
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Computational Intelligence in Software Cost 
Estimation: Evolving Conditional Sets of  

Effort Value Ranges 

Efi Papatheocharous and Andreas S. Andreou 
Department of Computer Science, University of Cyprus, 

 Cyprus 

1. Introduction    

In the area of software engineering a critical task is to accurately estimate the overall project 
costs for the completion of a new software project and efficiently allocate the resources 
throughout the project schedule. The numerous software cost estimation approaches 
proposed are closely related to cost modeling and recognize the increasing need for 
successful project management, planning and accurate cost prediction. Cost estimators are 
continually faced with problems stemming from the dynamic nature of the project 
development process itself. Software development is considered an intractable procedure 
and inevitably depends highly on several complex factors (e.g., specification of the system, 
technology shifting, communication, etc.). Normally, software cost estimates increase 
proportionally to development complexity rising, whereas it is especially hard to predict 
and manage the actual related costs. Even for well-structured and planned approaches to 
software development, cost estimates are still difficult to make and will probably concern 
project managers long before the problem is adequately solved. 
During a system’s life-cycle, one of the most important tasks is to effectively describe the 
necessary development activities and estimate the corresponding costs. This estimation, 
once successful, allows software engineers to optimize the development process, improve 
administration and control over the project resources, reduce the risks caused by 
contingencies and minimize project failures (Lederer & Prasad, 1992). Subsequently, a 
commonly investigated approach is to accurately estimate some of the fundamental 
characteristics related to cost, such as effort and schedule, and identify their inter-
associations. Software cost estimation is affected by multiple parameters related to 
technologies, scheduling, manager and team member skills and experiences, mentality and 
culture, team cohesion, productivity, project size, complexity, reliability, quality and many 
more. These parameters drive software development costs either positively or negatively 
and are considerably very hard to measure and manage, especially at an early project 
development phase. Hence, software cost estimation involves the overall assessment of 
these parameters, even though for the majority of the projects, the most dominant and 
popular metric is the effort cost, typically measured in person-months.  
Recent attempts have investigated the potential of employing Artificial Intelligence-oriented 
methods to forecast software development effort, usually utilising publicly available 
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datasets (e.g., Dolado, 2001; Idri et al., 2002; Jun & Lee, 2001; Khoshgoftaar et al., 1998; Xu & 
Khoshgoftaar, 2004) that contain a wide variety of cost drivers. However, these cost drivers 
are often ambiguous because they present high variations in both their measure and values. 
As a result, cost assessments based on these drivers are somewhat unreliable. Therefore, by 
detecting those project cost attributes that decisively influence the course of software costs 
and similarly define their possible values may constitute the basis for yielding better cost 
estimates. Specifically, the complicated problem of software cost estimation may be reduced 
or decomposed into devising and evolving bounds of value ranges for the attributes 
involved in cost estimation using the theory of conditional sets (Packard, 1990). These 
ranges may then be used to attain adequate predictions in relation to the effort located in the 
actual project data. The motivation behind this work is the utilization of rich empirical data 
series of software project cost attributes (despite suffering from limited quality and 
homogeneity) to produce robust effort estimations. Previous work on the topic has 
suggested high sensitivity to the type of attributes used as inputs in a certain Neural 
Network model (MacDonell & Shepperd, 2003). These inputs are usually discrete values 
from well-known and publicly available datasets. The data series indicate high variations in 
the attributes or factors considered when estimating effort (Dolado, 2001). The hypothesis is 
that if we manage to reduce the sensitivity of the technique by considering indistinct values 
in terms of ranges, instead of crisp discrete values, and if we employ an evolutionary 
technique, like Genetic Algorithms, we may be able to address the effect of attribute variations 
and thus provide a near-to-optimum solution to the problem. Consequently, the technique 
proposed in this chapter may provide some insight regarding which cost drivers are the most 
important. In addition, it may lead to identifying the most favorable attribute value ranges for 
a given dataset that can yield a ‘secure’ and more flexible effort estimate, again having the 
same reasoning in terms of ranges. Once satisfactory and robust value ranges are detected and 
some confidence regarding the most influential attributes is achieved, then cost estimation 
accuracy may be improved and more reliable estimations may be produced. 
The remainder of this work is structured as follows: Section 2 presents a brief overview of 
the related software cost estimation literature and mainly summarizes Artificial Intelligence 
techniques, such as Genetic Algorithms (GA) exploited in software cost estimation. Section 3 
encompasses the description of the proposed methodology, along with the GA variance 
constituting the method suggested, a description of the data used and the detailed 
framework of our approach. Consequently, Section 4 describes the experimental procedure 
and the results obtained after training and validating the genetic evolution of value ranges 
for the problem of software cost estimation. Finally, Section 5 concludes the chapter with a 
discussion on the difficulties and trade-offs presented by the methodology in addition to 
suggestions for improvements in future research steps. 

2. Related work  

Traditional model-based approaches to cost estimation, such as COCOMO, Function Point 
Analysis (FPA) and SLIM, assume that if we use some independent variables (i.e., project 
characteristics) as inputs and a dependent variable as the output (namely development 
effort), the resulted complex I/O relationships may be captured by a formula (Pendharkar et 
al., 2005). In reality, this is never the case. In COCOMO (Boehm, 1981), one of the most 
popular models for software cost estimation, the development effort is calculated using the 
estimated delivered source instructions and an effort adjustment factor, applied to three 
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distinct levels (basic, intermediate and advanced) and two constant parameters. COCOMO 
was revised in newer editions (Boehm et al., 1995; Boehm et al., 2000), using software size as 
the primary factor and 17 secondary cost factors. The revised model is regression-based and 
involves a mixture of three cost models, each corresponding to a stage in the software life-
cycle namely: Applications Composition, Early Design and Post Architecture. The 
Application Composition stage involves prototyping efforts; the Early Design stage includes 
only a small number of cost drivers as there is not enough information available at this point 
to support fine-grained cost estimation; the Post Architecture stage is typically applied after 
the software architecture has been defined and provides estimates for the entire 
development life-cycle using effort multipliers and exponential scale factors to adjust for 
project, platform, personnel, and product characteristics.  
Models based on Function Points Analysis (FPA) (Albrecht & Gaffney, 1983) mainly involve 
identifying and classifying the major system components such as external inputs, external 
outputs, logical internal files, external interface files and external inquiries. The classification 
is based on their characterization as ‘simple’, ‘average’ or ‘complex’, depending on the 
number of interacting data elements and other factors. Then, the unadjusted function points 
are calculated using a weighting schema and adjusting the estimations utilizing a 
complexity adjustment factor. This is influenced by several project characteristics, namely 
data communications, distributed processing, performance objective, configuration load, 
transaction rate, on-line data entry, end-user efficiency, on-line update, complex processing, 
reusability, installation ease, operational ease, multiple sites and change facilitation.  
In SLIM (Fairley, 1992) two equations are used: the software productivity level and the 
manpower equation, utilising the Rayleigh distribution (Putnam & Myers, 1992) to estimate 
project effort schedule and defect rate. The model uses a stepwise approach and in order to 
be applicable the necessary parameters must be known upfront, such as the system size - 
measured in KDSI (thousand delivered source instructions), the manpower acceleration and 
the technology factor, for which different values are represented by varying factors such as 
hardware constraints, personnel experience and programming experience. Despite being the 
forerunner of many research activities, the traditional models mentioned above, did not 
produce the best possible results. Even though many existing software cost estimation 
models rely on the suggestion that predictions of a dependent variable can be formulated if 
several (in)dependent project characteristics are known, they are neither a silver bullet nor 
the best-suited approaches for software cost estimation (Shukla, 2000). 
Over the last years, computational intelligence methods have been used attaining promising 
results in software cost estimation, including Neural Networks (NN) (Jun & Lee, 2001; 
Papatheocharous & Andreou, 2007; Tadayon, 2005), Fuzzy Logic (Idri et al., 2002; Xu & 
Khoshgoftaar , 2004), Case Based Reasoning (CBR) (Finnie et al., 1997; Shepperd et al., 1996), 
Rule Induction (RI) (Mair et al., 2000) and Evolutionary Algorithms.  
A variety of methods, usually evolved into hybrid models, have been used mainly to predict 
software development effort and analyze various aspects of the problem. Genetic 
Programming (GP) is reported in literature to provide promising approximations to the 
problem. In (Burgess & Leftley, 2001) a comparative evaluation of several techniques is 
performed to test the hypothesis of whether GP can improve software effort estimates. In 
terms of accuracy, GP was found more accurate than other techniques, but does not 
converge to a good solution as consistently as NN. This suggests that more work is needed 
towards defining which measures, or combination of measures, is more appropriate for the 
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particular problem. In (Dolado, 2001) GP evolving tree structures, which represent software 
cost estimation equations, is investigated in relation to other classical equations, like the 
linear, power, quadratic, etc. Different datasets were used in that study yielding diverse 
results, classified as ‘acceptable’, ‘moderately good’, ‘moderate’ and ‘bad’ results. Due to the 
reason that the datasets examined varied extremely in terms of complexity, size, 
homogeneity, or values’ granularity consistent results were hard to obtain. In (Lefley, & 
Shepperd 2003) the use of GP and other techniques was attempted to model and estimate 
software project effort. The problem was modeled as a symbolic regression problem to offer 
a solution to the problem of software cost estimation and improve effort predictions. The so-
called “Finnish data set” collected by the software project management consultancy 
organization SSTF was used in the context of within and beyond a specific company and 
obtained estimations  that indicated that with the approaches of Least-Square Regression, 
NN and GP better predictions could be obtained. The results from the top five percent 
estimators yielded satisfactory performance in terms of Mean Relative Error (MRE) with the 
GP appearing to be a stronger estimator achieving better predictions, closer to the actual 
values more often than the rest of the techniques. In the work of (Huang & Chiu, 2006) a GA 
was adopted to determine the appropriate weighted similarity measures of effort drivers in 
analogy-based software effort estimation models. These models identify and compare the 
software project developed with similar historical projects and produce an effort estimate. 
The ISBSG and the IBM DP services databases were used in the experiments and the results 
obtained showed that among the applied methods, the GA produced better estimates and 
the method could provide objective weights for software effort drivers rather than the 
subjective weights assigned by experts. 
In summary, software cost estimation is a complicated activity since there are numerous cost 
drivers, displaying more than a few value discrepancies between them, and highly affecting 
development cost assessment. Software development metrics for a project reflect both 
qualitative measures, such as, team experiences and skills, development environment, 
group dynamics, culture, and quantitative measures, for example, project size, product 
characteristics and available resources. However, for every project characteristic the data is 
vague, dissimilar and ambiguous, while at the same time formal guidelines on how to 
determine the actual effort required to complete a project based on specific characteristics or 
attributes do not exist. Previous attempts to identify possible methods to accurately estimate 
development effort were not as successful as desired, mainly because calculations were 
based on certain project attributes of publicly available datasets (Jun & Lee, 2001). 
Nevertheless, the proportion of evaluation methods employing historical data is around 
55% from a total of 304 research papers investigated by Jorgensen & Shepperd in 2004 
(Jorgensen & Shepperd, 2007). According to the same study, evaluation of estimation 
methods requires that the datasets be as representative as possible to the current or future 
projects under evaluation. Thus, if we wish to evaluate a set of projects, we might consider 
going a step back, and re-define a more useful dataset in terms of conditional value ranges. 
These ranges may thus lead to identifying representative bounds for the available values of 
cost drivers that constitute the basis for estimating average cost values.  

3. The proposed cost estimation framework  

The framework proposed in this chapter encompasses the application of the theory of 
conditional sets in combination with Genetic Algorithms (GAs). The idea is inspired by the 
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work presented by Packard et al. (Meyer & Packard, 1992; Packard, 1990) utilising GAs to 
evolve conditional sets. The term conditional set refers to a set of boundary conditions. The 
main concept is to evaluate the evolved value ranges (or conditional sets) and extract 
underlying determinant relationships among attributes and effort in a given dataseries. This 
entails exploring a vast space of solutions, expressed in ranges, utilising additional 
manufactured data than those located into a well-known database regularly exploited for 
software effort estimation.  
What we actually propose is a method for investigating the prospect of identifying the exact 
value ranges for the attributes of software projects and determining the factors that may 
influence development effort. The approach proposed implies that the attributes’ value 
ranges and corresponding effort value ranges are automatically generated, evaluated and 
evolved through selection and survival of the fittest in a way similar to natural evolution 
(Koza, 1992). The goal is to provide complementing weights (representing the notion of 
ranked importance to the associated attributes) together with effort predictions, which could 
possibly result in a solution more efficient and practical than the ones created by other 
models and software cost estimation approaches. 

3.1 Conditional sets theory and software cost 

In this section we present some definitions and notations of conditional sets theory in 
relation to software cost based on paradigms described in (Adamopoulos et al., 1998; 
Packard, 1990).  
Consider a set of n cost attributes {A1, A2,…, An}, where each Ai has a corresponding discrete 
value xi. A software project may be described by a vector of the form:  

 { }1 2
, ,...,

n
L x x x=  (1) 

Let us consider a condition Ci of the form: 

 : ( )
i i i i
C lb x ub< < , 1...i n=  (2a) 

where lbi and ubi are the lower and upper bounds of Ci respectively for which: 

 :
i i i
C lb ub ε∀ − <  (2b) 

that is,  lbi and ubi have minimal difference in their value, under a specific threshold ε.  
Consider also a conditional set S; we say that S is of length l (≤n) if it entails l conditions of 
the form described by equations (2a) and (2b), which are coupled via the logical operators of 
AND and OR as follows: 

 
1 2

...
AND l
S C C C= ∧ ∧ ∧  (3) 

 
1 2

...
OR l
S C C C= ∨ ∨ ∨  (4) 

We consider each conditional set S as an individual in the population of our GA, which will 
be thoroughly explained in the next section as part of the proposed methodology. We use 
equations (3) and (4) to describe conditional sets representing cost attributes, or to be more 
precise, cost metrics. What we are interested in is the definition of a set of software projects, 
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M, the elements of which are vectors as in equation (1) that hold the values of the specific 
cost attributes used in relation with a conditional set. More specifically, the set M can be 
defined as follows:  

 { }1 2
, ,...,

m
M L L L=  (5) 

 { },1 ,2 ,
, ,...,

i i i i l
L x x x= ,  1...i m=  (6) 

where l denotes the number of cost attributes of interest. 
A conditional set S is related to M according to the conditions in equations (3) or (4) that are 
satisfied as follows: 

 :
i
L∀       

,i k k
x satisfies C  , 1... , 1...   (AND)i m k l= =  (7) 

 
,1 1 ,2 2

,

,...

..., ,   1... ,   (OR)

i i

i l l

x satisfies C OR x satisfies C

OR x satisfies C i m=
 (8) 

3.2 Methodology 

Before proceeding to describe the methodology proposed we provide a short description of 
the dataset used. The dataset was obtained from the International Software Benchmarking 
Standards Group (ISBSG, Repository Data Release 9 - ISBSG/R9, 2005) and contains an 
analysis of software project costs for a group of projects. The projects come from a broad 
cross section of industry and range in size, effort, platform, language and development 
technique data. The release of the dataset used contains 92 variables for each of the projects 
and hosts multi-organizational, multi-application domain and multi-environment data that 
may be considered fairly heterogeneous (International Software Benchmarking Standards 
Group, http://www.isbsg.org/). The dataset was recorded following data collection 
standards ensuring broad acceptance. Nevertheless, it contains more than 4,000 data from 
more than 20 countries and hence it is considered highly heterogeneous. Therefore, data 
acquisition, investigation and employment of the factors that impact planning, management 
and benchmarking of software development projects should be performed very cautiously. 
The proposed methodology is divided into three steps, namely the data pre-processing step, 
the application of the GA and the evaluation of the results. Figure 1 summarizes the 
methodology proposed and the steps followed for evolving conditional sets and providing 
effort range predictions. Several filtered sub-sets of the ISBSG/R9 dataset were utilized for 
the evolution of conditional sets, initially setting up the required conditional sets. The 
conditional sets are coupled with two logical operators (AND and OR) and the investigation 
lies with extracting the ranges of project features or characteristics that describe the 
associated project effort. Furthermore, the algorithm creates a random set or initial 
population of conditions (individuals). The individuals are then evolved through specific 
genetic operators and evaluated internally using the fitness functions. The evolution of 
individuals continues while the termination criteria are not satisfied, among these a 
maximum number of iterations (called generations or epochs) or no improvement in the 
maximum fitness value occurs for a specific number of generations. The top 5% individuals 
resulting in the higher fitness evaluations are accumulated into the optimum range 
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population, which then are advanced to the next algorithm generation (repetition). At the 
end, the final population produced that satisfies the criteria is used to estimate the mean 
effort, whereas at the evaluation step, the methodology is assessed through various 
performance metrics. The most successful conditional sets evolved by the GA that have 
small assembled effort ranges with relatively small deviation from the mean effort, may 
then be used to predict effort of new, unknown projects. 
 

 

Fig. 1. Methodology followed for evolving conditional sets 

3.2.1 Data pre-processing 
In this step the most valuable set of attributes, in terms of contribution to effort estimation, 
are assembled from the original ISBSG/R9 dataset. After careful consideration of guidelines 
provided by the ISBSG and other research organizations, we decided to the formation of a 
reduced ISBSG dataset including the following main attributes: the project id (ID), the 
adjusted function points of the product (AFP), the project’s elapsed time (PET), the project’s 
inactive time (PIT), the project’s delivery rate (productivity) in functional size units (PDRU), 
the average team size working on the project (ATS), the development type (DT), the 
application type (AT), the development platform (DP), the language type (LT), the primary 
programming language (PPL) and the resource level (RL) and the work effort expensed 
during the full development life-cycle (EFF) which will be used as a sort of output by the 
corresponding evolutionary algorithm. The attributes selected from the original, wider pool 
of ISBSG, were further filtered to remove those attributes with categorical-type data and 
other attributes that could not be included in the experimentation. Also, some attributes 
underwent value transformations, for example instead of PET and PIT we used their 
subtraction, normalized values for AFP and specific percentiles defining acceptance 
thresholds for filtering the data.  
The first experiments following our approach indicated that further processing of the 
attributes should be performed, as the approach was quite strict and not applicable for 
heterogeneous datasets containing many project attributes with high deviations in their 
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values and measurement. Therefore, this led us to examine smaller, more compact, 
homogeneous and free from outlier subsets. In fact, we managed to extract three final 
datasets which we used in our final series of experiments. The first dataset (DS-1) contained 
the main attributes suggested by Function Point Analysis (FPA) to provide measurement of 
project software size, and included: Adjusted Function Points (AFP), Enquiry Count (EC), 
File Count (FC), Added Count (AC) and Changed Count (CC). These attributes were 
selected based on previous findings that considered them to be more successful in 
describing development effort after applying sensitivity analysis on the inputs with Neural 
Networks (Papatheocharous & Andreou, 2007). The second dataset (DS-2) is a variation of 
the previous dataset based on the preliminary results of DS-1, after performing 
normalization and removing the outliers according to the lower and upper thresholds 
defined by the effort box-plots. This resulted to the selection of the attributes: Normalized 
PDR-AFP (NAFP), Enquiry Count (EC), File Count (FC) and Added Count (AC). Finally, the 
third dataset (DS-3) created included the project attributes that can be measured early in the 
software life-cycle consisting of: Adjusted Function Points (AFP), Project’s Delivery Rate 
(PDRU), Project’s Elapsed Time (PET), Resource Level (RL) and Average Team Size (ATS) 
attributes in which also box-plots and percentile thresholds were used to remove outliers.  
 

 

Fig. 2. Example of box-plots for the ISBSG project attributes (original full dataset) 

It is noteworthy that each dataset also contained the values of the development work effort 
(EFF), the output attribute that we wanted to predict. As we already mentioned, the last data 
pre-processing step of the three datasets constructed included the cleaning of null and 
outlying values. The theory of box-plots was used to locate the outlying figures from the 
datasets and project cleaning was performed for each project variable separately. Figure 2 
above shows an example of the box-plots created for each variable on the original full dataset. 
We decided to disregard the extreme outliers (marked as asterisks) occurring in each of the 
selected attributes and also exclude those projects considered as mild outliers (marked as 
circles), thus imposing more strict filtering associated with the output variable effort (EFF). 
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3.2.2 Genetic algorithm application 

Genetic Algorithms (GAs) are evolutionary computational approaches that are domain-

independent, and aim to find approximated solutions in complex optimization and search 

problems (Holland, 1992). They achieve this by pruning a population of individuals based 

on the Darwinian principle of reproduction and ‘survival of the fittest’ (Koza, 1992). The 

fitness of each individual is based on the quality of the simulated individual in the 

environment of the problem investigated. The process is characterized by the fact that the 

solution is achieved by means of a cycle of generations of candidate solutions that are 

pruned by using a set of biologically inspired operators. According to evolutionary theories, 

only the most suited solutions in a population are likely to survive and generate offspring, 

and transmit their biological heredity to the new generations. Thus, GAs are much superior 

to conventional search and optimization techniques in high-dimensional problem spaces 

due to their inherent parallelism and directed stochastic search implemented by 

recombination operators. The basic process of our GA operates through a simple cycle of 

three stages, as these were initially described by (Michalewicz, 1994):  
 

Stage 1: Randomly create an initial population of individuals P, which represent solutions to 
the given problem (in our case, ranges of values in the form of equations (3) or (4)). 

Stage 2: Perform the following steps for each generation: 
2.1. Evaluate the fitness of each individual in the population using equations (9) or (10) 

below, and isolate the best individual(s) of all preceding populations.  
2.2. Create a new population by applying the following genetic operators: 

2.2.1. Selection; based on the fitness select a subset of the current population for 
reproduction by applying the roulette wheel method. This method of 
reproduction allocates offspring values using a roulette wheel with slots sized 
according to the fitness of the evaluated individuals. It is a way of selecting 
members from a population of individuals in a natural way, proportional to 
the probability set by the fitness of the parents. The higher the fitness of the 
individual is, the greater the chance it will be selected, however it is not 
guaranteed that the fittest member goes to the next generation. So, 
additionally, elitism is applied, where the top best performing individuals are 
copied in the next generation and thus, rapidly increase the performance of the 
algorithm. 

2.2.2. Crossover; two or more individuals are randomly chosen from the population 
and parts of their genetic information are recombined to produce new 
individuals. Crossover with two individuals takes place either by exchanging 
their ranges at the crossover point (inter-crossover) or by swapping the upper 
or lower bound of a specific range (intra-crossover). The crossover takes place 
on one (or more) randomly chosen crossover point(s) along the structures of 
the two individuals. 

2.2.3. Mutation; randomly selected individuals are altered randomly and inserted 
into the new population. The alteration takes place at the upper or lower 
bound of a randomly selected range by adding or subtracting a small random 
number. Mutation intends to preserve the diversity of the population by 
expanding the search space into regions that may contain better solutions. 

2.3. Replace the current population with the newly formed population. 
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Stage 3: Repeat from stage 2 unless a termination condition is satisfied. Output the 
individual with the best fitness as the near to optimum solution. 

Each loop of the steps is called a generation. The entire set of iterations from population 
initialization to termination is called a run. At the termination of the process the algorithm 
promotes the “best-of-run” individual.  

3.2.3 Evaluation 

The individuals evolved by the GA are evaluated according to the newly devised fitness 
functions of AND or OR, specified as: 

 

1

1 1

( )*
AND l

i i i
i

F k

ub lb w
σ

=

= + +
⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

 (9) 

 
1

1 1l

i i
OR i

i i i

F k w
ub lbσ=

⎛ ⎞
= + + ∗⎜ ⎟−⎝ ⎠
∑  (10) 

where k represents the number of projects satisfying the conditional set, ki the number of 
projects satisfying only condition Ci, and σ, σi  are the standard deviations of the effort of the 
k and  ki projects, respectively. 
By using the standard deviation in the fitness evaluation we promote the evolved 
individuals that have their effort values close to the mean effort value of either the k projects 
satisfying S (AND case) or either the ki projects satisfying Ci (OR case). Additionally, the 
evaluation rewards individuals whose difference among the lower and upper range is 
minimal. Finally, wi in equations (9) and (10) is a weighting factor corresponding to the 
significance given by the estimator to a certain cost attribute.  
The purpose of the fitness functions is to define the appropriateness of the value ranges 

produced within each individual according to the ISBSG dataset. More specifically, when an 

individual is evaluated the dataset is used to define how many records of data (a record 

corresponds to a project with specific values for its cost attributes and effort) lay within the 

ranges of values of the individual according to the conditions used and the logical operator 

connecting these conditions. It should be noted at this point that in the OR case the 

conditional set is satisfied if at least one of its conditions is satisfied, while in the AND case 

all conditions in S must be satisfied. Hence, k (and σ) is unique for all ranges in the AND 

case, while in the OR case k may have a different value for each range i. That is why the 

fitness functions of the two logical operators are different. The total fitness of the population 

in each generation is calculated as the sum of the fitness values of the individuals in P.  

Once the GA terminates the best individual is used to perform effort estimation. More 

specifically, in the AND case we distinguish the projects that satisfy the conditional set used 

to train the GA, while in the OR case the projects that satisfy one or more conditions of the 

set. Next we find the mean effort value (ē) and standard deviation (σ) of those projects. If we 

have a new project for which we want to estimate the corresponding development effort, we 

first check whether the values of its attributes lay within the ranges of the best individual 

and that it satisfies the form of the conditional set (AND or OR). If this holds, then the effort 

of the new project is estimated to be: 
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 σ±= eepred  (11) 

where epred is the mean value of the effort of the projects satisfying the conditional set S. 

4. Experimental process 

This section explains in detail the series of experiments conducted and also presents some 
preliminary results of the methodology. The methodology was tested on the three different 
datasets described in the previous section. 

4.1 Design of the experiments  

Each dataset was separated into two smaller sub-datasets, the first of which was used for 
training and the second for validation. This enables the assessment of the generalization and 
optimization ability of the algorithm, firstly under training conditions and secondly with 
new, unknown to the algorithm, data. At first, a series of initial setup experiments was 
performed to define and tune the parameters of the GA. These are summarized in Table 1. 
The values for the GA parameters were set after experimenting with different generation 
epochs, as well as mutation and crossover rates and various number of points of crossover. 
A number of control parameters were modified for experimenting and testing the sensitivity 
of the solution to their modification. 
 

Category Value Details 

Attributes set { SAND, SOR }  

Solution 
representation 

L 
 

Generation size 1000 epochs  

Population size 100 individuals  

Selection  Roulette wheel based on fitness of each individual 

Elitism  Best individuals are forwarded (5%) 

Mutation Ratio 0.01-0.05 Random mutation 

Crossover Ratio 0.25-0.5 Random crossover (inter-, intra-) 

Termination 
criterion 

 
Generations size is reached or  
no improvements are noted for more than 100 
generations 

Table 1. Genetic Algorithm main parameters 

We then proceeded to produce a population of 100 individuals representing conditional sets 
S (or ranges of values coupled with OR or AND conditions), as opposed to the discrete 
values of the attributes found in the ISBSG dataset. These quantities, as shown in equations 
(2a) and (2b), were generated to cover a small range of values of the corresponding 
attributes, but are closely related to (or within) the actual values found in the original data 
series.  
Throughout an iterative production of generations the individuals were evaluated using the 
fitness functions specified in equations (9) or (10) with respect to the approach adopted. As 
previously mentioned, this fitness was assessed based on the: 

• Standard deviation  
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• Number of projects in L satisfying (7) and (8) 

• Ranges produced for the attributes 
Fitness is also affected by the weights given by the estimator to separate between more and 
less important attributes. From the fitness equations we may deduce that the combination of 
a high number of projects in L, a low standard deviation with respect to the mean effort and 
a small range for the cost attributes (at least the most significant) produces high fitness 
values. Thus, individuals satisfying these specific requirements are forwarded to the next 
population until the algorithm terminates. Figure 3 depicts the total fitness value of a 
sample population through generations, which, as expected, rises as the number of epochs 
increases. A plateau is observed in the range 50-400 epochs which may be attributed to a 
possible trapping of the GA to a local minimum. The algorithm seems to escape from this 
minimum with its total fitness value constantly being improved along the segment of 400-
450 epochs and then stabilizing. Along the repetitions of the GA algorithm execution, the 
total population fitness improves showing that the methodology performs consistently well. 
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Fig. 3. Total Fitness Evolution 

4.2 Experimental results 

The experimental evaluation procedure was based on both the AND and OR approaches. 
We initially used the attributes of the datasets with equal weight values and then 
subsequently with combinations of different weight values. Next, as the weight values were 
modified it was clear that various assumptions about the importance of the given attributes 
for software effort could be drawn. In the first dataset for example, the Adjusted Function 
Point (AFP) attribute was found to have a minimal effect on development effort estimations 
and therefore we decided to re-run the experiments without this attribute taking part. The 
process was repeated for all attributes of the dataset by continuously updating the weight 
values and reducing the number of attributes participating in the experiments, until no more 
insignificant attributes remained in the dataset.  The same process was followed for all the 
three datasets respectively, while the results summarized in this section represent only a few 
indicative results obtained throughout the total series of experiments. 
Tables 2 and 3 present indicative best results obtained with the OR and AND approaches, 
respectively, that is, the best individual of each run for a given set of weights (significance) 
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that yield the best performance with the first dataset (DS-1). Table 4 presents the best results 
obtained with the AND and OR approach with the second dataset (DS-2) and Table 5 lists 
the best obtained results with the third attribute dataset (DS-3).  
 

Attribute Weights / Ranges Evaluation Metrics 

FC AC CC EC ē σ HR 

0.1 0.4 0.1 0.4 

[11, 240] [1, 1391] [206, 1739] [14, 169]
3014.2 1835.1 81/179 

0.3 0.1 0.4 0.2 

[11, 242] [1, 1363] [60, 1498] [1, 350] 
3125.5 1871.5 81/184 

0.3 0.4 0.1 0.2 

[11, 242] [1, 1391] [1616, 2025] [14, 268]
3204.5 1879.2 81/187 

0.2 0.4 0.1 0.3 

[19, 298] [1, 1377] [1590, 3245] [14, 268]
3160.3 1880.7 81/178 

0.2 0.2 0.4 0.2 

[11, 240] [1, 1377] [46, 573] [1, 350] 
3075.1 1857.2 79/183 

0.2 0.4 0.2 0.2 

[3, 427] [1, 1377] [46, 579] [1, 347] 
3254.5 1857 83/191 

Table 2. Indicative Results of conditional sets using the OR approach and DS-1 

Evaluation metrics were used to assess the success of the experiments, based on (i) the total 

mean effort, (ii) the standard deviation and, (iii) the hit ratio. The hit ratio (given in equation 

(12)) provides a complementary piece of information about the results. It basically assesses 

the success of the best individual evolved by the GA on the testing set. Recall that the GA 

results in conditional set of value ranges which are used to compute the mean effort and 

standard deviation of the projects satisfying the conditional set. Next, the number of projects 

n in the testing set that satisfy the conditional set is calculated. Of those n projects we 

compute the number of projects b that have additionally a predicted effort value satisfying 

equation (11). The latter may be called the “hit-projects”. Thus, equation (12) essentially 

calculates the ratio of hit-projects in the testing set:  

 ( )
b

hit ratio HR
n

=  (12) 

The results are expressed in a form satisfying equations (3)-(8). A numerical example could 
be a set of range values produced to satisfy equations (2a) and (2b) coupled with the logical 
operator of AND as follows: 

 [1700, 2000] [16, 205] ... [180 200]
AND
S = ∧ ∧ ∧  (13) 

The projects that satisfy equation (7) are then accumulated in set L (numbers represent 
project IDs): 

 L={1827, 1986, 1987,…,1806} (14) 

www.intechopen.com



 Tools in Artificial Intelligence 

 

14 

Using L the ē, σ and HR figures may be calculated. The success of the experiments is a 
combination of the aforementioned metrics. Finally, we characterize an experiment as 
successful if its calculated standard deviation is adequately lower than the associated mean 
effort and achieves a hit ratio above 60%. 
Indicative results of the OR conditional sets are provided in Table 2. We observe that the OR 
approach may be used mostly for comparative analysis of the cost attributes by evaluating 
their significance in the estimation process, rather the estimation itself, as results indicate 
low performance. Even though the acceptance level of the hit ratio is better than average, the 
high value of the standard deviation compared to the mean effort (measured in person 
days) indicates that the results attained are dispersed and not of high practical value. The 
total mean effort of the best 100 experiments was found equal to 2929 and the total standard 
deviation equal to 518. From these measures the total standard error was estimated at 4.93, 
which is not satisfactory, but at the same time it cannot be considered bad. However, in 
terms of suggesting ranges of values for specific cost attributes on which one may base an 
estimation, the results do not converge to a clear picture. It appears that when evaluating 
different groups of data in the dataset we attain large dissimilarities, suggesting that 
clustered groups of data may be present in the series. Nevertheless, various assumptions 
can be drawn from the methodology as regards to which of the attributes seem more 
significant and to what extent. The selected attributes, namely Added Count (AC), File 
Count (FC), Changed Count (CC) and Enquiry Count (EC) seem to have a descriptive role 
over effort as they provide results that may be considered promising for estimating effort. 
Additionally, the best results of Table 2 (in bold) indicate that the leading factor is Added 
Count (AC), with its significance being ranked very close to that of the File Count (FC). 
 

Attribute Weights / Ranges Evaluation Metrics 

FC AC CC ē σ HR 

0.1 0.2 0.7 

[22, 223] [187, 504] [9, 195]
3503 1963.6 3/4 

0.5 0.3 0.2 

[22, 223] [114, 420] [9, 197]
3329.4 2014.2 3/4 

0.2 0.4 0.4 

[14, 156] [181, 489] [9, 197]
3778.8 2061.4 3/4 

0.4 0.4 0.2 

[22, 223] [167, 390] [9, 195]
3850.3 2014.3 3/4 

0.2 0.8 0 

[14, 154] [35, 140] 0 
2331.2 1859.4 12/16

0.7 0.3 0 

[14, 152] [35, 141] 0 
2331.2 1859.4 12/16

Table 3. Indicative Results of conditional sets using the AND approach with DS-1  

On the other hand, the AND approach (Table 3) provides more solid results since it is based 

on a more strict method (i.e. satisfy all ranges simultaneously). The results indicate again 

some ranking of importance for the selected attributes. To be specific, Added Count (AC) 
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and File Count (FC) are again the dominant cost attributes, a finding which is consistent 

with the OR approach. We should also note that the attribute Enquiry Count (EC) proved 

rather insignificant in this approach, thus it was omitted from Table 3. Also, the fact that the 

results produced converge in terms of producing similar range bounds shows that the 

methodology may provide empirical indications regarding possible real attribute ranges. A 

high hit ratio of 75% was achieved for nearly all experiments in the AND case for the 

specified dataset, nevertheless this improvement is obtained with fewer projects, as 

expected, satisfying the strict conditional set compared to the more loose OR case. This led 

us to conclude that the specific attributes can provide possible ranges solving the problem 

and providing relatively consistent results. 

The second dataset (DS-2) used for experimentation included the Normalized AFP (NAFP) 

and some of the previously investigated attributes for comparison purposes. The dataset 

was again tested using both the AND and OR approaches. The first four rows of the results 

shown in Table 4 individuals were obtained with the AND approach and the last two results 

with the OR approach. The figures listed in Table 4 show that the method ‘approves’ more 

individuals (satisfying the equations) because the ranges obtained are wider. Conclusively, 

the values used for effort estimation result to increase of the total standard error. The best 

individuals (in bold) were obtained after applying box-plots in relation to the first result 

shown, while the rest two results did not use this type of filtering. It is clear from the 

lowering of the value of the standard deviation that after box-plot filtering on the attributes 

some improvement was indeed achieved.  Nevertheless, the HR stays quite low, thus we 

cannot argue that the ranges of values produced are robust to provide new effort estimates.  

 

Attribute Weights  / Ranges Evaluation Metrics 

NAFP AC FC EC ē σ HR 

0.25 0.25 0.25 0.25 

[2, 134] [215, 1071] [513, 3678] [4, 846] 
11386.7 9005.4 9/58 

0.25 0.25 0.25 0.25 

[7, 80] [34, 830] [88, 1028] [37, 581] 
2861.7 2515.9 7/66 

0.25 0.25 0.25 0.25 

[1,152] [22, 859] [58, 3192] [20, 563] 
3188.6 2470.9 3/221 

0.25 0.25 0.25 0.25 

[1, 156] [34, 443] [122, 2084] [37, 469] 
3151.6 2377.9 4/139 

0.25 0.25 0.25 0.25 

[1, 36] [449, 837] [23, 1014] [7, 209] 
4988.5 8521.2 10/458 

0.25 0.25 0.25 0.25 

[1, 159] [169, 983] [78, 928] [189, 567]
4988.5 8521.2 10/458 

Table 4. Indicative Results of conditional sets using the AND and OR approaches with DS-2 

The purpose of the final dataset (DS-3) used in the experiments is to test whether a selected 

subset of attributes that can be measured early in the development life-cycle can provide 

adequately good predictions. Results showed that the attributes of Adjusted Function Points 
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(AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level (RL) and 

Average Team Size (ATS) may provide improvements for selecting ranges with more 

accurate effort estimation abilities. For these experiments only the AND approach is 

presented as the results obtained were regarded to be more substantial. In the experiments 

conducted with this dataset (DS-3) we tried to impose even stricter ranges, after the box-

plots and outlier’s removal in the initial dataset, by applying an additional threshold to 

retain the values falling within the 90% (percentile). This was performed for the first result 

listed in Table 5, whereas the threshold within the 70% percentile was also applied for the 

second result listed on the same table. We noticed that this led to a significant optimization 

of the results. Even though very few individuals are approved, satisfying the equations, the 

HR is almost always equal to 100%. The obtained ranges are more clearly specified and in 

addition, sound predictions can be made regarding effort since the best obtained standard 

deviation of effort falls to 74.9 which also constitutes one of the best predictions yielded by 

the methodology. This leads us to conclude that when careful removal of outliers is 

performed the proposed methodology may be regarded as achieving consistently successful 

predictions, yielding optimum ranges that are adequately small and suggesting effort 

estimations that lay within reasonable mean values and perfectly acceptable deviation from 

the mean. 

 

Attribute Weights / Ranges Evaluation Metrics 

AFP PDRU PET RL ATS ē σ HR 

0.2 0.2 0.2 0.2 0.2 

[48, 1207] [1, 7] [3, 12] [1, 3] [2, 5] 
2657.6 913.7 3/3 

0.2 0.2 0.2 0.2 0.2 

[57, 958] [2, 13] [5, 10] [2, 4] [1, 6] 
2131.0 74.9 2/2 

0.2 0.2 0.2 0.2 0.2 

[133, 1409] [1, 25] [7, 21] [2, 4] 
[2, 
10] 

2986.6 1220.0 5/5 

0.2 0.2 0.2 0.2 0.2 

[173, 1131] [1, 20] [2, 20] [2, 4] [1, 7] 
2380.0 434.5 2/3 

0.25 0.25 0 0.25 0.25 

[189, 1301] [2, 26] 0 [1, 3] 
[2, 
11] 

2477.8 838.2 5/5 

0.25 0.25 0 0.25 0.25 

[693, 1166] [2, 23] 0 [1, 3] [1, 4] 
2478.0 565.6 2/2 

Table 5. Indicative Results of conditional sets using the AND approach with DS-3 

5. Conclusions 

In this approach we aimed at addressing the problem of large variances found in available 

historical data that are used in software cost estimation. Project data is expensive to collect, 

manage and maintain. Therefore, if we wish to lower the dependence of the estimation to 
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the need of gathering accurate and homogenous data, we might consider simulating or 

generating data ranges instead of real crisp values.  

The theory of conditional sets was applied in the present work with Genetic Algorithms 

(GAs) on empirical software cost estimation data. GAs are ideal for providing efficient and 

effective solutions in complex problems; there are, however, several trade-offs. One of the 

major difficulties in adopting such an approach is that it requires a thorough calibration of 

the algorithm’s parameters. We have tried to investigate the relationship between software 

attributes and effort, by evolving attribute value ranges and evaluating estimated efforts. 

The algorithm promotes the best individuals in the reproduced generations through a 

probabilistic manner. Our methodology attempted to reduce the variations in performance 

of the model and achieve some stability in the results. To do so we approached the problem 

from the perspective of minimizing the differences in the ranges and the actual and 

estimated effort values to decisively determine which attributes are the most important in 

software cost estimates.  

We used the ISBSG repository containing a relatively large quantity of data; nevertheless, 

this data suffers from heterogeneity thus presents low quality level from the perspective of 

level of values. We formed three different subsets selecting specific cost attributes from the 

ISBSG repository and filtering out outliers using box-plots on these attributes. Even though 

the results are of average performance when using the first two datasets, they indicated 

some importance ranking for the attributes investigated. According to this ranking, the 

attributes Added Count (AC) and File Count (FC) were found to lay among the most 

significant cost drivers for the ISBSG dataset. The third dataset included Adjusted Function 

Points (AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level 

(RL) and Average Team Size (ATS). These attributes may be measured early in the software 

life-cycle, thus this dataset may be regarded more significant than the previous two from a 

practical perspective. A careful and stricter filtering of this dataset provided prediction 

improvements, with the yielded results suggesting small value ranges and fair estimates for 

the mean effort of a new project and its deviation. There was also an indication that within 

different areas of the data, significantly different results may be produced. This is highly 

related to the scarcity of the dataset itself and supports the hypothesis that if we perform 

some sort of clustering in the dataset we may further minimize the deviation differences in 

the results and obtain better effort estimates.  

Although the results of this work are at a preliminary stage it became evident that the 

approach is promising. Therefore, future research steps will concentrate on ways to improve 

performance, examples of which may be: (i) Pre-processing of the ISBSG dataset and 

appropriate clustering into groups of projects that will share similar value characteristics. (ii) 

Investigation of the possibility of reducing the attributes in the dataset by utilizing a 

significance ranking mechanism that will promote only the dominant cost drivers. (iii) 

Better tuning of the GA’s parameters and modification/enhancement of the fitness functions 

to yield better convergence. (iv) Optimization of the trial and error weight factor assignment 

used in the present work by utilizing a GA. (v) Experimentation with other datasets 

containing selected attributes again proposed by a GA. Finally, we plan to perform a 

comparative evaluation of the proposed approach with other well established algorithms, 

like for example the COCOMO model.  
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