 10 cm * 15 cm. 

Finally, a robotic wheelchair is constructed as shown in Fig. 17. 
 

 

Fig. 16. Photo of the proposed distributed PSoC based controller. 

 

 

Fig. 17. Photo of an assembled robotic wheelchair. 
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6. Experiments and verifications 

The experiments focuses on the validations of the proposed PSoC based distributed 
computing architecture. Initially, the PC based simulation environment is constructed to 
generate correct navigation results, as shown in Fig. 18. These results are used to valid 
individual navigations functions. The PC based navigation program is developed based on 
the navigation fusion architecture shown in Fig. 7 and Table 1.   
 

 

Fig. 18. PC based simulation program for autonomous navigations. 

This program is coded using the Microsoft Visual C++ (Kruglinski, 1996). A black rectangle 
emulates the obstacles. The start and end points are indicated on the screen. The robotic 
wheelchair executes the goal-seeking mode initially.  
When the robot closes to the obstacle, the obstacle avoidance mode takes over (point A). 

Subsequently, the wall-following mode executes (point B) to follow the left and bottom sides 

of the obstacle. Finally, the goal-seeking mode executes again (point C) to real the end point.  

Note that the path history of the robotic wheelchair is represented using the “dot”. These 
dots are recorded in constant time. Therefore, the effects of determining average velocity can 
be obviously observed from the dots’ density on path. Such an effect validates the fuzzy 
model of the average velocity function. In addition, the robotic wheelchair avoids collisions 
all the way. 
The next step is to validate the correctness of individual PSoC based navigation functions. In 
this experiment, the PC based simulation program and the PSoC based computing 
architecture are executing in parallel, and they use identical simulation conditions with the 
same start and end points.  The inference results of the PSoC based computing modules are 
transmitted to the PC system. Therefore, the screen displays the results of two wheelchairs 
and paths: blue path is plotted for PC based navigation results; and red path is plotted for 
PSoC based navigation results.  
Results of PSoC based inference are compared with PC based solution. Fig. 19 shows the 
comparison results of the goal-seeking navigation function. In this figure, the block located 
at the left-upper corner indicates the operated joystick coordinates. The list box located at 
the left-lower corner shows the replied steering coefficient of the PSoC controller. The circle 
located at the right-upper corner represents the velocity meter that contains the direction 
and value to the wheelchair moving velocity.  
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Fig. 19. Comparisons of goal-seeking navigation function. 

In addition to the goal-seeking function, the wall-following and obstacle avoidance 
functions are also validated as shown in Fig. 20 and Fig. 21 respectively. Apparently, the 
blue and red path can all reach the desired goal; however, the PC based solution is more 
accurate than the PSoC based solution since the limited digital resolutions of the 8-bits 
processors. Nevertheless, the PSoC solution is also applicable in real applications. 
 

 

Fig. 20. Comparisons of wall-following navigation function. 

In addition to the accuracy of navigation functions, the real-time property is also evaluated. 

Table 6 shows the computational time of inferring the fuzzy logic based navigation 

functions. Note that the time is measured in second, and it includes the communication 

traffic time. The computation time of a navigation function can be finished within 0.14 

second. It is reasonable to the wheelchair users because of the driving speed of the 

wheelchair being not fast for the user who needs the navigation assisted functions. 
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Fig. 21. Comparisons of obstacle avoidance navigation function. 
 

Navigation Function Computation Time Error % 

Goal-Seeking 0.125 s 8 % 

Wall-Following 0.11 s 7 % 

Obstacle Avoidance 0.14 s 8 % 

Table 6. Computation time evaluations 

Finally, a practical test result of plotting the path of the wheelchair on the ground is 
evaluated in terms of different maximum wheelchair velocities (20%, 40%, 60% and 80%).  
The blue line indicates the wall of this experiment. Form the results of experiments, the 
wall-following fuzzy navigation function can work properly. Due to computational time 
limitations of the chip, large velocity results in a delay in sensor response and larger error.  

7. Conclusions and future works 

This chapter presents the navigation technologies of mobility assistive robots for disabled 
patients. The autonomous navigations of conventional robotic wheelchairs are not easy to be 
implemented because the inconvenience of setting target positions for each segmental path, 
and unavailable global localization and map of environment. Therefore, a feasible robotic 
wheelchair is achieved by controlling the wheelchair using the joystick, and the hybrid 
function converts joystick command as the virtual target for the fuzzy based navigation 
functions.  In this manner, the proposed navigation functions become important assistive 
function to justify user’s command and to perform more safe and comfortable wheelchair 
driving mechanism. On the other hand, a PSoC based distributed computing architecture is 
implemented to control the robotic wheelchairs. The proposed architecture is proposed to 
reduce the costs, size, and power consumptions and to increase the reliability of the popular 
PC based navigation system. Experiment results validated the PSoC based navigation 
functions. Based on practical experiments, the computational error is within 8 % and the 
time elapsed for computation and communication traffic is within 0.14 second. More 
specially, the proposed architecture is more feasible than the PC based navigation system. In 
the future, the navigation algorithm will be optimized to increase the computational 
efficiency and accuracy as well. At the same, in-hospital test will be planned to verify the 
clinical effectiveness.  
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Fig. 21. Comparisons of obstacle avoidance navigation function. 
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