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1. Introduction     

In this paper we present an approach for the segmentation of concatenated texts. The text 

segmentation problem can be stated as follows: given a text which consists of several parts 

(each part dealing with a different subject) it is required to find the boundaries between the 

parts. In other words, the goal is to divide a text into homogeneous segments so that each 

segment deals with a particular subject while contiguous segments deal with different 

subjects. In this manner, documents relevant to a query can be retrieved from a large 

database of unformatted (or loosely formatted) text. The problem appears often in 

information retrieval and text processing.  

Our approach combines elements from several previously published text segmentation 

algorithms and achieves a significant improvement in segmentation accuracy by following a 

supervised approach. More specifically, we perform linear segmentation of concatenated 

texts by minimizing a segmentation cost which consists of two parts: (a) within-segment 

word similarity (expressed in terms of dotplot density) and (b) prior information about 

segment length. The minimization is effected by dynamic programming, which guarantees 

that the globally optimal segmentation is obtained. We are concerned with linear text 

segmentation, which should be distinguished from hierarchical text segmentation (Yaari, 

1997; Yaari, 1999); the latter attempts to find a tree-like structure in the text segments, while 

linear segmentation is based on the assumption that text has a linear structure thus 

segments appear in sequential “flat” order. Let us note that hierarchical segmentation is 

perhaps more appropriate for discourse segmentation because it creates a hierarchy of all 

topics discussed. Every sub-topic is appropriately related to the topic with which is related 

to in a deeper level placed in a form of “leaf”. 

Our method has successfully applied to Greek texts proving to be very innovating and 

promising. Results regarding segmentation of English texts can be found in (Kehagias et al., 

2004(a); Kehagias et al., 2004(b)).  The remainder of the paper is organized as follows: in 

Section 2 we present research approaches on the area of text segmentation, in Section 3 we 

introduce our algorithm, in Section 4 we present experiments to evaluate the algorithm. 

Finally, in Section 5 we discuss our results. 
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2. Related work 

Text segmentation approaches are based in the theory of Halliday and Hasan (Halliday & 
Hasan, 1976) according to which, each text is described by two complementing elements: 
cohesion and coherence. Cohesion is described as the quality property of a text and is detected 
by the simultaneous appearance of semantically similar words. Cohesion is present when an 
element in the text is best interpreted in light of a previously (or rarely a subsequent) 
element within the text. Coherence on the other hand holds between two tokens in the text 
which are either of the same type or are semantically related in a particular way (such as a 
word or group of words having a clearly definable relationship with a previously used 
word i.e. belonging to the same theme or topic). According to Halliday and Hasan semantic 
coherence and cohesion are identified by the following five semantic relations: (1) repetition 
with similarity, (2) repetition without similarity (3) repetition through reference to a higher 
category in which the aforementioned word entity belongs to (4) systematic semantic 
relationship (5) non- systematic semantic relationship. In the same spirit, Raskin and Weiser 
(Raskin & Weiser, 1987) defined as a criterion for cohesion and coherence word repetition 
and comparative apposition, where the first focus on word repetition or synonyms of them 
and the latter on words that present the tendency to co-occur within a document.  
In this paper, the focus is stressed towards (concatenated) text segmentation, which is often 
distinguished from discourse segmentation. The goal of discourse segmentation is to split a 
single large text into its constituent parts (e.g. to segment an article into sections); this 
problem is addressed, for instance, in (Hearst, 1994; Hearst & Plaunt, 1993; Heinonen, 1998; 
Yaari, 1997; Yaari, 1999). On the other hand, the goal of (concatenated) text segmentation is 
to split a stream of independent, concatenated texts (e.g. to segment a transcript of news into 
separate stories); this problem is addressed, for example, in (Beeferman et al., 1999; Choi, 
2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar & Ratnaparkhi, 1997; 
Utiyama  & Isahara, 2001). The two problems are similar but not identical; our algorithm 
could conceivably be applied to discourse segmentation, but our main interest is in 
concatenated text segmentation and all the experiments we present here fall into this 
category. 
Generally speaking, text segmentation is a two step procedure. The first step involves the 
calculation of segment homogeneity while the second the identification of segment 
boundaries. The calculation of segment homogeneity (or alternatively heterogeneity) 
performed by methods appearing in the literature presents a strong variation. On the one 
hand, a family of methods makes use of linguistic criteria such as cue phrases, punctuation 
marks, prosodic features, reference, syntax and lexical attraction (Beeferman et al. (1997), 
Hirschberg & Litman (1993), Passoneau & Litman (1993)).  On the other hand the second 
family, following Halliday and Hasan’s theory (Halliday & Hasan (1976)), utilizes statistical 
similarity measures such as word co-occurrence. Roughly speaking, two parts of the text are 
considered similar if they have many words in common. This is a popular approach, 
according to which parts of a text having similar vocabulary are likely to belong to a 
coherent topic segment.  For example the linear discourse segmentation algorithm proposed 
by Morris and Hirst (Morris & Hirst (1991)) is based on lexical cohesion relations determined 
by use of Roget’s thesaurus (Roget (1977)). In the same direction Kozima’s algorithm 
(Kozima (1993), Kozima & Furugori (1993)) computes the semantic similarity between 
words using a semantic network constructed from a subset of the Longman Dictionary of 
Contemporary English. Local minima of the similarity scores correspond to the positions of 
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topic boundaries in the text. Other authors have used fairly sophisticated word co-
occurrence statistics such as LSA, LCA, ranking etc. Choi, 2000; Choi et al., 2001; Hearst, 
1994; Hearst & Plaunt, 1993; Utiyama & Isahara, 2001).  
The identification of segment boundaries usually requires the minimization of a 
segmentation cost function. An efficient way to perform this is by the use of techniques such 
as dynamic programming. This is due to the fact that dynamic programming is based on the 
intuition that a longer problem can be solved by properly combining the solution to various 
sub-problems. For example, consider the sequence or “path” of transformed words that 
comprise the minimum edit distance between the strings “intention” and “exention”. 
Imagine one string (perhaps it is exention) that is in this optimal path (whatever it is). The 
intuition of dynamic programming is that if exention is in the optimal operation list, then 
the optimal sequence must also include the optional path from intention to exention. This is 
because, if there were a shorter path from intention to exention then we could use it instead, 
resulting in the shortest path and the optimal sequence wouldn’t be optimal, thus leading to 
contradiction. Another benefit of dynamic programming is that at every point of execution 
the optimal solution from the previously examined observations was calculated avoiding 
thus backtracking (Berteskas, 1987). This approach has been used in the past (in Heinonen, 
1998; Ponte & Croft, 1997; Xiang & Hongyuan, 2003) and also, implicitly, in (Utiyama & 
Isahara, 2001). Other authors do not cast segmentation as a formal optimization problem; 
rather they construct a similarity matrix which they segment using divisive clustering, 
which can be considered as a form of approximate and local optimization (Choi, 2000; Choi 
et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997; Yaari, 1997; Yaari, 1999).  
As we have already mentioned, we formulate segmentation as the minimization of a 
segmentation cost which depends on within-segment homogeneity and deviation from 
expected segment length. We measure within-segment homogeneity by word co-occurrence 
by operating at the sentence level and consider two sentences to be similar if they have even 
a single word in common. We use a “global” similarity comparison, i.e. we evaluate the 
similarity between all parts of a text (for example between every pair of sentences that 
appear in the text, even if they are not adjacent to each other). This approach is used by 
several authors (Choi, 2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar & 
Ratnaparkhi, 1997; Xiang & Hongyuan, 2003), but it should be noted that “local” 
comparison (i.e. only between adjacent sentences) has also been used in the past (Hearst, 
1994; Hearst & Plaunt, 1993; Heinonen, 1998). To penalize deviations from the expected 
segment length we use a “length-model”; this approach has been used in the past by several 
authors (Heinonen, 1998; Ponte & Croft, 1997). We find the globally minimal segmentation 
cost by dynamic programming. 
Current approaches to text segmentation include an improvement of the dotplotting 
technique (Ye et al., 2005) introduced by Reynar (Reynar, 2004), an improvement of Latent 
Semantic Analysis for text segmentation (Bestgen, 2006), a model of text segmentation based 
on ideas from multilabel classification for segmenting sentences into tokens (McDonald et 
al., 2005) as well as a novel parameter-free unsupervised text segmentation method, which 
is formulated as (variational) Bayes estimation of an HMM from an input text stream 
(Koshinaka et al., 2005). Teo Yung Kiat’ master thesis present an attempt to extend and 
improve our method (Kiat, 2005). Advances to topic segmentation (closely related to text 
segmentation) include methods performing topic segmentation method based on weighted 
lexical chains (Sitbon & Bellot, 2005), as well as a new informative similarity measure based 
on word co-occurrences (Dias & Alves, 2005). 
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It is worth mentioning that text segmentation is widely used in other closely related 
scientific areas such as speech segmentation i.e. to identify breaks and discourse boundaries 
by expert and/or naive listeners (Auran et al., 2005), spoken multiparty dialogue and 
tutorial dialogue segmentation (Olney & Cai, 2005; Hsueh et al., 2006). Text segmentation 
techniques are also applied to entity extraction and noun-phrase chunking (Ursu et al., 2005) 
as well as to semantic annotation of transcripts of television news broadcasts produced 
through automatic speech recognition (ASR) (Dowman et al., 2005). Text segmentation 
proves to be beneficial in a number of scientific areas such as corpus linguistics, discourse 
psychology and even education. This is due to the fact that text segmentation is based on 
topic change. Topic change or topic coherence is highly related to the vocabulary used by 
each author, the subconscious mechanism of language variation, the part of speech of words 
that he/she uses which may reveal positivity, sociability, complexity or negativity, self 
concern emphasis and implicitness. In psychological perspective, text segmentation may 
reveal if an author express its subject in question by following a coherence and progressive 
apposition of his arguments or it interrupts his argumentation by making references to less 
important or even non relevant subjects. Thus, text segmentation can be found useful in 
studies concerning topic and authorship attribution where topic change can highly be 
related to the vocabulary used by each author (Stamatatos et al., 2001). Finally, text 
segmentation can easily be applied as a preliminary step to text summarization. 

3. Method and algorithm 

3.1 Text representation 

A text consists of words which are organized in sentences. We assume that sentence 
boundaries are correctly marked in the text. Hence we will assume from now on that the 
basic text unit is the sentence and that segment boundaries occur only at the end of 
sentences. Consider a text which contains T sentences and L distinct words (i.e. a vocabulary 
of size L). We define a T x T similarity matrix D as follows (s, t = 1, 2,…, T) 

 
⎭
⎬
⎫

⎩
⎨
⎧ ≠

=
otherwise

tsandwordcommonaleastathavetandssentencesif

,0

,1

ts,D  (1) 

It is worth mentioning that, by the term “words” we mean any word used by the author of 
that segment but not its grammatical form. In our study we do not perform an in depth 
linguistic process i.e. grammatical parsing and co-reference resolution in order to discover 
the context under which each word appears or the sequence of appearance of words. Our 
research is based on the hypothesis that each segment corresponds to a different topic. The 
description of that topic tends to be performed by using a small number of characteristic 
words that belong to a limited size vocabulary. On the other hand, highly informative 
words tend to appear more that one times, thus, the importance of them is reinforced in the 
similarity matrix. Finally, it is worth mentioning that, none of the algorithms dealing with 
the same problem make use of grammatical items. An opposite approach would lead to a 
misleading comparison of obtained results. Additionally, it is our belief that, it is the choice 
of words that the authors use in order to express their topic than the grammatical property 
of those that it acts as a discriminative factor in the topic i.e. segment change identification. 
Lastly, we believe that in case where high informative combination of words i.e. n-grams 
appear in the segment, the fact that the information that they contain is represented not as a 
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whole but with their consisting words as individuals does not lead to “loss” of the 
information contained.  

Hence, if 1=ts,D  we assume that the s-th and t-th sentence are similar. Figure 1 provides 

the dotplot (Choi, 2000; Choi et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997) of a D 
matrix corresponding to a 91-sentences text; black squares correspond to 1’s and white 
squares to 0’s. Consecutive groups of sentences which have many words in common 
appears as submatrices of D with many 1’s; in Figure 1 they appear as high density squares. 
Candidate segments appear, for example, between sentences 11 and 18, 41 and 52 etc. Hence 
the dotplot gives a visual representation of the structure of the text. 
 

 

Figure 1: The similarity matrix D corresponding to a text containing 91 sentences, hence D is 
a 91 x 91 matrix. A black dot at position (s, t) indicates that the s-th and t-th sentence have at 
least one word in common 

It is worth mentioning that, the total number of shared words is indirectly depicted in the 
dotplot similarity matrix. Sentences that have an important number of shared words lead to 
regions containing a lot of ‘1’s. Sentence length is not considered here, as it would require 
the calculation of the total number of words belonging to each sentence, the number of 
common and non common words between sentences as well as sentence length 
normalization. Such approach is left for future research. 

3.2 Segmentation cost 

A segmentation is a partition of the set {1,2,…,T} into K subsets (i.e. segments) of the form 

{1,2,.., 1t }, { 1+1t , 2+1t ,…, 2t }, ..., { 1+1-Kt , 2+1-Kt ,…,T}(where K is a variable 

number and K ≤ T). A more economical description of the segmentation is given by a 

(variable length) vector t = ( 0t , 1t ,…., Kt ), where, 0t , 1t , …., Kt are the segment 

boundaries which satisfy 0 = 0t ,< 1t  < ….< 1−Kt   < Kt  = T.  

We now introduce a “segmentation cost” function J(t): for every segmentation t, J(t) returns 
a real number; J(t) will be designed in such a way that it achieves small values when t 
designates high-density submatrices of D. We start with the function 
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which can be interpreted as follows. The numerator is the total number of 1’s contained into 

the D submatrix which corresponds to the k-th segment { 1+1-kt , 2+1-kt ,…, kt }. When 

the parameter r=2, the denominator ( )r1-kt - kt corresponds to the area of the sub-matrix 

and )(t0J is the “segment density”. In the case r≠2, )(t0J corresponds to a “generalized 

density” which balances the degree of influence of the surface with regard to the 
“information” (i.e. the number of 1’s) included in it. A “good” segmentation t is 

characterized by large values of )(t0J , which indicate strong within-segment similarity.  

In many cases some information will be available regarding the expected segment length; 
for instance we may use training data to estimate its mean value μ and standard 

deviationσ . We incorporate this information into a function: 

 
( )∑
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•

−−
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kk tt
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)(
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μ

1J  (3) 

A “good” segmentation t is characterized by small values of )(t1J , which indicate small 

deviation from the expected segment length (1). 

Finally, we form J by a weighted combination of 0J  and 1J : 
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1 0
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where we stress the dependence of J on the parameters, μ , σ , r and γ . 

3.3 Minimization by dynamic programming 

A “good” segmentation vector t yields a small value of the corresponding ) r, , , J(t; γσμ  (i.e. 

segments with high density and small deviation from average segment length). The optimal 

segmentation 
^

t is the one which yields the global minimum of ) r, , , J(t; γσμ ; note that 
^

t  

specifies not only the optimal positions of the segment boundaries 0t , 1t ,…., Kt but also the 

optimal number of segments K; in other words, our algorithm automatically determines the 
optimal K.  

                                                 
1 Many other functional forms can be used for )(t1J ; in Kehagias et al., 2004(a) and  

Kehagias et al., 2004(b), we have explored some alternatives but we have found that the 
form used here gives the best results. 
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Our ) r, , , J(t; γσμ has an additive form which is well suited for the global minimization by 

dynamic programming. The following algorithm implements the basic dynamic 

programming idea (for a detailed justification the reader can consult (Bertsekas, 1987)). 

Dynamic Programming for Text Segmentation 
Input: The T x T similarity matrix D; the parameters μ ,σ , r, γ : 

Initialization 
For t = 1, 2,…,T 
q = 0 
          For  s = 1,2, ..., t -1 

             q = q+ ts,D  

 
rst

q

)( −
=+ t1,sS  

      End 
End 
Minimization 

0,0 == 0Z0C  

For t = 1, 2,…,T 

∞=tC  

              For s = 0, 1, ..., t -1 
                  If  

( )
tCsC ≤•−−

•

−−
•+ + tsS

st
,12

2

)1(
2

γ
σ
μγ  

                     Then 

( )
tsS

st
,12

2

)1(
2

+•−−
•

−−
•+= γ

σ
μγsCtC  

                                         s=tZ  

             EndIf 

           End 

End 

BackTracking 

K = 0,  T=Ks  

While 0>
Ks

Z  

                 K = K + 1 

               
1−

=
Ks

ZKs  

End 

K = K + 1,  0=Ks , 0
^

=0t  

For k = 1, 2,…,K 

                kKS −=
^

kt  

End 
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Output: The optimal segmentation vector 
^

t = (
^

0t ,
^

1t ,…,
^

Kt ). 

Upon completion of the minimization part of the algorithm we have computed the optimal 
segmentation cost for sentences 1 until T, i.e. for the entire text. The backtracking part first 

creates the sequence Ks1s0s ,..,, which are the optimal segment boundaries in reverse order 

and then reverses this sequence to produce the optimal 
^

t = (
^

0t ,
^

1t ,…,
^

Kt ). Note that K, the 

optimal number of segments is computed automatically. 

4. Experiments - results 

In this section we present the experiments we conducted to evaluate our algorithm. We 
evaluate the algorithm using the following three indices: Precision, Recall and Beeferman’s 

kP  metric (Beeferman et al., 1999). Precision is defined as “the number of the estimated 

segment boundaries which are actual segment boundaries” divided by “the number of the 
estimated segment boundaries”. Recall is defined as “the number of the estimated segment 
boundaries which are actual segment boundaries” divided by “the number of the true 
segment boundaries”. It is worth mentioning that the F measure, which combines the results 
of Precision and Recall, is not used here, due to the fact that both Precision and Recall 
penalize equally segment boundaries that are “close” to the actual i.e. true boundaries with 
those that are less close to the true boundary. For that reason, Beeferman proposed an new 

metric kP which measures segmentation inaccuracy; intuitively, kP measures the 

proportion of “sentences which are wrongly predicted to belong to different segments 
(while actually they belong to the same segment)” or “sentences which are wrongly 
predicted to belong to the same segment (while actually they belong in different segments)” 

(for a precise definition of kP see (Beeferman et al., 1999).  

The variation of the kP measure named WindowDiff index which was proposed by Pevzner 

and Hearst (Pevzer & Hearst, 2002) and remedies several problems of the kP measure is not 

used in this paper due to the number of experiments conducted and the fact that already 

published results used for comparison are only reported in terms of kP .   

While several papers regarding the segmentation of English texts have appeared in the 
literature, we are not aware of any similar work regarding Greek texts. Furthermore, 
because Greek is a highly inflected language (much more than English) the segmentation 
problem is harder for Greek, as will be explained in the following. Hence some 
enhancements to the basic segmentation algorithm are required. 
In the sequel we present experiments which use a Greek text collection compiled from 
Stamatatos’corpus 2(Stamatatos et al., 2001) comprising of text downloaded from the 
website http://tovima.dolnet.gr of the newspaper entitled ‘To Vima’. This newspaper 
contains articles belonging to one of the following categories: 1) Editorial, diaries, reportage, 
politics, international affairs, sport reviews 2) cultural supplement 3) Review magazine 4) 
Business, finance 5) Personal Finance 6) Issue of the week 7) Book review supplement 8) Art 
review supplement 9) Travel supplement. Stamatatos et al. (Stamatatos et al., 2001) 

                                                 
2 The authors would like to thank professor E. Stamatatos for providing us the corpus of 
Greek articles. 
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constructed a corpus collecting texts from supplement no. 2) which includes essays on 
science, culture, history etc. Stamatatos et al. selected 10 authors and used 30 texts per 
author. They didn’t perform any manual text preprocessing or text sampling; however, they 
removed all the unnecessary heading irrelevant to the text itself. In order to minimize the 
potential change of the personal style of an author over time, they chose to download texts 
taken from the issues published from 1997 till early 1999. The thematic areas of each author 
are shown in Table 1. 
Due to the nature of the newspaper supplement, texts included in, undergo some low-level 
post editing -as opposed to editorial or reportage articles, which are subject to a stricter 
editing- so that they conform to the overall style of the newspaper. Therefore, the style of the 
specific authors is more personal and independent of outer influences.  An example of those 
documents is listed in Appendix B. 
 

Author Thematic Area 

Alachiotis Biology 

Babiniotis Linguistics 

Dertilis History, Society 

Kiosse Archeology 

Liakos History, Society 

Maronitis Culture, Society 

Ploritis Culture, History 

Tassios Technology, Society 

Tsukalas International Affairs 

Vokos Philosophy 

Table 1. List of Authors and their Thematic Areas in the Stamatatos’s collection of Greek texts. 

We created several texts, each consisting of segments by various authors. Each author is 
characterized by her/his vocabulary hence our goal is to segment the text into the parts 
written by the various authors. Before creating the actual texts, some preprocessing 
(performed in a totally automatic manner) of the Stamatatos collection was necessary. 
Because Greek is a heavily inflected language, a word may appear in many different forms. 
Then, if one considers each inflected form as a separate element of the vocabulary, the result 
is a larger vocabulary, which considerably complicates the segmentation problem. To 
address this issue, we must identify various inflected forms as belonging to the same word; 
but for Greek this cannot be done using a simple approach such as stemming. Instead, we 
used the POS tagger developed by Orphanos et al. (see Orphanos & Christodoulakis, 1999; 
Orphanos & Tsalidis,1999) and the Appendix A, 3) to substitute each word by a “canonical”, 
lemmatized form. More specifically, at the first stage, punctuation marks and numbers were 
removed as well as all words that aren’t either nouns, verbs, adjectives or adverbs (the stop 
list used here is very similar to the one used for English texts). After that, every remaining 
word in the text was substituted by its lemma, determined by the tagger. In case the tagger 
could not find the lemma of a particular word (usually this happened because the word was 

                                                 
3 The authors would like to thank professor G. Orphanos for kindly letting us use the POS 
Tagger. 
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not contained in the tagger Lexicon) no substitution was made and the word was kept in the 
form appearing in the text. We also kept the information regarding sentence ends. 
We present two groups of experiments, which differ in the length of segments created and 
the number of authors used for the creation of the texts to segment. 

4.1 Experiment group 1 

The collection of texts used for the first group of experiments consists of 6 datasets: Set0,..., 
Set5. Each of those datasets differ in the number of authors used for the generation of the 
texts to segment and consequently in the number of texts used from the entire collection, as 
listed in Table 2. 
For each of the above datasets, we constructed four subsets, which differ in the number of 
the sentences appearing in each segment. Let minL and maxL be the smallest and largest 

number of sentences which a segment may contain. We have used four different 
( minL , maxL ) pairs: (3,11), (3,5), (6,8) and (9,11). Hence Set0 contains 4 subsets: Set01, 

Set02, Set03 and similarly for Set1, Set2, ..., Set5. The datasets Set*1 are the ones with 
( minL , maxL ) = (3,11), the datasets Set*2 are the ones with ( minL , maxL ) =(3,5), and so 

on. Let also { }nX1X ,..., be the authors contributing to the generation of the dataset. We 

generated the texts in the dataset by the following procedure. 
Each text is the concatenation of ten segments. For each segment we do the following. 

1. We select randomly an author from { }nX1X ,..., . Let I be the selected author. 

2. We select randomly a text among the 30 available that belong to the I author. Let k be 
the selected text of author I. 

3. We select randomly a number l ∈ ( minL , maxL ). 

4. We extract l consecutive lines from text k (starting at the first sentence of the text). 
Those sentences constitute the generated segment. 

Once we have created a dataset, we split it into a training set and a test set, we use the 
training data to compute ┤, ┫ and optimal ┛ and r values (by the validation procedure 
explained in the sequel) and finally run our algorithm on the test data.  
 

Dataset Authors No. of docs per set 

Set0 Kiosse, Alachiotis 60 

Set1 Kiosse, Maronitis 60 

Set2 Kiosse, Alachiotis, Maronitis 90 

Set3 Kiosse, Alachiotis, Maronitis, Ploritis 120 

Set4 Kiosse, Alachiotis, Maronitis, Ploritis, Vokos 150 

Dataset All Authors 300 

Table 2. List of the sets complied in the 1st group of experiments using Greek texts and the 
author’s texts used for each of those. 

Recall that the segmentation algorithm uses four parameters: μ ,σ , r and γ . As already 

mentioned μ andσ can be interpreted as the average and standard deviation of segment 

length; it is not immediately obvious how to choose values for r and γ . We use training data 

and a parameter validation procedure to determine appropriate μ ,σ , r and γ values; then 

we evaluate the algorithm on (previously unseen) test data. More specifically:  
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1. We choose randomly half of the texts in the dataset to be used as training texts; the rest 
of the samples are set aside to be used as test texts. 

2. We determine appropriate μ andσ values using all the training texts and the standard 

statistical estimators. 
3. We determine appropriate r and γ values by running (on the training texts) the 

segmentation algorithm with 80 possible combinations of r and γ  values; namely we let 

γ  take the 20 values 0.00, 0.01, 0.02, ... , 0.09, 0.1, 0.2, 0.3, ... , 1.0 and let r take the values 

0.33, 0.5, 0.66, 1. The optimal ( γ , r) combination is the one which yields the minimum 

kP  value. 

4. We apply the algorithm to the test texts using previously estimated μ ,σ , r 

and γ values. 

The aforementioned procedure is repeated five times for all sets; the resulting values of 

Precision, Recall and kP are averaged. This is performed in order to avoid any problems 

that can arise from the fact that the various sets of corpus are composed of many segments 
repeatedly drawn from a small number of different texts. Moreover the fact that texts 
consisting the training and testing set are randomly selected and the aforementioned 
procedure is repeated five times, minimizes the probability that a (probably) significant part 
of the training and testing set is in fact in common. Even this was the case the remaining not 
common texts would act as “negative” examples i.e. as far as the calculation of the mean and 
standard deviation is concerned.  

In Table 3 we give the values of Precision, Recall and kP obtained by our algorithm. We also 

run Choi’s and Utiyama’s algorithms on the same task; the results are given in Tables 4 and 5. 
In Tables 6, 7 and 8 we give the same results averaged over all datasets which have 
segments of same length. It can be seen that in all cases our algorithm performs significantly 
better than both Choi’s and Utiyama’s algorithms. Let us note that the best performance has 
been achieved for γ in the range [0.08, 0.4] and for r equal to either 0.5 or 0.66. 

4.2 Experiment group 2 

The second group of experiments also uses Stamatatos’s collection; however, the texts are 
generated using a somewhat different procedure. We constructed a single dataset which 
contains 200 texts, with every author represented (in other words, the author set is always 

{ }10X2X1X ,...,, ). Each text is the concatenation of ten segments. For each segment we do the 

following: 
1. We select randomly an author from { }10X2X1X ,...,, . Let I be the selected author. 

2. We select randomly a text among the 30 available that belong to the I author. Let k be 
the selected text of author I. The selected text is read and scanned in order to determine 
the number of paragraphs it contains. Let Z be the number of paragraphs that k-th text 
contains. 

3. We select randomly a number p { }Z1,...,∈ corresponding to the number of paragraphs 

that the generated segment will contain. 

4. We select randomly a number m { }p-Z1,...,∈ corresponding to the “starting 

paragraph”. Thus the segment contains all the paragraphs of text k starting from 
paragraph m and ending at the paragraph m + p. 
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The procedure described above gives texts which are longer than the ones used in 
Experiment Group 1. Hence the segmentation task in the current group of experiments 
segmentation of such texts is more difficult than the previous one. Table 9 lists the results 
we obtained using our algorithm and the ones by Choi and Utiyama. It can be seen again 
that our algorithm performs better than both Choi’s and Utiyama’s algorithms. 
 

Dataset Precision Recall kP  Dataset Precision Recall kP  

Set01(3-11) 70.65% 71.11% 14.04% Set31 (3-11) 59.99% 58.67% 17.93% 

Set02 (3-5) 86.82% 87.11% 6.20% Set32 (3-5) 84.44% 83.56% 7.36% 

Set03 (6-8) 96.44% 96.44% 0.82% Set33 (6-8) 86.22% 86.22% 3.28% 

Set04(9-11) 93.33% 93.33% 0.84% Set34 (9-11) 91.11% 91.11% 1.45% 

Set11(3-11) 63.86% 67.11% 15.82% Set41 (3-11) 57.99% 51.11% 17.38% 

Set12 (3-5) 82.98% 83.56% 8.47% Set42 (3-5) 85.00% 84.89% 6.76% 

Set13 (6-8) 91.11% 91.11% 2.81% Set43 (6-8) 88.89% 88.89% 2.65% 

Set14(9-11) 94.67% 94.67% 0.98% Set44 (9-11) 91.11% 91.11% 1.39% 

Set21(3-11) 71.14% 60.89% 14.42% Set51 (3-11) 65.74% 61.78% 14.54% 

Set22 (3-5) 90.00% 89.78% 3.45% Set52 (3-5) 81.56% 81.78% 6.49% 

Set23 (6-8) 91.11% 91.11% 2.15% Set53 (6-8) 89.33% 89.33% 3.57% 

Set24(9-11) 92.44 92.44 1.25% Set54 (9-11) 88.89% 88.89% 1.86% 

Table 3. The precision, recall and kP  values obtained by our algorithm for the 1st group of 

experiments using Greek texts. 
 

Dataset Precision Recall kP  Dataset Precision Recall kP  

Set01 (3-11) 65.75% 65.75% 17.06% Set31 (3-11) 57.75% 57.75% 20.38% 

Set02 (3-5) 74.50% 74.50% 16.68% Set32 (3-5) 70.75% 70.75% 17.40% 

Set03 (6-8) 76.50% 76.50% 11.72% Set33 (6-8) 62.00% 62.00% 17.12% 

Set04 (9-11) 64.75% 64.75% 15.08% Set34 (9-11) 62.00% 62.00% 16.10% 

Set11 (3-11) 67.50% 67.50% 16.91% Set41 (3-11) 57.50% 57.50% 17.38% 

Set12 (3-5) 67.75% 67.75% 19.23% Set42 (3-5) 73.25% 73.25% 15.76% 

Set13 (6-8) 72.50% 72.50% 14.74% Set43 (6-8) 62.50% 62.50% 17.41% 

Set14 (9-11) 68.25% 68.25% 14.00% Set44 (9-11) 63.75% 63.75% 13.70% 

Set21 (3-11) 61.00% 61.00% 19.93% Set51 (3-11) 60.36% 60.50% 17.63% 

Set22 (3-5) 73.50% 73.50% 16.15% Set52 (3-5) 70.50% 70.50% 16.39% 

Set23 (6-8) 69.00% 69.00% 15.40% Set53 (6-8) 67.25% 67.25% 15.85% 

Set24 (9-11) 71.75% 71.75% 12.26% Set54 (9-11) 70.00% 70.00% 12.43% 

Table 4. The precision, recall and kP values obtained by Choi’s algorithm for the 1st group 

of experiments using Greek texts. 

www.intechopen.com



Segmentation of Greek Texts by Dynamic Programming 

 

113 

Dataset  Precision Recall kP  Dataset  Precision Recall kP  

Set01 (3-11)  69.94% 65.55% 15.33% Set31 (3-11) 61.25% 58.44% 17.64% 

Set02 (3-5)  74.16% 59.11% 19.99% Set32 (3-5)  66.45% 52.88% 20.98% 

Set03 (6-8)  80.60% 76.88% 8.94% Set33 (6-8)  71.88% 70.66% 11.80% 

Set04 (9-11)  76.18% 74.45% 8.84% Set34 (9-11) 67.60% 71.78% 8.75% 

Set11 (3-11) 71.41% 68.44% 14.99% Set41(3-11) 57.77% 56.44% 20.61% 

Set12 (3-5)  74.75% 59.11% 18.70% Set42 (3-5)  71.25% 56.22% 20.07% 

Set13 (6-8)  84.77% 83.33% 7.08% Set43 (6-8)  67.96% 66.44% 12.64% 

Set14 (9-11)  81.71% 79.11% 9.10% Set44 (9-11) 70.23% 72.88% 8.50% 

Set21 (3-11)  63.59% 61.11% 18.26% Set51 (3-11) 60.00% 56.61% 17.41% 

Set22 (3-5) 70.57% 53.33% 21.51% Set52 (3-5)  62.83% 47.55% 23.51% 

Set23 (6-8)  77.73% 74.00% 10.75% Set53 (6-8)  69.56% 66.89% 13.84% 

Set24 (9-11)  74.53%  77.33% 7.80% Set54 (9-11) 68.55% 70.22% 9.99% 

Table 5. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for 
the 1st group of experiments using Greek texts. 

Dataset Precision Recall kP  

Set*1 (3-11) 64.90% 61.77% 15.69% 

Set*2 (3-5) 85.13% 85.11% 6.45% 

Set*3 (6-8) 90.51% 90.51% 2.54% 

Set*4 (9-11) 91.92% 91.92% 1.29% 

Table 6. The precision, recall and Pk values obtained by our algorithm for the 1st group of 
experiments using Greek texts, averaged over datasets with same-length segments. 

Dataset Precision Recall kP  

Set*1 (3-11) 61.64% 61.66% 18.43% 

Set*2(3-5) 71.70% 71.70% 16.93% 

Set*3 (6-8) 68.29% 68.29% 15.37% 

Set*4 (9-11) 66.75% 66.75% 13.93% 

Table 7. The precision, recall and Pk values obtained by Choi’s algorithm for the 1st group of 
experiments using Greek texts, averaged over datasets with same-length segments 

Dataset Precision Recall kP  

Set*1 (3-11) 64.00% 61.10% 17.37% 

Set*2 (3-5) 70.00% 54.70% 20.79% 

Set*3 (6-8) 75.42% 73.03% 10.84% 

Set*4 (9-11) 73.13% 74.29% 8.83% 

Table 8. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for 
the 1st group of experiments using Greek texts, averaged over datasets with same-length 
segments. 
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Algorithm Precision Recall kP  

Ours  60.60% 57.00% 11.07% 

Choi  44.62% 44.62% 19.44% 

Utiyama  56.76% 67.22% 12.28% 

Table 9. The precision, recall and Pk values for the 2nd group of experiments using Greek 
texts. 

It is worth mentioning that, the experiments were conducted in a Pentium III 600 MHz with 

256 Mbyte RAM memory. The training time of each group was calculated and proved that it 

is less than two minutes. The average time of calculation for the segmentation of a text by 

our algorithm was 0.91 seconds. 

5. Conclusion 

We have presented a text segmentation algorithm following a supervised approach which 

we applied to the segmentation of Greek texts. On greek text collection our algorithm 

outperforms Choi’s and Utiyama’s algorithms. This is largely important particularly in the 

case of texts exhibiting strong variation as far as the average length is concerned. Let us 

conclude this paper by discussing the reasons for this performance. 

Our algorithm is characterized by (a) the use of dotplot similarity, (b) the form of our 

similarity function, (c) the use of a length model, (d) the use of dynamic programming, (e) 

the use of training data. We discuss each of these items in turn. 

1. Dotplot similarity. We use a very simple similarity criterion but it is based on the 
dotplot and hence it captures global similarities, i.e. similarities between every pair of 
sentences in the document. Dotplots have also been used by Choi (Choi, 2000; Choi et 
al., 2001), Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) and Xiang and Hongyuan 
(Xiang & Hongyuan. 2003). On the other hand, Hearst (Hearst, 1994; Hearst & Plaunt, 
1993), and Heinonen (Heinonen, 1998) use a cost function which depends only on the 
similarity of adjacent sentences, hence it is local. Utiyama and Isahara (Utiyama & 
Isahara, 2001) take an intermediate position: they use a cost function which depends on 
within-segment statistics, hence it is “somewhat” global, i.e. it considers similarities of 
all sentences within each segment. Ponte and Croft (Ponte and Croft, 1997) also use an 
intermediate approach, computing the similarities of all sentences which are at most n 
sentences apart. 

2. Generalized density. We use a very simple similarity function based on a single very 
simple feature (i.e. we consider sentences similar when they share even a single word). 
However there is a special characteristic in our function, which we believe to be crucial 
to the success of our algorithm. Namely, we use the “generalized density” (i.e. r ≠ 2) 
and this greatly improves the performance of our algorithm. Other authors have only 
used dotplot densities with r = 2 only (Choi, 2000; Choi et al., 2001; Utiyama & Isahara, 
2001; Xiang & Hongyuan, 2003). 

3. Length model. A term for the expected length of segments has been used by Ponte and 
Croft (Ponte and Croft, 1997) and Heinonen (Heinonen, 1998). Utiyama and Isahara 
(Utiyama & Isahara, 2001) mention the possibility but do not seem to actually use such 
a model. However, Choi (Choi, 2000; Choi et al., 2001), Reynar (Reynar, 1994; Reynar & 
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Ratnaparkhi, 1997) and several other authors do not use a length model. We have 
noticed that the use of the length model greatly enhances the performance of our 
algorithm. 

4. Dynamic programming effects global optimization of the cost function and hence is a 
very critical factor in the success of our algorithm. As far as we know, the only other 
authors who have used dynamic programming are Ponte and Croft (Ponte and Croft, 
1997), Heinonen (Heinonen, 1998), Xiang (Xiang & Hongyuan, 2003) and, implicitly, 
Utiyama and Isahara (Utiyama & Isahara, 2001) (their shortest path algorithm is 
actually a dynamic programming algorithm). On the other hand Choi (Choi, 2000; Choi 
et al., 2001) and Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) use divisive 
clustering which, strictly speaking, does not solve an optimization problem; in fact 
clustering performs a greedy, local optimization. Note also the heuristic approach to 
segmentation, first used by Hearst (Hearst, 1994; Hearst & Plaunt, 1993) and then by 
several other authors. 

5. Training data. It should not be overlooked that our algorithm depends crucially on the 
availability of training data, for the estimation of the parameters μ ,σ , r and γ . 

Training data are also used by Choi (Choi, 2000; Choi et al., 2001) for a tuning step of 
his clustering algorithm; Utiyama and Isahara’s algorithm does not depend on training 
data. However, we should note that in many practical segmentation problems training 
data will be available (see also (Beeferman et al., 1999)). 

6. Finally, for the segmentation of Greek texts we should not overlook the importance of 
the POS tagger; if the Greek words were not lemmatized, the vocabulary of the text 
collection would increase by an order of magnitude, making the segmentation problem 
much harder. 

In short, we believe that our algorithm outperforms Choi’s and Utiyama’s algorithms 

because it performs global optimization of a global cost function. This should be compared 

to the local optimization of global information (used by Choi) and the global optimization of 

local information (used by Utiyama and Isahara).  

In future work, we plan to apply our dynamic programming method to other similarity 

metrics such as the one proposed by Hearst (WindowDiff) in order to assess the difference 

in segmentation accuracy.   

An interesting point would be to test our algorithm in text of continuous stream i.e. longer 

texts than the one used for the second experiment for the greek texts.  Another interesting 

point to examine is to enhance the vector space model used in order to calculate the 

similarity between sentences with the ranking (3x3 grid which is roughly equal to the one 

common word measure) measure in order to avoid any stability issues that may rise by the 

similarity metric used by our algorithm.  

In order to combine our algorithm with psychological issues such as the words used by 

different authors, we plan to examine some of the at least well known 1000 textual attributes 

relevant to authorship. The selection of those variables is based on their ability to reveal 

subconscious mechanisms of language variation which are unique to each author and have 

an impact on the discrimination of the author among every possible author, thus in our case, 

topic i.e. segment change. As it was proposed by Bestgen (Bestgen, 2006) our algorithm can 

benefit from the addition of semantic knowledge for capturing semantic relations between 

words appearing in sentences, which will be a future step. 
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Appendix A: The Morphosyntactic Tagger 

The Greek texts were preprocessed using the morphosyntactic tagger (better known as Part-

Of-Speech tagger) developed by Ophanos et al. (Orphanos & Christodoulakis, 1999; 

Orphanos & Tsalidis, 1999). This is a Part-Of-Speech (POS) tagger for modern Greek (a high 

inflectional language) and is based on a Lexicon capable of assigning full morphosyntactic 

attributes (i.e. Part-Of-Speech, Number, Gender, Tense, Voice, Mood and Lemma) to 876.000 

Greek word forms. Orphanos et al. created a tagged corpus capable of exhibiting the 

capability of the POS tagger to identify and resolve all POS ambiguity schemes present in 

Modern Greek (e.g. Pronoun-Clitic-Article, Pronoun-Clitic, Adjective-Adverb, Verb-Noun, 

etc) as well as the characteristics of unknown words by using the Lexicon. They used this 

corpus in order to induce decision trees, which along with the Lexicon are integrated into a 

robust POS tagger for Modern Greek texts. The tagger has three parts: the Tokenizer, the 

Lexicon and finally the Disambiguator and Guesser. The Tokenizer takes as input raw text 

and converts it into a stream of tokens. The Tokenizer resolves non-word tokens (e.g. 

punctuation marks, numbers, dates etc.) and provides them a tag corresponding to their 

category. As for the word tokens, they are looked up in the Lexicon and those found receive 

one or more tags. The Disambiguator/Guesser takes as input words that received more than 

one tags and words that were not found in the Lexicon and decides their contextually 

appropriate tag. The Disambiguator/Guesser is a ‘forest’ of decision trees, one tree for each 

ambiguity scheme present in Modern Greek and one tree for unknown guessing. The 

ambiguity scheme of words that received by the Lexicon more than one tag is identified and 

the corresponding decision tree is selected. This tree is traversed according to the values of 

the morphosyntactic features extracted from contextual tags. The result of this traversal is 
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the contextually appropriate POS tag along with its corresponding lemma. In order to 

resolve the ambiguity, tag(s) with different POS than the one returned by the decision tree, 

is (are) eliminated. In order to determine the POS of an unknown word, the decision tree for 

unknown words is traversed and examines contextual features along with the word ending 

and capitalization. As a result the open class POS and the corresponding lemma of the 

unknown word are returned. 

Appendix B 

<CC> 
ポ. ∆Ε┊┌│┄Η┋ ┌┈ ボΗ┅ペ, 23-03-1997 ┃┱├┡┢┴┪ └┩┠┩┧┭: B12421B062 </CC> 
<TITLE> 
┋┙┮┖┥┝┡┙ ┢┙┡ ┙µ┮┡┚┧┣┗┙ 
</TITLE> 
<TEXT> 
┉┩┧┳┨┴┠┝┫┟ ┬┧┭ ┢┙┣┧┵ ┵┮┧┭┪, ┟ ┫┙┮┖┥┝┡┙ ┝┗┥┙┡ ┙┥┙┛┢┙┗┙ ┬┴┫┧ ┫┬┟ ┣┧┛┧┬┝┯┥┗┙ ┴┫┧ ┢┙┡ 
┫┬┟┥ ┝┨┡┫┬┟µ┧┥┡┢┖ ┛┩┙┮┖. ペ┣┣└ ┨┩┴┢┝┡┬┙┡ ┛┡┙ ├┵┧ ├┡┙┮┧┩┝┬┡┢┕┪ ┫┙┮┖┥┝┡┝┪. Η µ┗┙ ┝┗┥┙┡ 
┨┧┡┟┬┡┢┖, ┟ └┣┣┟ ┝┦┟┛┟µ┙┬┡┢┖. 
┅┝ ┬┟ ┫┙┮┖┥┝┡┙ ┬┧┭ ┵┮┧┭┪ ┬┧┭, ┧ ┣┧┛┧┬┕┯┥┟┪ «┨┧┡┝┗» ┬┟┥ ┨┧┣┭┫┟µ┗┙. Ε┬┫┡ ┙┥┧┗┛┝┡ 
µ┨┩┧┫┬└ ┫┬┧┥ ┙┥┙┛┥┶┫┬┟ ┕┥┙ ┩┡┨┗├┡┧ ┙┥┙┛┥┶┫┝┱┥: ┬┧┥ ┝┭┢┧┣┵┥┝┡ ┥┙ ├┡┙┚└┫┝┡ ┢┙┡ ┥┙ 
┝┩µ┟┥┝┵┫┝┡ ┬┧ ┨┧┣┵┫┟µ┧ ┢┝┗µ┝┥┧ µ┝ ┨┧┣┣┙┨┣┧┵┪ ┬┩┴┨┧┭┪. 
ペ┣┣└ ┧ ┫┭┛┛┩┙┮┕┙┪ ┝┥┴┪ ┝┨┡┫┬┟µ┧┥┡┢┧┵ ┕┩┛┧┭ (┙┭┬┴┪ ┨┧┭ ┢┭┩┗┱┪ ┠┙ µ┙┪ ┙┨┙┫┯┧┣┖┫┝┡ 
┫┖µ┝┩┙) ┝┦┙┮┙┥┗┞┝┡ µ┝ ┬┟ ┫┙┮┖┥┝┡┙ ┬┧┭ ┵┮┧┭┪ ┬┧┭ ┴┣┝┪ ┬┡┪ ┙µ┮┡┫┟µ┗┝┪ ┢┙┡ ┨┧┣┭┫┟µ┗┝┪ 
┬┧┭ ┢┝┡µ┕┥┧┭. ペ┨┧┢┣┝┗┝┡ ┕┬┫┡ ┬┡┪ ┙µ┮┡┚┧┣┗┝┪ ┬┧┭ ┙┥┙┛┥┶┫┬┟ ┛┡┙ ┬┙ ┴┫┙ ┧ ┫┭┛┛┩┙┮┕┙┪ 
┡┫┯┭┩┗┞┝┬┙┡ ┢┙┡ ├┡┝┭┢┧┣┵┥┝┡ ┬┧┥ ┙┥┙-┛┥┱┫┬┡┢┴, ┝┨┡┫┬┟µ┧┥┡┢┴ ┕┣┝┛┯┧. Η ┨┧┣┭┫┟µ┗┙ ┨┧┭ 
┨┩┧┫┨┙┠┝┗ ┥┙ ┝┢┮┩└┫┝┡ ┧ ┣┧┛┧┬┕┯┥┟┪ µ┧┡└┞┝┡, ┝┦└┣┣┧┭, ┙┣┣└ ├┝┥ ┬┙┭┬┗┞┝┬┙┡ µ┝ ┬┟┥ 
┙µ┮┡┚┧┣┗┙ ┨┧┭ ┢└┨┧┬┝ ┝┢┮┩└┞┝┡ ┫┬┧ ┢┝┗µ┝┥┴ ┬┧┭ ┕┥┙┪ ┝┨┡┫┬┖µ┧┥┙┪. ┌┟┥ ┝┢┮┩└┞┝┡ ┝┨┝┡├┖ 
┫┭┥┙┡┫┠└┥┝┬┙┡ ┬┙ ┴┩┡┙ ┬┧┭ ┝┙┭┬┧┵ ┬┧┭, ┬┧┭ ┫┭┛┢┝┢┩┡µ┕┥┧┭ ┕┩┛┧┭ ┬┧┭, ┬┱┥ ┨┩┧┫┱┨┡┢┶┥ 
┬┧┭ ┠┝┱┩┡┶┥, ┙┢┴µ┟ ┢┙┡ ┬┟┪ ┝┨┡┫┬┖µ┟┪ ┬┧┭. ペ┣┣└ ┨┙┩┙µ┕┥┝┡ ┟ ┙┥└┛┢┟ ┥┙ ┝┗┥┙┡ ┫┙┮┝┗┪ 
┧┡ ┠┝┱┩┗┝┪ ┬┧┭, ┫┙┮┕┪ ┢┙┡ ┬┧ ┢┝┗µ┝┥┴ ┬┧┭. Ε┬┫┡, ┧ ┫┭┛┛┩┙┮┕┙┪ ┙┨┴ ┬┟ µ┡┙ ┢┙┬┙┛┩└┮┝┡ 
┬┟┥ ┙µ┮┡┚┧┣┗┙, ┙┨┴ ┬┟┥ └┣┣┟ ┴µ┱┪ ┭┨┧┫┬┟┩┗┞┝┡ µ┝ ┫┙┮┖┥┝┡┙ ┬┟ ┫┭┣┣┧┛┡┫┬┡┢┖ ┬┧┭, ┬┡┪ 
┙┨┴┰┝┡┪ ┢┙┡ ┬┡┪ ┝┩µ┟┥┝┗┝┪ ┬┧┭: ┝┨┝┡├┖ ┧ ┝┨┡┫┬┟µ┧┥┡┢┴┪ ┣┴┛┧┪, ┝┦ ┧┩┡┫µ┧┵, ├┝┥ ┝┨┡├┕┯┝┬┙┡ 
┙┥┬┡┮└┫┝┡┪. 
┈┨┱┪ ┝┗┥┙┡ ┮┭┫┡┢┴, ┧ ┢┙┥┴┥┙┪ ┬┟┪ ┫┙┮┖┥┝┡┙┪ ├┝┥ ┕┯┝┡ ┝┥┡┙┗┙ ┝┮┙┩µ┧┛┖. ┍┨└┩┯┧┭┥ ┧┡ 
├┡┙┮┧┩┧┨┧┡┖┫┝┡┪ ┨┧┭ ┝┦┙┩┬┶┥┬┙┡ ┙┨┴ ┬┟┥ ┨┩┧┫┱┨┡┢┴┬┟┬┙ ┢┙┡ ┬┡┪ ┡┢┙┥┴┬┟┬┝┪ ┬┧┭ ┢└┠┝ 
┫┭┛┛┩┙┮┕┙. Ε┥┙┪ ┝┨┡┫┬┖µ┧┥┙┪ µ┝ ┢┙┣┴ ┫┭┛┛┩┙┮┡┢┴ ┬┙┣┕┥┬┧ µ┨┧┩┝┗ ┗┫┱┪ ┥┙ ┚┩┝┡ 
┝┣┝┭┠┝┩┡┴┬┝┩┧┭┪ ┬┩┴┨┧┭┪ ┨┙┩┧┭┫┗┙┫┟┪ ┬┱┥ ┡├┝┶┥ ┬┧┭, ┥┙ ┝┨┝┢┬┙┠┝┗ ┫┝ ┭┨┙┡┥┡┛µ┧┵┪, ┫┝ 
┙µ┮┡┫┟µ┗┝┪ ┢┙┡ ┫┝ ┙┨┧┫┡┱┨┖┫┝┡┪ ┨┧┭ ┕┯┧┭┥ ┬┟ ├┡┢┖ ┬┧┭┪ ┣┝┡┬┧┭┩┛┗┙ ┢┙┡ ┙┡┫┠┟┬┡┢┖. 
ペ┣┣└ ┙┭┬┴ ├┝┥ ┙┥┙┡┩┝┗ ┬┟┥ ┝┨┡┫┬┟µ┧┥┡┢┖ ┬┧┭ ┭┨┧┯┩┕┱┫┟ ┥┙ ├┝┗┦┝┡ µ┝ ┫┙┮┖┥┝┡┙, ┫┝ └┣┣┙ 
┫┟µ┝┗┙ ┬┧┭ ┢┝┡µ┕┥┧┭, ┬┡┪ ┙┨┴┰┝┡┪ ┢┙┡ ┬┡┪ ┝┩µ┟┥┝┗┝┪ ┬┧┭. 
┍┨└┩┯┧┭┥ ┕┨┝┡┬┙ ├┡┙┮┧┩┧┨┧┡┖┫┝┡┪ ┙┥└┣┧┛┝┪ µ┝ ┬┙ ┛┥┱┫┬┡┢└ ┙┥┬┡┢┝┗µ┝┥┙ ┢┙┡ ┬┙ ┝┗├┟ 
┬┧┭ ┛┩┙┨┬┧┵ ┝┨┡┫┬┟µ┧┥┡┢┧┵ ┣┴┛┧┭. Η │┫┬┧┩┗┙, ┨.┯., ┙┮┖┥┝┡ ┨┝┩┡┫┫┴┬┝┩┝┪ ┭┮┧┣┧┛┡┢┕┪ 
├┭┥┙┬┴┬┟┬┝┪ ┫┬┧┥ ┫┭┛┛┩┙┮┕┙ ┙┨┴ ┧┨┧┡┙├┖┨┧┬┝ └┣┣┟ ┝┨┡┫┬┖µ┟. ┌┧┭ ┝┨┡┬┩┕┨┝┡, ┢└┨┧┬┝ 
┬┧┭ ┝┨┡┚└┣┣┝┡ ┢┡┴┣┙┪, ┥┙ ┙┥┙├┝┗┦┝┡ ┬┡┪ ┝┫┱┬┝┩┡┢┕┪ ┙┥┬┡┮└┫┝┡┪ ┬┧┭ ┙┥┠┩┶┨┧┭ ┢┙┡ ┬┱┥ 
┙┥┠┩┱┨┗┥┱┥ ┢┧┡┥┱┥┡┶┥· ┬┧┥ ┩┴┣┧ ┬┱┥ ┙┥┠┩┱┨┗┥┱┥ ┨┙┠┶┥· ┬┟ ┫┟µ┙┫┗┙ ┬┱┥ 
┫┭µ┨┬┶┫┝┱┥ ┢┙┡ ┬┟┪ ┬┵┯┟┪· ┬┧ ┚└┩┧┪ ┬┱┥ µ┙┞┡┢┶┥ ┢┧┡┥┱┥┡┢┶┥ ├┭┥└µ┝┱┥· ┬┧┭┪ 
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┙┥┙┨┴├┩┙┫┬┧┭┪ ┮┩┙┛µ┧┵┪ ┬┟┪ ┮┵┫┟┪. 
Ω┫┬┴┫┧, ┧ ┡┫┬┧┩┡┢┴┪ ├┝┥ ├┝┗┯┥┝┡ ┬┡┪ ┙┥┬┡┮└┫┝┡┪ ┧┭┫┗┙┪ µ┝ ┙┥┬┡┮└┫┝┡┪ ┵┮┧┭┪, ┙┣┣└ µ┝ 
┫┙┮┖┥┝┡┙. ┌┙ ┨└┠┟ ├┝┥ ┬┙ ├┝┗┯┥┝┡ µ┝ ┰┝┭├┧┩┧µ┙┥┬┡┢┖ ┙┫└┮┝┡┙, ┙┣┣└ µ┝ ┬┟ ┫┙┮┖┥┝┡┙ 
┝┢┝┗┥┟ ┨┧┭ ┠┙ ┙┥┙├┝┗┦┝┡ ┬┟┥ ┙┡┯µ┟┩┴┬┟┬└ ┬┧┭┪. ┌┧┥┗┞┝┡ ┬┡┪ ┫┭µ┨┬┶┫┝┡┪ ┢┙┡ ┬┟┥ 
┬┭┯┙┡┴┬┟┬┙ µ┝ ┵┮┧┪ ┫┙┮┕┪ ┢┙┡ ┴┯┡ ┬┭┯└┩┨┙┫┬┧. ┌┟ «µ┧┗┩┙» ├┝┥ ┬┟┥ ┙┨┧├┗├┝┡ ┫┝ 
µ┝┬┙┮┭┫┡┢┕┪ ├┭┥└µ┝┡┪ - ┝┮┴┫┧┥ ┢└┥┝┡ ┝┨┡┫┬┖µ┟. ┅┨┧┩┝┗ ┥┙ ┬┟┥ ┬┙┭┬┗┞┝┡ µ┝ ├┭┥└µ┝┡┪ ┨┧┭ 
┠┝┱┩┧┵┫┙┥ ┙┥┝┦┖┛┟┬┝┪ ┢┙┡ µ┝┬┙┮┭┫┡┢┕┪ ┧┡ └┥┠┩┱┨┧┡ ┨┧┭ µ┝┣┝┬└· ┙┣┣└ ┧ ┗├┡┧┪ ├┗┥┝┡ 
┴┥┧µ┙ ┫┬┡┪ ├┭┥└µ┝┡┪ ┙┭┬┕┪· ┢┙┡ ┬┡┪ ┝┥┬└┫┫┝┡, µ┝ ┫┙┮┖┥┝┡┙, ┫┝ ┕┥┙┥ ┙┡┬┡┙┢┴ ┫┭┣┣┧┛┡┫µ┴, 
┫┝ ┕┥┙ ┝┩µ┟┥┝┭┬┡┢┴ ┫┯┖µ┙. 
Ε┥┙ ┝┭┬┭┯┕┪ ┡┫┬┧┩┡┧┛┩┙┮┡┢┴ ┕┩┛┧ ┙┨┙┡┬┝┗ ┕┥┙┥ ┢┙┣┴ ┫┭┛┢┝┩┙┫µ┴ ┬┟┪ ┝┨┡┫┬┖µ┟┪ µ┝ ┬┟┥ 
┬┕┯┥┟ ┬┧┭ ┵┮┧┭┪. ペ┨┴ ┝┢┝┗ ┢┙┡ ┨┕┩┙, ┭┨└┩┯┝┡ µ┴┥┧ ┟ ┭┨┕┩┚┙┫┟ ┢┙┡ ┬┟┪ ┝┨┡┫┬┖µ┟┪ ┢┙┡ 
┬┧┭ ┵┮┧┭┪. ┋┬┧┥ ┭┨┝┩┚┙┬┡┢┴ ┙┭┬┴ ┯┶┩┧, ┝┢┝┗ ┴┨┧┭ ┧ ┫┭┛┢┝┩┙┫µ┴┪ ┛┗┥┝┬┙┡ ┬┙┵┬┡┫┟ 
┛┥┶┫┟┪ ┢┙┡ ┬┕┯┥┟┪, ┧├┟┛┝┗ ┕┥┙┪ ├┩┴µ┧┪ ┫┯┝├┴┥ └┚┙┬┧┪. ┌┴┨┧┪ ┨┧┭ ┧┥┝┡┩┝┵┧┥┬┙┡ ┨┧┣┣┧┗, 
┝┨┡┫┬┖µ┧┥┝┪ ┢┙┡ ┬┝┯┥┗┬┝┪, ┬┴┨┧┪ └┮┠┙┫┬┧┪ ┛┡┙ µ┙┪ ┬┧┭┪ ┨┧┣┣┧┵┪ - ┴┯┡, ┴µ┱┪, ┧┭┬┧┨┗┙. 
┅┙┪ ┬┧┥ ┕┯┧┭┥ ├┝┗┦┝┡ ┧┡ ┝┣└┯┡┫┬┧┡ ┨┧┭ ┕┮┬┙┫┙┥ ┝┢┝┗, ┧┡ ├└┫┢┙┣┧┗ µ┙┪, ┧ ┢┙┠┕┥┙┪ µ┝ ┬┟ 
µ┝┛└┣┟ ┢┙┡ ┬┟ µ┡┢┩┖ ┬┧┭ ┡┫┬┧┩┗┙, ┴┥┬┙ ├┡┴┣┧┭ µ┝┬┙┮┭┫┡┢└, ┨┧┣┵ ┙┥┠┩┶┨┡┥┙. Ε┥┙┪ 
┙┨┣┴┪ └┥┠┩┱┨┧┪ ├┝┥ ┖┬┙┥ └┩┙┛┝ ┧ ├└┫┢┙┣┧┪ ┨┧┭, ┨┩┡┥ ┙┨┴ ├┭┴µ┡┫┡ ┙┡┶┥┝┪, ┫┢└┩┱┥┝ 
┢└┠┝ µ┕┩┙ ┬┟ ┮┭┛┖ ┬┧┭ ┨┩┧┪ ┬┙ ┝┢┝┗, µ┝ ┕┥┙ ┙┨┣┴, ┙┣┣└ ┢┙┣┶┪ ┫┭┛┢┝┩┙┫µ┕┥┧ 
┢┣┝┡├┧┢┵µ┚┙┣┧; 
┈ ┢. ポ. ボ. ∆┝┩┬┡┣┖┪ ┝┗┥┙┡ ┢┙┠┟┛┟┬┖┪ ┬┟┪ │┫┬┧┩┗┙┪ ┫┬┧ ┉┙┥┝┨┡┫┬┖µ┡┧ ペ┠┟┥┶┥. 
</TEXT> 
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