
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

19

Design of an Efficient Genetic Algorithm to
Solve the Industrial Car Sequencing Problem

A. Zinflou1, C. Gagné2 and M. Gravel2

1 Département des sciences appliquées, Université du Québec à Chicoutimi,
2 Département d’informatique et de mathématique, Université du Québec à Chicoutimi,

1,2Canada

1. Introduction

In many industrial sectors, decision makers are faced with large and complex problems that
are often multi-objective. Many of these problems may be expressed as a combinatorial
optimization problem in which we define one or more objective functions that we are trying
to optimize. Thus, the car sequencing problem in an assembly line is a well known
combinatorial optimization problem that cars manufacturers face. This problem involves
scheduling cars along an assembly line composed of three consecutive shops: body welding
and construction, painting and assembly. In the literature, this problem is most often treated
as a single objective problem and only the capacity constraints of the assembly shop are
considered (Dincbas et al., 1988). In this workshop, each car is characterized by a set of
different options and the workstations where each option is installed are designed to handle
a certain percentage of cars requiring the same options. To smooth the workload at the
critical assembly workstations, cars requiring high work content must be dispersed
throughout the production sequence. Industrial car sequencing formulation subdivides the
capacity constraints into two categories, that are the capacity constraints linked to the high-
priority options and the capacity constraints linked to the low-priority options.
However, the reality of industrial production does not only take into account the assembly
shop requirements. The industrial formulation proposed by French automobile
manufacturer Renault, in the context of the ROADEF 2005 Challenge, also takes into account
the paint shop requirements. In this workshop, the minimization of the amount of solvent
used to purge the painting nozzles for colour changeovers, or when a known maximum
number of vehicle bodies of the same colour have been painted, is an important objective to
consider. Indeed, long sequences of cars of the same colour tend to render visual quality
controls inaccurate. To ensure this quality control, the number of cars of the same colour
must not exceed an upper limit.
The industrial car sequencing problem (ICSP) is thus a multi-objective problem in nature,

with three conflicting objectives to minimize. In the assembly shop, one tries to minimize

the number of violations of capacity constraints related to high-priority options (HPO) and

to low-priority options (LPO). In the paint shop, one tries to minimize the number of colour

changes (COLOUR). In the 2005 ROADEF Challenge, the Renault automobile manufacturer

proposes to tackle the problem by treating the three objectives lexicographically. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Advances in Evolutionary Algorithms

378

Among the resolution methods proposed by the participants of the challenge, one finds
essentially neighbourhood search methods as simulated annealing, iterative tabu search,
iterative local search and variable neighbourhood search (Briant et al., 2007; Cordeau et al.,
2007; Estellon et al., 2007; Ribiero et al., 2007a; Gavranović, 2007; Benoist, 2007), an ant colony
optimization algorithm (ACO) (Gagné et al., 2006) and a genetic algorithm (GA) (Jaszkiewicz
et al., 2004). Since the work of all the participating teams was not published, the previous
enumeration is not exhaustive. After the challenge, other authors proposed to solve the
problem using an integer linear programming model (Estellon et al., 2005; Gagné et al., 2006;
Prandtstetter and Raidl, 2007), an algorithm hybridizing variable neighbourhood search and
integer linear programming (Prandtstetter and Raidl, 2007) or an iterative local search
approach (Ribeiro et al., 2007b).
One may note that few authors proposed GAs to solve this multi-objective problem, except
for Jaszkiewicz et al. (Jaszkiewicz et al., 2004). Moreover, this team was not amongst the
twelve finalists of the 2005 ROADEF Challenge that included 55 teams from 15 countries at
the beginning. As for the ICSP, one may only find the GAs proposed by Warwick and Tsang
(1995), Terada et al. (2006) and Zinflou et al. (2007) in the literature for the standard version
of the car sequencing problem. Among them, only Zinflou et al. (2007) succeeded in
proposing an efficient GA, suggesting that this metaheuristic is not well suited to deal with
the specificities of this problem.
The main purpose of this chapter is to show that GAs can be efficient approaches for solving
the ICSP when the different mechanisms of the algorithm are specially design to deal with
the specificities of the problem. To achieve this, we present the different choices made
during the design of the genetic operators. In particular, we propose two new crossover
operators dedicated to the multi-objective characteristic of the problem. The performance of
the proposed approaches is assessed experimentally using the different instances of the 2005
ROADEF Challenge and compared with the best results obtained during the challenge.
This chapter is organized as follows: Section 2 briefly defines the industrial car sequencing
problem and Section 3 describes the new crossover operators proposed for this multi-
objective problem. The basic features of the proposed GA are presented in Section 4.
Section 5 is dedicated to computational experiments and comparisons with previous results
from literature. Finally, the conclusion of this research work is given in Section 6.

2. The industrial car sequencing problem

This section provides the main elements to describe the ICSP. The reader may consult
Nguyen & Cung (2005) and Solnon et al. (2007) for a complete description of the problem.
On each production day, customer orders are sent in real time to the assembly plant. The
daily task of the planners is then: (1) to assign a production day to each ordered vehicle,
according to production line capacities and delivery dates that were promised to customers;
and (2) to schedule the cars within each production day while satisfying as many of the
requirements as possible of the three manufacturing workshops, as illustrated in Figure 1.
The sequence thus found is then applied to the whole assembly line.
In the definition of ICSP proposed during the 2005 ROADEF Challenge, the Renault car
manufacturer stated that technologies used in the plants are such that the body shop does
not set requirements for the daily schedule. The ICPS then consists in scheduling a set of
cars (Nb_cars) for a production day taking into consideration the paint shop and assembly
shop requirements.

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

379

Body Paint Assembly

Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005)

In the paint shop, production scheduler tries to group cars by paint colour to minimize the
number of colour changes. Painting nozzles must be purged with solvent when changing
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure
quality. Each purge requires a colour change. Then, each solution with more consecutive
cars than rlmax to be painted the same colour must be considered unfeasible.
In the assembly shop, many elements are added to the painted body to complete the car
assembly. Each car is characterized by a set of different options O for which the
workstations, where these options are installed, are designed to handle up to a certain
percentage of the cars requiring the same options. These capacity constraints may be
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must
include at most r cars with option o. Cars requiring the same configuration of options must
be dispersed throughout the production sequence to smooth out the workload at various
critical workstations. If, for a subsequence of length s, it is impossible to satisfy the capacity
constraint for option o, the number of cars that exceeds r defines what is called conflicts or
violations. As mentioned previously, the ICSP subdivides the capacity constraints of the
assembly shop into two groups; the constraints related to the high-priority options and
those related to the low-priority options. In this shop, production scheduler tries to
optimize two different objectives: the number of capacity constraint violations related to the
high-priority options (HPO) and the number of capacity constraints violations related to the
low-priority options (LPO).
We choose to cluster the cars requiring the same configuration of high-priority and low-
priority options into V car classes, for which we know the exact number to produce (cv).
These quantities represent the production constraints of the problem. Table 1(a) shows an
example of the industrial problem for producing 25 cars (Nb_cars) having 5 options (O) with
6 car classes (V) and a possibility of 4 different colours across each class. One defines a
production sequence Y by two vectors representing respectively the car classes (Classes) and
the car colour codes (Colours) as shown in Figure 1(b). A production sequence will be
designated by Y = {Classes/Colours} in the remainder of the chapter and the element at
position i of the sequence will be defined by Y(i) = Classes(i)/Colours(i).
Another interesting feature of the ICSP is that it links the different production days. Thus,
the evaluation of a solution must take into account the end of the previous production day
and must extrapolate the minimum number of conflicts generated with the next production
day. Similarly, a colour change will be added if the colour of the first car of the current day
is different from the colour of the last car of the previous day.
To evaluate the number of conflicts for each option, we first construct binary matrix S of size
O * Nb_cars using solution vector Y. We have Soi = 1 if the class of car assigned to position i
of the solution vector requires option o, otherwise it is equal to 0. The decomposition of the

www.intechopen.com

 Advances in Evolutionary Algorithms

380

Classes vector of solution Y from Table 1 into its different options to obtain S is given in
Table 2. In Table 2(a), we also report the end of the previous production day sequence to
allow to evaluate the number of conflicts related to the link of these two production days. In
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any
option.

 Class #

o r s 1 2 3 4 5 6

1 1 2 0 1 1 0 0 0

2 2 5 1 0 1 0 1 1

3 1 3 0 1 0 0 0 0

4 3 5 0 0 0 1 0 1

5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4

1 2 1 1 2 1 1

2 1 1 0 2 1 1

3 1 3 2 0 0 2

C
o
l

 o #
u
r 4 1 0 1 0 1 0

(a)

Y 1 2 3 4 5 6 ….. 21 22 23 24 25

Classes 3 5 5 4 6 4 3 1 4 5 1

Colours 4 4 2 2 2 2 3 3 1 1 1

(b)

Table 1. Example and solution of an ICSP

 Previous day (D-1) Current day (D)

Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ………

Classes 4 1 4 4 2 3 5 5 4 6 4

1/2 0 0 0 0 1 1 0 0 0 0 0

2/5 0 1 0 0 0 1 1 1 0 1 0

1/3 0 0 0 0 1 0 0 0 0 0 0

3/5 1 0 1 1 0 0 0 0 1 1 1

O
P
T
I
O
N

2/3 0 0 0 0 1 1 1 1 0 0 0

(a)

 Current day (D) Next day (D+1)

Positions …. 21 22 23 24 25 26 27 28 29 30

Classes 3 1 4 5 1

1/2 1 0 0 0 0 0 0 0 0 0

2/5 1 1 0 1 1 0 0 0 0 0

1/3 0 0 0 0 0 0 0 0 0 0

3/5 0 0 1 0 0 0 0 0 0 0

O
P
T
I
O
N

2/3 1 0 0 1 0 0 0 0 0 0

(b)

Table 2. Evaluation of the solution shown in Table 1

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

381

For the current production day D, options 1, 3 and 4 do not cause any violation in this part
of the solution. Indeed, for each of these three options, we never have a subsequence of size
s, with more than r cars with the option. However, for option 2, there are two conflicts
located between positions 1 to 5 since we have 4 cars having the option while the capacity
constraint limits the maximum to 2. In addition, there is one conflict located between
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between
positions 21 to 25, since capacity constraint 2/5 is not satisfied. For option 5, we also have
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.
For the link with previous production day D-1, we have one conflict located between positions
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for
option 2, and another conflict between positions -1 to 2 for option 5. For the link with next
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO
objective for this solution Y. Then, we only have to count the number of colour changes
(COLOUR) to complete the evaluation of solution Y.
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method
that assigns different weights w1, w2 and w3 to each objective according to their priority
level, in order to evaluate a solution Y. The quality of solution Y is then given by:

 F(Y)=w1*obj1+w2*obj2+w3*obj3 (1)

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on
each objective according to the priority level assigned. The weights w1, w2 and w3 are
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different
configurations of the Renault plants, the three following objective hierarchies are possible:
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO.

3. Introducing problem knowledge in crossover design for the industrial car
sequencing problem

Traditional crossover operators are not well suited to deal with the specificities of the car
sequencing problem. Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such
operators to solve the single objective car sequencing problem found in the literature and
their results were not competitive. However, Zinflou et al. (2007) obtained very competitive
results using two highly-specialized crossover operators for the same problem.
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence
preserving crossover. Basically, the purpose of this operator is to create an offspring using
the common maximum subsequence of the indices of the groups in two given solutions
(parents). However, even if the results of this approach are promising, they did not allow
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge.
The crossover operators proposed by Zinflou et al. (2007) for the single objective car
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and
IBX crossovers to use problem-knowledge is called interest. The idea behind this concept is
to penalize the conflicting car classes, by counting the number of new conflicts caused by the
addition of these classes as a cost. Conversely, if the addition of a car class does not cause

www.intechopen.com

 Advances in Evolutionary Algorithms

382

new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated
cars by emphasizing non conflict position information from both parents. The IBX crossover,
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with
one of the two parents. For more details about these two crossover operators, the reader
may consult Zinflou et al. (2007).
The following sections will show how to adapt the two NCPX and IBX crossover operators
to the multi-objective ICSP.

3.1 Adaptation of the interest calculation for the industrial car sequencing problem

To present the different adaptation of the crossover operators, we must redefine the interest
concept to be able to take into account the multi-objective nature of the ICSP. We define the
total weighted interest (TWI) to establish if it is interesting to add a car of class v, of colour
colour at a position i in the sequence. The total weighted interest is expressed by:

 + + TWI I * w I * w I * w
v,i,HPO HPO v,i,COLOUR COLOUR v,i,LPO LPOv,colour,i

= (2)

where wHPO, wCOLOUR and wLPO correspond respectively to the weight of each objective
(1000000, 1000 or 1 according to their priority levels) and Iv,i,HPO, Iv,i,COLOUR and Iv,i,LPO
correspond to the interest in inserting a car of class v at the position i for each objective. The
interest concept may be defined according to each objective.
According to Equation 3, the interest Iv,i,COLOUR to insert a car of class v at position i to

minimize objective COLOUR is set at 1 if it is possible to complete the current colour

subsequence with a car of class v. If it isn’t possible, the interest is set to -1.

 (1) max

, ,

 1 if () 0 & _

1 otherwise

colour i

v i COLOUR

nb v run length rl
I

−
⎧ > <⎪=⎨
⎪−⎩

 (3)

nb(vcolour(i-1)) indicates the number of cars of class v painted the same colour as the car in

position i-1, run_length indicates the size of the consecutive subsequence of cars of the same

colour as the car in position i-1 and rlmax indicates the maximum length of a subsequence of

the same colour. This notion serves to favour the classes of cars that have the same colour as

the car located in the previous position, to lengthen the colour subsequence to the maximum

size. Conversely, we penalize the car classes for which the addition implies a colour change.

Iv,i,HPO and Iv,i,LPO indicate the interest to insert a car of class v at position i in the sequence to

minimize objectives HPO and LPO respectively. According to Equation 4, the interest

corresponds to the difficulty for class v if the addition of this class does not cause new

conflicts respectively on high-priority options (k = HPO) and on low-priority options (k =

LPO). In the opposite case, we will define the cost that corresponds to the number of new

conflicts produced on the high-priority or low-priority options, to discourage the insertion

of this class at position i.

, , ,

, ,

, ,

if 0

 otherwise

v k v i k

v i k

v i k

D N bN ewC onflicts
I

NbN ew Conflicts

⎧ =⎪= ⎨
⎪−⎩

(4)

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

383

NbNewConflictsv,i,k corresponds to the number of new conflicts for the high-priority options
(k = HPO) or for the low-priority options (k = LPO) caused by the addition of a car of class v
at position i. Dv,k indicates the difficulty of class v for high-priority options (k = HPO) and
for low-priority options (k = LPO). The idea behind this concept is simply to penalize the
classes of cars for which the addition leads to additional conflicts for the high-priority or
low-priority options, on considering this number of new conflicts as a cost. Conversely, if
the addition of a class does not cause new conflicts on the options, we then evaluate the
benefit of placing this class according to its difficulty. Gottlieb et al. (2003) established that
the difficulty of a class of cars v for high-priority or low-priority options (Dv,k) is the sum of
the utilization rates of the high-priority options (k = HPO) or low-priority options (k = LPO)
that compose that class. The utilization rate of an option may be expressed as the ratio
between the number of cars requiring this option and the maximum number of cars that
may have this option such that the ro/so constraint is satisfied.

3.2 The multi-objective NCPX crossover operator (NCPX
MO

)

The NCPXMO procedure for the ICSP is inspired by the NCPX crossover proposed for the
single objective car sequencing problem (Zinflou et al., 2007) and is carried out in two main
steps. Step 1 consists of selecting a parent P1 and establishing in this chromosome the
number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR). Then,
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO,
COLOUR). These three numbers are used to determine, for each objective k, the number of
"good" genes that will maintain in offspring E1 the same position they had in P1. To take
into account the priority of the objectives, we must make sure that the number of "good"
genes kept for the main objective is greater or equal to the number of "good" genes selected
for the secondary objective, and so forth. Once we establish these numbers, starting position
(sPos) that is between 1 and Nb_cars, is randomly selected in the offspring to be created. The
process of copying the good genes of P1 to the offspring being created starts from sPos by
first considering the main objective. If we reach the end of the chromosome and the number
of genes copied for objective k is less than its corresponding nbgk, the copy process restarts
this time from the beginning of the offspring up to sPos-1. The same process is repeated for
the other objectives, taking into account the already copied genes. Thereafter, the remainder
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be
placed. We then randomly determine a position (Pos) from which the remaining positions
of chromosome E1 will be completed.
In Step 2, the cars in L are sorted according to their TWI. In case of a tie in TWI, if one of the
cars is in P2 at the position to be completed, this car is then selected. In the opposite case,
we randomly select a car amongst those of equal ranking.
The operation of this cross operator is illustrated in Figure 2 for two parents P1 =
{21352446/62224622} and P2 = {32621454/26242622} with the following objective hierarchy
HPO-LPO-COLOUR. Let us assume that the evaluation of P1 gives 5 positions without
conflicts for objective HPO and for objective LPO (expressed by 0 in vectors “conflicts on
HPO and LPO” below chromosome P1), 4 positions where there is no colour change
(expressed by 0 in vector the “colour changes” below chromosome P1) and the values for
numbers nbgHPO = 4, nbgLPO =2, nbgCOLOUR =1 and sPos = 3 by random setting. Starting with
sPos and considering objective HPO, we may copy genes 5/2, 4/6, 4/2 and 2/6 in the

www.intechopen.com

 Advances in Evolutionary Algorithms

384

offspring. Repeating the same procedure with LPO, one notes that the three good genes 5/2,
4/2 and 2/6 are already transferred to the offspring, that corresponds to the number of good
genes to transfer for this objective. Also, the two good genes 5/2 and 2/6 are already
present in the offspring for the COLOUR objective, that corresponds to the number of good
genes to transfer for this objective. Genes 1/2, 3/2, 2/4 and 6/2 of P1 are then used to
constitute non-orderly list L. In Step 2, assuming that Pos = 7 and that the TWI calculation
places the genes in the order 3/2, 2/4, 6/2, 1/2 with equal TWI value on genes 2/4 and 6/2.
We then place 3/2 gene in position 8 and favour placing gene 6/2 in position 3 since it
occupies this position in P2 and genes 2/4 and 1/2 are placed in positions 2 and 5
respectively. In this example, genes 1/2 and 6/2 are directly inherited from P2 since they
have the same position in the second parent. The offspring produced from P1 and P2 is then
E1= {22651443/64222622}.
A second offspring is created similarly, this time starting with parent P2.

Fig. 2. Schematic of the NCPXMO crossover

3.3 The multi-objective IBX crossover operator (IBX
MO

)

The IBXMO crossover procedure for the ICSP is inspired by the functioning of the IBX for the
single objective car sequencing problem (Zinflou et al., 2007) and proceed in three main
steps. Step 1 consists in randomly determining two cut-off points for both parents P1 and P2.
Once these temporary cut-off points are determined, the colours of the preceding cars at the
1st cut-off point and the colour of the cars immediately after the 2nd cut-off point in P1 are
verified so as not to interrupt an ongoing colour subsequence. As long as the colour of the
cars located before the 1st cut-off point is the same as the colour of the car located at the cut-
off point, we move the cut-off point to the left. Inversely, as long as the colour of the car at
the 2nd cut-off point is identical to the colour of the car after that cut-of point, we move the
2nd cut-off point to the right.
In Figure 3, once the cut-off points are set for both parents P1 = {22351446/46222622} and P2
= {32421465/24662222}, the genes subsequence {351/222} included between the two cut-off

points of the first parent (a1 ∈ P1) is directly recopied in the offspring. Thereafter, two non-

 2 1 3 5 2 4 4 6

 3 2 6 2 1 4 5 4

P1

P2

 0 0 1 0 1 0 0 1

 1 0 0 0 0 0 1 1

sPos

 Step 1 2 5 4 4 Step 2

L=

Pos

 2 6 1 3 2 5 4 4

E1 E1

 1 0 0 0 0 0 0 1

 2 6 2 4 2 6 2 2

 0 1 0 0 0 1 0 1

Conflicts on HPO

Conflicts on LPO

 6 2 2 2 4 6 2 2

Classes

Colours

Classes

Colours

 1 1 1 1 1 1 1 0

 0 1 0 0 1 1 1 0 Colour changes

 6 2 6 2 4 2 2 2 6 2 6 2

L= 1/2, 3/2, 2/4, 6/2 3/2, 2/4, 6/2, 1/2

Conflicts on HPO

Conflicts on LPO

Colour changes

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

385

orderly lists (L1 and L2) are created from subsequence b3 = {32/24} and b4 = {465/222} of P2
and will be used to complete the beginning and the end of offspring E1. However, during
this operation, part of the information may be lost by the addition of duplicates. One effect
of this process is that the production requirements will not always be satisfied. In the
example in Figure 3, we may thus notice that the production constraints for the 2, 3, 4 and 5
car classes are no longer met. To restore all the genes and to produce exactly cv cars of the v
class, replacement of genes 3/2 and 5/2 (obtained from a1-a2) whose number exceeds the
production constraints are replaced by genes 4/6 and 2/6 (obtained from a2-a1) whose
number is now lower than the production constraints. This replacement is done randomly
in the second step to adjust the L1 and L2 lists.

Fig. 3. Schematic of the IBXMO crossover

Finally, the last step consists in rebuilding the beginning and the end of the offspring using
the two corrected lists L1 and L2 by using TWI as defined in Equation 2. In both cases, the
reconstruction starts from the cut-off point towards the beginning or the end of the
offspring, depending on the situation. For example, we calculate the TWI for each car ∈ L1
to reconstruct the beginning of the offspring. The car class v to place is then chosen
deterministically in 95% of the cases and in the remaining 5% of the cases the car class v to
be placed is chosen probabilistically using the roulette wheel principle (Goldberg, 1989). The
second vector of the solution for this position is then completed by the colour associated to
this class. We then remove this class from list L1 and restart the calculations for the next
position. The same process is repeated to reconstruct the end of the offspring from list L2.
A second offspring is created by using the same process, but this time starting from parent
P2.

4. Genetic algorithm for the industrial car sequencing problem

In this section, we present the complete description of the genetic algorithm (GA) used to
solve the multi-objective ICSP.

2 4 6 6 2 2 2 2

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

 3 5 1

L1=

L2=

L1=

L2=

 3 5 1

2 4 3 5 1 6 4 2

Step 1 Step 2

Step 3

E1

b3 b4

b1 b2 a1

a2

E1

E1

2 4 6 6 2 2 2 2

4 6 2 2 2 6 2 2

6 6 2 2 2 2 2 4

2 2 2 2 2 2

Classes

Colours

Classes

Colours

2 2 3 5 1 4 4 6

3 2 4 2 1 4 6 5

4 6 2 2 2 6 2 2

Temporary cut points Final cut points

P1

P2 3/2, 2/4

4/2, 6/2, 5/2

4/6, 2/4

4/2, 6/2, 2/6

www.intechopen.com

 Advances in Evolutionary Algorithms

386

4.1 Representation of the chromosome

As shown previously in Table 1(b), instead of choosing classical bit-string encoding, that

seems ill-suited for this type of problem, a chromosome is represented using two vectors of

size Nb_cars corresponding respectively to the class and the colour of the car.

4.2 Creating the initial population

In the proposed implementation, the individuals of the initial population are generated in

two ways: 70 % randomly and 30 % using a greedy heuristic based on the concept of

interest. Two greedy heuristics are used according the main objective. If the main objective

is to minimize the number of colour changes (COLOUR), the greedy heuristic used is

greedy_colour. If the main objective is to minimize the number of conflicts on high-priority

options (HPO), the greedy heuristic used is greedy_ratio. Figure 4 resumes the operation of

these two heuristics. Notice that in both cases, one ensures that the individuals produced

are feasible solutions.

 greedy _colour heuristic greedy_ratio heuristic

1: Start with an individual Y consisting of the D-1
production day cars

2 : i=1 ; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length < rlmax and there remain cars with

previous_colour then
6: colour = previous_colour
7: run_lenght ++
8: Else
9: Choose randomly previous_colour ≠ colour
10: run_length = 1
11: End If
12: Restricted the choice to the m car classes having the

selected colour
13: For each of these m car classes
14: Evaluate the interest Iv,i,COLOUR of adding a car

class v at position i
15: End For
16: Choose randomly a number rnd between 0 and 1
17: If rnd < 0.95 then
18: Choose car class v according to Arg Max

{Iv,i,COLOUR}
19: In case of a tie, choose car class v randomly
20: Else
21: Choose v using the roulette wheel principle
22: End If
23: Y(i) = v / colour
24 : i=i+1
25: End While

1: Start with an individual Y consisting of the D-1
production day cars

2 : i=1; run_length =1
3 : previous_colour = Colours(-1)
4: While there are cars to place
5: If run_length = rlmax then

6: Exclude the cars for which colour= previous_colour
from the candidates cars list

7: End If
8: For each candidate car class v
9: Evaluate the interest Iv,i,HPO of adding a car class v

at position i
10: End For
11: Choose randomly a number rnd between 0 and 1
12: If rnd < 0.95 Then
13: Choose class v according to Arg Max {Iv,i,HPO}
14: In case of a tie, break the tie lexicographically by

using the interest of the second objective and then
the third objective (Iv,i,LPO or Iv,i,COLOUR). In case of
ties for the 3 objectives, choose a class randomly

15: Else
16: Choose car class v using the roulette wheel

principle
17: End If
18: For the selected car class v, choose colour with Arg

Max {Iv,i,COLOUR}. In case of a tie, choose colour
randomly

19: Y(i) = v / colour
20: If run_length = rlmax OR colour ≠ previous_colour then
21: run_length= 1
22 : Else
23 : run_length= run_length +1
24 : End If
25 : previous_colour=colour
26 : i=i+1
27: End While

Fig. 4. Greedy construction of an individual us the greedy_colour or greedy_ratio heuristic

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

387

Greedy_colour begins with an initial solution composed of the cars planned the previous
production day. In fact, to link with the previous production day, we only need to know the
maximum value of so for all the options and this value determines the length of the sequence
required at the end of the previous day to evaluate the current solution. Then, we initialize
the counter for positions i at 1, the length of the current colour subsequence (run_length) that
is also at 1 and the colour of the last car produced the previous day (previous_colour) (lines 2-
3). The selection iteration process for the next car to place in the building sequence (lines 4-
25) begins by selecting a current colour (colour) according to rlmax and previous_colour (lines 5-
11). Once the colour of the next car to place is determined, we limit the selection process to
the m car classes having that colour. At this step, for each of the m classes, we evaluate the
interest Iv,i,COLOUR to place a car of class v at the current position i. In 95 % of the cases, the
selected class is the one with the largest Iv,i,COLOUR (Arg Max { Iv,i,COLOUR }). For the remaining
5 % of the cases, the car class to place is selected using the roulette wheel principle. Once
the colour and the car class are selected, we add the selected car class v and the selected
colour at position i of sequence Y being built (line 23). This process is thus repeated until an
entire sequence of cars is built. The main purpose of this greedy_colour heuristic is thus to
minimize, in a greedy way, the number of colour changes.
The second proposed construction heuristic, called greedy_ratio, also uses a greedy approach

to build an individual Y. However, for this heuristic, the main greedy criterion used to select

the car to add in the next position of sequence Y being built is the interest Iv,i,HPO. Just as for

the greedy_colour heuristic, the greedy_ratio procedure starts with an initial solution

consisting of cars already sequenced the previous production day. We then initialize the

various counters and the colour of the previous car produced on day D-1 the same way as

for the greedy_colour heuristic. The main loop of the algorithm (lines 4-27) first checks if the

maximum length for a subsequence of identical colour, rlmax, has not been reached. If rlmax is

reached, we withdraw all the cars of colour previous_colour from the list of classes that may

be added at current position i (list of candidate car classes). This step ensures that the

generated solution is feasible. Then, for each candidate car class v, we calculate the interest

Iv,i,HPO to place a car of class v at the current position i according to the HPO objective. Then,

the selection of the next car class to place in the sequence is made in 95 % of the cases by

selecting the class with the largest Iv,i,HPO. Note that in case of a tie for the Iv,i,HPO, the tie is

broken using the highest interest for the second objective and then the third objective,

respectively. In 5 % of the cases, the car class to place is selected using the roulette wheel

principle. Once the car class is selected, we choose the colour of the car to add from the

colours available for this class according to Iv,i,COLOUR. If all the colours for this class of cars

are of the same interest, we choose a colour randomly. Thereafter, we add the selected car

class and colour at position i in sequence Y being built. Finally, we update the various

counters (run_length and i) and previous_colour. This process is repeated until a complete

sequence of cars is done.

4.3 Selection

Several selection strategies could have been considered in the GA based algorithm to solve

the multi-objective ICSP. However, since it is easy to implement and that it is efficient for

the standard car sequencing problem (Zinflou et al., 2007), the selection procedure chosen to

solve the multi-objective ICSP is a binary tournament selection.

www.intechopen.com

 Advances in Evolutionary Algorithms

388

4.4 Mutation operator
According to the objective hierarchy, four mutation operators are used here: reflection,
random_swap, group_exchange and block_reflection. Note that these four operators have often
been used in the literature for the ICSP to explore the neighbourhood within a local search
method (Solnon et al., 2007). For problems with HPO-COLOUR-LPO and HPO-LPO-
COLOUR objective hierarchies, the mutation operators used are reflection and
random_swap. A reflection consists in randomly selecting two positions and reversing the
subsequence included between these two positions. A random_swap simply consists in
randomly exchanging the positions of two cars belonging to different classes. For problems
with COLOUR-HPO-LPO objective hierarchy, the mutation operators used are the
group_exchange and the block_reflection. The group_exchange mutation consists in
randomly exchanging the position of two subsequences of consecutive cars painted the
same colour. The block_reflection consists in selecting a subsequence of consecutive cars
painted the same colour and in inverting the position of the cars included in this
subsequence.

4.5 Replacement strategy
The proposed GA is an elitist approach in that it has explicit mechanisms that keep the best
solution found during the search process. To ensure that elitism, the replacement strategy
used is a (λ+μ) type of deterministic replacement. In this replacement strategy, the parent
and offspring populations are combined and sorted and only the λ best individuals are kept
to form the next generation.

1: Generate randomly or using the two greedy heuristics of the initial population POP0

2: Evaluate each individual Y ∈ POP0 and sort POP0
3: While no stop criterion is reached
4: While | Qt | < N
5: Choose randomly a number rnd between 0 and 1
6: If rnd < pc then
7: Select parents P1 and P2
8: Create two offspring E1 and E2 using NCPXMO or IBXMO crossover
9: Evaluate the generated offspring
10: else
11: Generate random migrant using the greedy heuristic
12: End If

13: Choose randomly a number rnd between 0 and 1
14: If rnd < pm then
15: Mutate and evaluate the offspring or the migrant
16: End If
17: Add E1 and E2 or the migrant to Qt
18: End While

19: Sort Qt ∪ POPt

20: Choose the first N individuals of Qt ∪ POPt to the next generation POPt+1

21: t = t +1
22: End while

23: Return the best individual found so far

Fig. 5. The proposed GA procedure for ICSP

Figure 5 describes the general procedure of our GA for the ICSP. The GA starts building an
initial population POP0 in which each individual Y ∈ POP0 is evaluated. Then it performs a

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

389

series of iterations called generations. At each generation t, a limited number of individuals
are selected to perform recombination according to a crossover probability (pc). Notice that,
occasionally, a new individual is introduced in the offspring population to maintain
diversity and avoid stagnation. This individual called random migrant is created using the
greedy heuristic used to creation the initial population according to the objective hierarchy
of the problem to solve. After the crossover, the generated offspring or the migrant is
mutated according to mutation probability (pm). Finally, the current population is updated
by selecting the best individuals from the pool of parents (POPt) and offspring (Qt). This
process is repeated until a stop criterion is reached.

5. Computational experiments

The GA proposed in this chapter was implemented in C++ and compiled with Visual Studio
.Net 2005. The computational experiments were run on a Dell Pentium with a Xeon 3.6 GHz
processor and 1 Gb of RAM, with Windows XP. For all the experiments performed, the
parameters N, pc, pm, Tmax that represent respectively the population size, crossover
probability, mutation probability and time limit allowed for the GA are set at the following
values: 5, 0.8, 0.35 and 350 seconds. The small population size and the mutation and
crossover probabilities were determined using the theoretical results of Goldberg (1989) and
the work of Coello Coello and Pulido (2001). According to these authors, a very small
population size is sufficient to obtain convergence, regardless of the chromosome length.
Thus, the use of a small population with a high crossover probability allows, on one hand,
to increase the efficiency of the GA for the ICSP by limiting the computation time required
to evaluate the fitness of each individual. In fact, the evaluation of the fitness of a solution
for the ICSP requires considerable computation time. On the other hand, a high crossover
probability usually allows better exploration of the search space (Grefenstette, 1986). In
addition to the difficulties related to the multi-objective nature of the ICSP, a 600 second
time limit was set for a Pentium 4/1.6 GHz/Win2000/1 Go RAM computer for the 2005
ROADEF Challenge. To meet this time limit, we set the running time of our GA at 350
seconds, that corresponds roughly to the time limit defined in the Challenge, considering
the differences in hardware.
Three versions of our GA will be used for the numerical experiments. The first version
integrates the NCPXMO crossover operator (AG-NCPXMO), the second uses the IBXMO
crossover operator (AG-IBXMO) and the third version integrates the NCPXMO crossover
operator with a local search procedure (AG-NCPXMO+LS).

5.1 Benchmark problems

The performance of the proposed multi-objective GAs is evaluated using three test suites
provided by the Renault car manufacturer and that are available from the Challenge website
at : http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/. The first set (SET
A) includes 16 sets of data to sequence 334 to 1314 cars that have from 6 to 22 options that
create from 36 to 287 cars classes with 11 to 24 different colours. This set allowed to evaluate
the teams during the qualification phase and thus to determine the 18 teams who qualified
for the next phase of the Challenge. The second set (SET B) consists of a wide range of 45
instances each consisting of 65 to 1270 cars having from 4 to 25 options, with 11 to 339 car
classes and 4 to 20 different colours. This set was used by the qualified teams to improve
and tune their algorithms. Finally, the last set (SET X) consists of 19 instances having from

www.intechopen.com

 Advances in Evolutionary Algorithms

390

65 to 1319 cars to sequence, with 5 to 26 options, 10 to 328 car classes and 5 to 20 different
colours. This set remained unknown to the teams until the last phase of the Challenge and
was used by the jury to establish the final ranking.
In comparison with the standard car sequencing problem whose largest instances included
400 cars, 5 options and from 18 to 24 car classes, the resolution of the multi-objective ICSP
thus represents a large challenge.

5.2 Experimental comparison

To evaluate the performance of the algorithms proposed in this chapter, we compare our
results with the best results obtained during the 2005 ROADEF Challenge for the 61
instances of SET A and SET B. All the results of the 2005 ROADEF Challenge are available
online from the Challenge website. Thus, Tables 3 to 5 report the comparative results of GA-
NCPXMO, GA-IBXMO and GA-NCPXMO+LS with those of the Challenge Winning Team and
those of the GLS (Jaszkiewicz et al., 2004) which is the best evolutionary algorithm proposed
during the Challenge. The rank of the solution found by each algorithm for the same
instance is listed in Tables 3 to 5 and is based on the results of the 18 qualified teams and the
results of the three GAs proposed here .
In these tables, we group instances in three categories:

• those for which the main objective is the minimization of the number of conflicts on
high-priority options (HPO) and where the requirements for these high-priority options
are considered “easy” according to Renault (Table 3) ;

• those for which the main objective is the minimization of the number of conflicts on
high-priority options (HPO) and where the requirements for these high-priority options
are considered “difficult” according to Renault (Table 4) ; and

• those for which the main objective is the minimization of the number of colour changes
(COLOUR) (Table 5).

Each row of Tables 3 to 5 indicates the name of the instance, the value and the rank of the
solution found respectively by the Winning Team, the GLS (Jaszkiewicz et al., 2004), the GA-
IBXMO, the GA-NCPXMO and the GA-NCPXMO+LS. The best results obtained for each
instance are highlighted in bold in the different tables. It is important to note that as for the
Challenge results, the GAs proposed were run once only and what we report is the solution
value obtained for this execution. The results reported in the different tables indicate the
objectives weighted sum value (F(X)) of the solution as calculated in Equation 1.
Table 3 reports the results for instances with “easy” high-priority options according to

Renault. These instances have two possible hierarchies that are HPO-LPO-COLOUR or

HPO-COLOUR-LPO. By examining the results of Table 3, one may note that GA-NCPXMO

outperforms GA-IBXMO for all the instances of SET A and SET B, except for instance

028_ch2_S23_J3 with HPO_COLOUR_LPO objective hierarchy where the two algorithms

obtain equal results. These results seem to highlight the superiority of the NCPXMO

crossover operator over the IBXMO crossover operator for the ICSP. The best performance of

the NCPXMO crossover operator may probably be explained by its ability to use information

about non-conflict positions. Thus, this crossover is able to do a better search intensification

during the allowed time.

Except for instance 028_ch2_S23_J3 with HPO_LPO_COLOUR objective hierarchy, that is
trivially solved by all algorithms, GA-IBXMO ranks between 11th and 19th while GA-NCPXMO
ranks between 1st and 17th according to the instances. It should be noted that, contrary to

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

391

most algorithms of the Challenge, GA-IBXMO and GA-NCPXMO do not use a local search
procedure in their algorithm.
By comparing the results of GA-NCPXMO and GA-IBXMO to those of GLS, one may note for
SET A that GLS globally outperforms GA-IBXMO but GA-NCPXMO clearly outperforms GLS.
Indeed, GLS outperforms GA-IBXMO for 3 instances of Set A, is worse for one instance while
it obtains identical results for the remaining instance. By contrast, GLS is worse than GA-
NCPXMO for 4 of the 5 instances of SET A shown in Table 3. These results are confirmed
with a few slight differences for the instances of SET B. Thus, GLS outperforms GA-IBXMO
for 10 instances, is worse for 7 instances while obtaining identical results for the remaining
instance. Compared to GA-NCPXMO, GLS achieves better results for 6 instances, is worse for
8 instances while obtaining identical results for the 4 remaining instances. We may
therefore notice a slight advantage for GA-NCPXMO for the instances of SET B with easy
high-priority options. These results are very promising considering that GLS is a memetic
algorithm, that is, an approach hybridizing GA with local search method.
When we now compare the results of GA-NCPXMO and GA-IBXMO to those of the Winning
Team for the 2005 ROADEF Challenge, one may notice that the results of the two proposed
GAs are clearly lower than the results of the Winning Team in terms of solution quality. We
believe that this gap may be explained by the lack of intensification of the search for this
type of approach. By combining GA-NCPXMO with a local search procedure inspired from
the one proposed by Estellon et al. (2007) and using the mutation operators presented in
Section 4.4 to explore the neighbourhood, we obtain the results shown in the last column of
Table 3. We mention here that GA-NCPXMO+LS was executed with the same time limit as
the other algorithms presented in this chapter. We observe that adding the local search
procedure clearly improves the performance of the algorithm. Indeed, GA-NCPXMO+LS
clearly outperforms GA-NCPXMO and achieves competitive results compared to those of the
Challenge Winning Team for all instances of SET A with easy high-priority options. In fact,
GA-NCPXMO+LS ranks first for all these instances and even finds new minimums for
instance 022_3_4 with HPO_COLOUR_LPO objective hierarchy and for instance 25_38_1
with HPO_LPO_COLOUR objective hierarchy. For the instances of SET B, GA-NCPXMO+LS
obtains similar results as those of the Challenge Winning Team for 10 of the 16 instances. For
the remaining instances, we observe a small gap that comes from the results of the second or
the third objective. Indeed, GA-NCPXMO+LS is always ranked between 1st and 3rd, except for
instance 064_ch1_S22_J3 with HPO_COLOUR_LPO objective hierarchy where it ranks 7th.
Table 4 reports the results obtained by the different algorithms for the instances of SET A

and SET B considered by Renault as “difficult “ high-priority options. The two possible

objective hierarchies for these instances are HPO-LPO-COLOUR and HPO-COLOUR-LPO.

We may notice again that GA-NCPXMO clearly outperforms GA-IBXMO. Therefore, for the

instances of SET A, GA-NCPXMO obtains better results than GA-IBXMO for 6 of the 7

instances while GA-IBXMO is better for the only remaining instance. The results are quite the

same for the instances of SET B where, this time, GA-NCPXMO always outperforms GA-

IBXMO. GA-IBXMO ranks between 12th and 20th while GA-NCPXMO ranks between 1st and 19th

depending on the instances. Despite the fact these two algorithms do not use a local search

procedure, they are quite competitive with the global results of the teams that qualified for

the Challenge. However, for the instances with easy high-priority options, we notice that

the results of the two proposed algorithms are not competitive with those of the Challenge

Winning Team.

www.intechopen.com

 Advances in Evolutionary Algorithms

392

Winning

Team
GLS

(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A

HPO_COLOUR_LPO

 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1)

 025_38_1 231452 (4) 262460 (15) 262460 (15) 231772 (6) 229295 (1)

 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1)

 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1)

HPO_ LPO_COLOUR

 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1)

SET B

HPO_COLOUR_LPO

022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1)

025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3)

028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1)

028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1)

039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3)

039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2)

048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2)

064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7)

064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1)

HPO_LPO_COLOUR

022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1)

025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1)

028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2)

028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1)

039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1)

039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2)

048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3)

064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1)

064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1)

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“easy” high-priority options instances with HPO as the main objective

If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11
of 12 instances of SET B. We believe that the poor performance of GA-IBXMO may be
explained by the difficulty of these instances which, combined with the time limit, more
highlight the lack in terms of intensification of the search process of the crossover operator.
However, when we compare the results of GLS with those of GA-NCPXMO, we observe
essentially the same results as those obtained in Table 3 for the instances of SET A. Indeed,
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A. But, for the SET B instances,
the results slightly favour GLS. Thus, GA-NCPXMO is better than GLS for 4 instances, is
worse for 5 instances while obtaining identical results for the 3 remaining instances.
These results confirm the previous observations made and once again highlight the need to
incorporate more explicit intensification mechanisms in our GA. By analyzing the results of
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

393

improvement of the performance for all the instances. In fact, the results of GA-NCPXMO+LS
are competitive with those of the Challenge Winning Team by obtaining equal or better results
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th. Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two
algorithms obtain identical results.

Winning

Team
GLS

(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A

HPO_COLOUR_LPO

024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3)

024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12)

039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1)

048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2)

HPO_LPO_COLOUR

024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6)

024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6)

048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4)

SET B

HPO_COLOUR_LPO

023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4)

024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4)

029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3)

035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1)

035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1)

048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2)

HPO_LPO_COLOUR

023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1)

024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4)

029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1)

035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1)

035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1)

048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1)

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
“difficult” high-priority options instances with HPO as the main objective

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with
COLOUR-HPO-LPO objective hierarchy. By comparing first GA-IBXMO and GA-NCPXMO,
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO. GA-NCPXMO
obtains better results for 18 instances out of 19 and identical results for the remaining
instance. However, contrary to the previous observation, the gap between the two
algorithms is smaller for this group of instances. Except for three instances, the two
algorithms give the same value for the main objective. For these instances, the gap between
the two algorithms is observed for the second and third objective. However, we notice again
that the results of the two algorithms are not competitive with those of the Challenge

www.intechopen.com

 Advances in Evolutionary Algorithms

394

Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective
hierarchy for which all algorithms obtain the same result. GA-IBXMO ranks between 12th and
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the
same value for the main objective as the Challenge Winning Team did. We can make this
conclusion considering that the weight of the main objective is set at 1000000 and that the
gap between the algorithms is less than this value.

Winning

Team
GLS

(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET A
COLOUR_HPO_LPO

022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1)

039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1)

064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1)

064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1)

SET B

COLOUR_HPO_LPO

022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1)

023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9)

024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4)

025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1)

028_ch1_S22_J2 38098201 (4) 38098251 (9) 38099330 (16) 38098334 (12) 38098188 (1)

028_ch2_S23_J3 4000071 (1) 4000071 (1) 5000078 (18) 4000071 (1) 4000071 (1)

029_ S21_J6 52711171 (1) 52755179 (14) 52905570 (20) 52763341 (15) 52717428 (8)

035_ch1_S22_J3 6156090 (1) 6156092 (10) 6156109 (18) 6156092 (10) 6156090 (1)

035_ch2_S22_J3 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1)

039_ch1_S22_J4 55045096 (1) 55045235 (9) 55046737 (18) 55045235 (9) 55045096 (1)

039_ch3_ S22_J4 59214671 (1) 59214698 (12) 59214783 (15) 59214681 (9) 59214671 (1)

048_ch1_ S22_J3 64115670 (1) 64135847 (14) 64153806 (15) 64124687 (12) 64115670(1)

048_ch2_ S22_J3 58283180 (1) 58288194 (12) 58312194 (19) 58290183 (13) 58283180 (1)

064_ch1_ S22_J3 62095288 (1) 62108458 (10) 63116379 (19) 62113381 (12) 62097307 (3)

064_ch2_ S22_J4 31052178 (1) 31052184 (9) 32052158 (16) 31053188 (13) 31052178 (1)

Table 5. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
instances with COLOUR as the main objective

By comparing the results of our algorithms with those of GLS, we again notice that GLS
outperforms GA-IBXMO for 2 of 4 instances of SET A, is worse for only one instance while
obtaining an identical result for the remaining instance. However, for the SET B instances,
GLS clearly outperforms GA-IBXMO by obtaining better results for 11 instances, worse results
for 3 instances and identical results for the remaining instance. By comparing the results of
GA-NCPXMO with those of GLS, one notes that GA-NCPXMO obtains better results for all
instances of SET A except one where the two algorithms achieve identical results. For the
SET B instances, GA-NCPXMO obtains better results than GLS for 5 instances, is worse for 6
instances while obtaining identical results for the 4 remaining instances. Again, we observe
very close performance between the two algorithms.
By now comparing the results of the two GAs to those of the Challenge Winning Team, we
notice on one hand that GA-NCPXMO always reaches the same value for the main objective.

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

395

On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst
solution for instances 023_S23_J3 and 025_S22_J3 with COLOUR_HPO_LPO objective
hierarchy.
By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement

for all the instances. Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or

better results than those of the Challenge Winning Team. For SET B instances, GA-

NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for

11 of the 15 instances. GA-NCPXMO+LS always ranks between 1st and 4th except for instances

023_S23_J3 and 029_S21_J6 with COLOUR_HPO_LPO objective hierarchy, where it ranks 9th

and 8th respectively. Compared to GLS, GA-NCPXMO+LS gets better results for 16 of the 19

instances while obtaining identical results for the 3 remaining ones.

Finally, Table 6 gives the results of the different algorithms for the 19 instances of SET X that
was used in the 2005 ROADEF Challenge to determine the final ranking. Here, instead of
executing the algorithms once as we did in the previous results, we executed the algorithms
5 times as was done for the qualified teams in this phase of the Challenge. The values
reported in this table are thus the average results of 5 runs.

Winning

Team
GLS

(rank)

AG-
IBXMO
(rank)

AG-
NCPXMO

(rank)

AG-
NCPXMO +LS

(rank)

SET X
HPO_COLOUR_LPO

023_S49_J2 192466 (1) 246268.20 (17) 246268.40 (18) 211879 (12) 193077 (3)

024_S49_J2 337006 (1) 421425 (8) 27046420.20 (18) 506015 (11) 346202.20 (2)

029_S49_J5 110442.60 (2) 120855 (11) 150969.20 (17) 123029.20 (12) 111093.20 (3)

034_VP_S51_J1_J2_J3 56386.80 (1) 76217.60 (17) 74354.20 (15) 66750 (12) 57577.40 (5)

034_VU_S51_J1_J2_J3 8087037 (4) 8091450.20 (10) 8112049 (16) 8103064 (15) 8087035.80 (1)

039_CH1_S49_J1 69239 (1) 69455.60 (6) 69705 (9) 69479.60 (7) 69355.20 (2)

039_CH3_S49_J1 231030.20 (2) 239593.20 (16) 250670 (17) 235475.40 (13) 231030.40 (3)

048_CH1_S50_J4 197044.80 (3) 206509.60 (16) 207634 (17) 204182 (14) 197045.40 (4)

048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2)

064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2)

064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1)

655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1)

655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1)

COLOUR_HPO_LPO

022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1)

035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1)

035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1)

LPO_COLOUR_HPO

025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1)

028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2)

 028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for
SET X instances

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except
for 4 instances for which the two algorithms obtain the same average results. We also notice
for these 4 instances that the two algorithms always find the same solution for each run.
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.

www.intechopen.com

 Advances in Evolutionary Algorithms

396

By looking more closely at the characteristics of these 4 instances, we notice that they are
small instances where the number of cars to schedule is between 65 and 376. These small
sizes probably explain why the two algorithms solve these 4 instances trivially. As shown in
the previous results, the gap between the two algorithms seems to be related to the size of
the instances. Indeed, GA-IBXMO seems to have more difficulty to converge towards a good
solution for large instances. This situation is again confirmed using instance 024_S49_J2 with
HPO_COLOUR_LPO objective hierarchy and 1319 cars to schedule. For this instance, the
gap between the average results of the two algorithms for the main objective is over 26
conflicts. Except for the 4 small size instances solved trivially, GA-IBXMO ranks between 9th
and 20th while GA-NCPXMO ranks between 7th and 15th.
If we now compare the results of our two algorithms to those of GLS, we observe similar
results to those obtained for SET A et SET B. GA-IBXMO is worse than GLS for 13 instances,
better for 3 instances while identical for the 3 other instances. We notice that among the 3
instances for which GA-IBXMO achieves better average results than GLS, there is one instance
(035_CH1_S50_J4 with COLOUR_HPO_LPO hierarchy) for which GLS did not provide a
feasible solution during this phase of the Challenge. When we now compare GLS to GA-
NCPXMO, we notice that GA-NCPXMO outperforms GLS for 8 instances, is worse for 7
instances while identical for the 4 remaining instances.
We also notice that the results of GA-IBXMO and GA-NCPXMO are not competitive with the
average results of the Winning Team. However, by adding a local search procedure to GA-
NCPXMO, we considerably improve the performance of the algorithm by obtaining the best
average results for 10 instances while obtaining very close average results for the other
instances. GA-NCPXMO+LS ranks between 1st and 5th for all the instances of SET X.
Now, to compare the performance of the proposed approaches with the results of the teams
that qualified for the Challenge, we used the ranking procedure described in the Challenge
description, that consists in calculating a mark for each instance of SET X according to
Equation 5. The mark of each algorithm is calculated according to the best and the worst
solution found by the 18 teams that qualified for the Challenge and the 3 proposed
algorithms. The score is a normalized measure of solution quality that necessarily lies
between 0 and 1.

resultworstresultBest

resultBestresult
oAmark

oA

__

_
)lg(

lg

−

−
=

 (5)

In Equation 5, Best_result and Worst_result indicate respectively the best and the worst
average result found for an instance while resultAlgo indicates the average result found by the
algorithm for which we compute the mark for the same instance. Then, each row of Table 7
lists the mark of the Winning Team, the GA-IBXMO, the GA-NCPXMO and GA-NCPXMO +LS
for each instance of SET X. The last row of this table lists the total mark of each algorithm
for the whole set. On analysing the results of Table 7, we notice that they confirm the results
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms. It is important to
mention that, according to the final rank of the Challenge that is published by the organizers
and that is available online from the Challenge website, GLS ranks 13th with a mark of
16.8937 while the Winning Team has a mark of 18.9935. Based on these results, we may
conclude that the difference between the results of our best genetic approach and those of
the Winning Team is rather small (0.0345). We also notice that both GA-NCPXMO obtain a

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

397

better mark than GLS, with and without local search procedure. We may then conclude that
the methods proposed in this chapter achieve competitive results for the multi-objective
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if
they incorporate specific knowledge of the problem to design dedicated genetic operators.

 Marks

SET X
Winning

Team
AG-IBXMO AG-NCXMO

AG-
NCXMO+LS

HPO_COLOUR_LPO

023_S49_J2 1 0.5575 0.8403 0.9950

024_S49_J2 1 0.4605 0.9966 0.9998

029_S49_J5 0.9980 0.4249 0.8200 0.9888

034_VP_S51_J1_J2_J3 0.9956 0.7949 0.8799 0.9823

034_VU_S51_J1_J2_J3 1 0.9998 0.9999 1

039_CH1_S49_J1 1 0.9755 0.9873 0.9939

039_CH3_S49_J1 0.9999 0.6368 0.9178 1

048_CH1_S50_J4 0.9999 0.9952 0.9968 1

048_CH2_S49_J5 1 0.9868 0.9927 0.9999

064_CH1_S49_J1 1 0.9799 0.9940 0.9995

064_CH2_S49_J4 1 0.8588 0.9435 1

655_CH1_S51_J2_J3_J4 1 1 1 1

655_CH2_S52_J1_J2_S01_J1 1 0.9999 0.9999 1

COLOUR_ HPO_LPO

022_S49_J2 1 0.9999 1 1

035_CH1_S50_J4 1 1 1 1

035_CH2_S50_J4 1 1 1 1

HPO_LPO_COLOUR

025_S49_J1 1 0.9983 0.9990 1

028_CH1_S50_J4 0.9999 0.9553 0.9891 0.9999

028_CH2_S51_J1 1 1 1 1

Total 18.9935 16.6241 18.3569 18.9590

Table 7. Marks of the Winning Team, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for SET
X instances.

6. Conclusion

In this chapter, we have introduced a GA based on two specialized crossover operators
dedicated to the multi-objective nature of the ICSP proposed by French automobile
manufacturer Renault for the ROADEF 2005 Challenge. If GAs are known to be well suited
for multi-objective optimization (Barichard, 2003; Basseur, 2004; Zinflou et al., 2006), few
researchers and industrials decided to use this category of algorithms to solve the ICSP.
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed
a genetic algorithm based approach. This situation may be explained by the difficulty in
defining specific and efficient genetic operators that take into account the specificities of the
problem. The approach proposed in this chapter is essentially based on adapting highly
specialized genetic crossover operators to the specificities of the industrial version of the
single objective car sequencing problem, for which we have three conflicting objectives to
optimize. The numerical experiments allowed us to demonstrate the efficiency of the

www.intechopen.com

 Advances in Evolutionary Algorithms

398

proposed approach for this industrial problem. A natural conclusion of these experimental
results is that GAs may be robust and efficient alternative to solve the multi-objective ICSP.
These results also again highlight the importance of incorporating specific problem
knowledge into genetic operators, even if classical genetic operators could be used. We are
also aware of the fact that having known the solutions found by the algorithms of the
different qualified teams has facilitated improving and tuning our algorithms. However, the
main purpose of this study was to demonstrate that GAs can be an efficient alternative to
solve this kind of industrial problem.
The lexicographical treatment of the objectives proposed by Renault is such that it can
eliminate several “interesting” solutions for the manufacturer. Indeed, the relaxation of the
importance granted to the main objective can highlight other attractive solutions for the
company. For example, if an additional violation on the HPO objective allows to avoid 5
colour changes, the production scheduler could then be interested to a such solution to
make his final schedule. We therefore believe that the industrial problem introduced by
Renault would benefit to be treated to obtain so-called “compromise solutions”. In this
context, the GAs proposed in this chapter represent very interesting alternatives to find
these compromise solutions. In fact, GAs are well suited for multi-objective optimization in
the Pareto sense and these approaches have proven their ability to generate compromise
solutions in a single optimization step. Since the mid-nineties, an increasing number of
approaches exploit the principle of dominance (Zitzler and Thiele, 1998; Deb, 2000; Knowles
and Corne, 2000a; Knowles and Corne, 2000b; Coello Coello and Pulido, 2001) in the Pareto
sense as defined by Goldberg (1989). These evolutionary multi-objective algorithms use the
concepts of dominance, niches and elitism (Deb, 2000; Knowles and Corne, 2000b; Deb and
Goel, 2001; Zitzler et al., 2001). The NSGAII algorithm (Deb, 2000), the SPEA2 algorithm
(Zitler et al., 2001) and the PMSMO algorithm (Zinflou et al., 2007) are recognized as amongst
the best performing of the elitist multi-objective evolutionary algorithms. These algorithms
are said to be elitist because they include one or several mechanisms allowing the
memorization of the best solutions found during the execution of the GA.
For future work, we will use this type of approaches to consider the objectives
simultaneously, without assigning priority or weight. A set of compromise solutions may
then be found for comparison to the solution by considering the objectives in lexicographical
order. It will thus be possible to highlight different solutions that are much more financially
interesting for a manufacturer and that are better suited to industrial reality.

7. References

Barichard, V. (2003). Approches hybrides pour les problèmes multiobjectifs, Ph.D. Thesis,
Université d'Angers, France.

Basseur, M. (2004). Conception d'algorithmes coopératifs pour l'optimisation multi-objectifs :
Application aux problèmes d'ordonnancement de type flow-shop, Ph.D. Thesis, Université
des Sciences et Technologies de Lille, France.

Benoit, T. (2007). Soft car sequencing with colors: Lower bounds and optimality proofs,
European Journal of Operational Research: doi:10.1016/j.ejor.2007.04.035.

Briant, O.; Naddef, D. & Mounié, G. (2007). Greedy approach and multi-criteria simulated
annealing for the car sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.052.

www.intechopen.com

Design of an Efficient Genetic Algorithm to Solve the Industrial Car Sequencing Problem

399

Coello Coello, A. C. & Pulido, G. T. (2001). Multiobjective optimization using a micro-
genetic Algorithm, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO'2001), 274-282, San Francisco, California.

Cordeau, J.-F.; Laporte, G. & Pasin, F. (2007). An iterated local search heuristic for the car
sequencing problem, European Journal of Operational Research:
doi:10.1016/j.ejor.2007.04.048.

Deb, K. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective
optimization : NSGA II, Proceedings of Parallel problem Solving form Nature – PPSN
VI, Lecture Notes in Computer Science, M. Schoenauer et al. (Eds), Springer, 849-
858.

Deb, K. & Goel, T. (2001). Controlled elitist non-dominated sorting genetic algorithms for
better convergence, Proceedings of Evolutionary Multi-Criterion Optimization, Lecture
Notes in Computer Science 1993, E. Zitler et al. (Eds), Springer-Verlag.

Dincbas, M.; Simonis, H. & van Hentenryck, P. (1988). Solving the car sequencing problem
in constraint logic programming, Proceedings of the European Conference on Artificial
Intelligence (ECAI-88), Munich, Germany, Pitmann Publishing, London, 290-295.

Estellon, B. ; Gardi, F. & Nouioua, K. (2005). Ordonnancement de véhicules: une approche
par recherche locale à grand voisinage, Proceedings of Journées Francophones de
Programmation par Contraintes, 21-28, Lens, France.

Estellon, B.; Gardi, F. & Nouioua, K. (2007). Two local search approaches for solving real-
life car sequencing problem, European Journal of Operational Research,
doi:10.1016/j.ejor.2007.04.043.

Gagné, C.; Gravel, M. & Price, W. L. (2006). Solving real car sequencing problems with ant
colony optimization, European Journal of Operational Research, 174(3), 1427-1448.

Gavranović, H. (2007). Local search and suffix tree for car-sequencing problem with colors,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.051.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Massachusetts, Addison-Wesley, Reading.

Gottlieb, J.; Puchta, M. & Solnon, C. (2003). A study of greedy, local search and ant colony
optimization approaches for car sequencing problems, Computers Science, 246-257.

Grefenstette, J. J. (1986). Optimization of Control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.

Jaszkiewicz, A.; Kubiak, M. & Kominek, P. (2004). The application of the genetic local search
algorithm to Car Sequencing Problem, Proceedings of the 7th National Conference on
Evolutionary Algorithms and Global Optimization, Kazimierz Dolny, Poland.

Knowles, J. D. & Corne, D. W. (2000a). M-PAES : A Memetic Algorithm for Multiobjective
Optimization, Proceedings of the 2000 Congress on Evolutionary Computation, 325-332.

Knowles, J. D. & Corne, D. W. (2000b). The pareto-envelope based selection algorithm for
multiobjective optimization, Proceedings of the Sixth International Conference on
Parallel Problem Solving from Nature (PPSN VI), 839-848, Berlin.

Nguyen, A. & Cung, V.-D. (2005). Le problème du Car Sequencing Renault et le challenge
ROADEF' 2005, Proceedings of Journées Francophones de Programmation par
Contraintes, 3-10, 2005.

Prandtstetter, M. & Raidl, G. R. (2007). An integer linear programming approach and a
hybrid variable neighborhood search for the car sequencing problem, European
Journal of Operational Research, doi:10.1016/j.ejor.2007.04.044.

www.intechopen.com

 Advances in Evolutionary Algorithms

400

Ribeiro, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007a). An efficient
implementation of a VNS/ILS heuristic for a real-life car sequencing problem,
European Journal of Operational Research, doi:10.1016/j.ejor.2007.02.003.

Ribiero, C. C.; Aloise, D. Noronha, T. F. Rocha, C. & Urrutia, S. (2007b). A hybrid heuristic
for a multi-objective real-life car sequencing, European Journal of Operational
Research, doi:10.1016/j.ejor.2007.04.034.

Solnon, C.; Cung, V.-D. & Artigues, C. (2007). The car sequencing problem: overview of
state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge
problem, European Journal of Operational Research, doi:10.1016/j.ejor.2007.04.033.

Terada, J.; Vo, H. & Joslin, D. (2006). Combining genetic algorithms with squeaky-wheel
optimization, Proceedings of Genetic and Evolutionary Computation COnference
(GECCO) 2006, Seattle.

Warwick, T. & Tsang, E. (1995). Tackling car sequencing problem using a generic genetic
algorithm, Evolutionary Computation, 3(3), 267-298.

Zinflou, A., Gagné, C. & Gravel, M. (2007). Crossover operators for the car-sequencing
problem, Proceedings of the Seventh European Conference on Evolutionary Computation
in Combinatorial Optimisation (EvoCOP 2007), LNCS 4446, C. Cotta and J. van
Hemert (Eds.), Springer-Verlag Berlin Heidelberg, 229-239.

Zinflou, A. ; Gagné, C. Gravel, M. & Price, W. L. (2006). Pareto memetic algorithm for
multiple objectives optimization with an industrial application, Journal of Heuristics,
doi: 10.1007/s10732-007-9042-2.

Zitzler, E.; Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto
evolutionary algorithm, Technical Report 103, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

Zitzler, E. & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: the
strength pareto approach, Technical Report 43, Computer Engineering and
Communication Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

www.intechopen.com

Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Zinflou, C. Gagné and M. Gravel (2008). Design of an Efficient Genetic Algorithm to Solve the Industrial Car

Sequencing Problem, Advances in Evolutionary Algorithms, Xiong Zhihui (Ed.), ISBN: 978-953-7619-11-4,

InTech, Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/design_of_an_efficient_genetic_algori

thm_to_solve_the_industrial_car_sequencing_problem

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

