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1. Introduction  

In many industrial sectors, decision makers are faced with large and complex problems that 
are often multi-objective. Many of these problems may be expressed as a combinatorial 
optimization problem in which we define one or more objective functions that we are trying 
to optimize. Thus, the car sequencing problem in an assembly line is a well known 
combinatorial optimization problem that cars manufacturers face. This problem involves 
scheduling cars along an assembly line composed of three consecutive shops: body welding 
and construction, painting and assembly. In the literature, this problem is most often treated 
as a single objective problem and only the capacity constraints of the assembly shop are 
considered (Dincbas et al., 1988). In this workshop, each car is characterized by a set of 
different options and the workstations where each option is installed are designed to handle 
a certain percentage of cars requiring the same options. To smooth the workload at the 
critical assembly workstations, cars requiring high work content must be dispersed 
throughout the production sequence. Industrial car sequencing formulation subdivides the 
capacity constraints into two categories, that are the capacity constraints linked to the high-
priority options and the capacity constraints linked to the low-priority options. 
However, the reality of industrial production does not only take into account the assembly 
shop requirements. The industrial formulation proposed by French automobile 
manufacturer Renault, in the context of the ROADEF 2005 Challenge, also takes into account 
the paint shop requirements.  In this workshop, the minimization of the amount of solvent 
used to purge the painting nozzles for colour changeovers, or when a known maximum 
number of vehicle bodies of the same colour have been painted, is an important objective to 
consider.  Indeed, long sequences of cars of the same colour tend to render visual quality 
controls inaccurate. To ensure this quality control, the number of cars of the same colour 
must not exceed an upper limit. 
The industrial car sequencing problem (ICSP) is thus a multi-objective problem in nature, 

with three conflicting objectives to minimize.  In the assembly shop, one tries to minimize 

the number of violations of capacity constraints related to high-priority options (HPO) and 

to low-priority options (LPO).  In the paint shop, one tries to minimize the number of colour 

changes (COLOUR).  In the 2005 ROADEF Challenge, the Renault automobile manufacturer 

proposes to tackle the problem by treating the three objectives lexicographically.     O
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Source:  Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008, 
I-Tech Education and Publishing, Vienna, Austria
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Among the resolution methods proposed by the participants of the challenge, one finds 
essentially neighbourhood search methods as simulated annealing, iterative tabu search, 
iterative local search and variable neighbourhood search (Briant et al., 2007; Cordeau et al., 
2007; Estellon et al., 2007; Ribiero et al., 2007a; Gavranović, 2007; Benoist, 2007), an ant colony 
optimization algorithm (ACO) (Gagné et al., 2006) and a genetic algorithm (GA) (Jaszkiewicz 
et al., 2004).  Since the work of all the participating teams was not published, the previous 
enumeration is not exhaustive.  After the challenge, other authors proposed to solve the 
problem using an integer linear programming model (Estellon et al., 2005; Gagné et al., 2006; 
Prandtstetter and Raidl, 2007), an algorithm hybridizing variable neighbourhood search and 
integer linear programming (Prandtstetter and Raidl, 2007) or an iterative local search 
approach (Ribeiro et al., 2007b). 
One may note that few authors proposed GAs to solve this multi-objective problem, except 
for Jaszkiewicz et al. (Jaszkiewicz et al., 2004). Moreover, this team was not amongst the 
twelve finalists of the 2005 ROADEF Challenge that included 55 teams from 15 countries at 
the beginning. As for the ICSP, one may only find the GAs proposed by Warwick and Tsang 
(1995), Terada et al. (2006) and Zinflou et al. (2007) in the literature for the standard version 
of the car sequencing problem. Among them, only Zinflou et al. (2007) succeeded in 
proposing an efficient GA, suggesting that this metaheuristic is not well suited to deal with 
the specificities of this problem. 
The main purpose of this chapter is to show that GAs can be efficient approaches for solving 
the ICSP when the different mechanisms of the algorithm are specially design to deal with 
the specificities of the problem.  To achieve this, we present the different choices made 
during the design of the genetic operators. In particular, we propose two new crossover 
operators dedicated to the multi-objective characteristic of the problem. The performance of 
the proposed approaches is assessed experimentally using the different instances of the 2005 
ROADEF Challenge and compared with the best results obtained during the challenge. 
This chapter is organized as follows: Section 2 briefly defines the industrial car sequencing 
problem and Section 3 describes the new crossover operators proposed for this multi-
objective problem.  The basic features of the proposed GA are presented in Section 4.  
Section 5 is dedicated to computational experiments and comparisons with previous results 
from literature.  Finally, the conclusion of this research work is given in Section 6.  

2. The industrial car sequencing problem 

This section provides the main elements to describe the ICSP.  The reader may consult 
Nguyen & Cung (2005) and Solnon et al. (2007) for a complete description of the problem. 
On each production day, customer orders are sent in real time to the assembly plant.  The 
daily task of the planners is then: (1) to assign a production day to each ordered vehicle, 
according to production line capacities and delivery dates that were promised to customers; 
and (2) to schedule the cars within each production day while satisfying as many of the 
requirements as possible of the three manufacturing workshops, as illustrated in Figure 1.  
The sequence thus found is then applied to the whole assembly line.  
In the definition of ICSP proposed during the 2005 ROADEF Challenge, the Renault car 
manufacturer stated that technologies used in the plants are such that the body shop does 
not set requirements for the daily schedule. The ICPS then consists in scheduling a set of 
cars (Nb_cars) for a production day taking into consideration the paint shop and assembly 
shop requirements. 
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Body  Paint  Assembly 

Fig. 1. The three workshops of the assembly line (Nguyen & Cung, 2005) 

In the paint shop, production scheduler tries to group cars by paint colour to minimize the 
number of colour changes.  Painting nozzles must be purged with solvent when changing 
car colour, or after a maximum number of cars (rlmax) painted the same colour, to ensure 
quality.  Each purge requires a colour change. Then, each solution with more consecutive 
cars than rlmax to be painted the same colour must be considered unfeasible.  
In the assembly shop, many elements are added to the painted body to complete the car 
assembly.  Each car is characterized by a set of different options O for which the 
workstations, where these options are installed, are designed to handle up to a certain 
percentage of the cars requiring the same options.  These capacity constraints may be 
expressed by a ratio r0/s0, that means that any consecutive subsequence of s cars must 
include at most r cars with option o.  Cars requiring the same configuration of options must 
be dispersed throughout the production sequence to smooth out the workload at various 
critical workstations.  If, for a subsequence of length s, it is impossible to satisfy the capacity 
constraint for option o, the number of cars that exceeds r defines what is called conflicts or 
violations.  As mentioned previously, the ICSP subdivides the capacity constraints of the 
assembly shop into two groups; the constraints related to the high-priority options and 
those related to the low-priority options.  In this shop, production scheduler tries to 
optimize two different objectives: the number of capacity constraint violations related to the 
high-priority options (HPO) and the number of capacity constraints violations related to the 
low-priority options (LPO). 
We choose to cluster the cars requiring the same configuration of high-priority and low-
priority options into V car classes, for which we know the exact number to produce (cv). 
These quantities represent the production constraints of the problem.  Table 1(a) shows an 
example of the industrial problem for producing 25 cars (Nb_cars) having 5 options (O) with 
6 car classes (V) and a possibility of 4 different colours across each class.  One defines a 
production sequence Y by two vectors representing respectively the car classes (Classes) and 
the car colour codes (Colours) as shown in Figure 1(b).  A production sequence will be 
designated by Y = {Classes/Colours} in the remainder of the chapter and the element at 
position i of the sequence will be defined by Y(i) = Classes(i)/Colours(i). 
Another interesting feature of the ICSP is that it links the different production days.  Thus, 
the evaluation of a solution must take into account the end of the previous production day 
and must extrapolate the minimum number of conflicts generated with the next production 
day.  Similarly, a colour change will be added if the colour of the first car of the current day 
is different from the colour of the last car of the previous day. 
To evaluate the number of conflicts for each option, we first construct binary matrix S of size 
O * Nb_cars using solution vector Y.  We have Soi = 1 if the class of car assigned to position i 
of the solution vector requires option o, otherwise it is equal to 0.  The decomposition of the 
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Classes vector of solution Y from Table 1 into its different options to obtain S is given in 
Table 2.  In Table 2(a), we also report the end of the previous production day sequence to 
allow to evaluate the number of conflicts related to the link of these two production days.  In 
Table 2(b), we also evaluate the solution based on the next day, assuming cars without any 
option. 
 

  Class # 

o r s 1 2 3 4 5 6

1 1 2 0 1 1 0 0 0

2 2 5 1 0 1 0 1 1

3 1 3 0 1 0 0 0 0

4 3 5 0 0 0 1 0 1

5 2 3 0 1 1 0 1 0

cv 5 5 4 4 3 4

1 2 1 1 2 1 1

2 1 1 0 2 1 1

3 1 3 2 0 0 2

C 
o 
l 

     o   # 
u 
r 4 1 0 1 0 1 0

(a) 

Y 1 2 3 4 5 6 ….. 21 22 23 24 25 

Classes 3 5 5 4 6 4  3 1 4 5 1 

Colours 4 4 2 2 2 2  3 3 1 1 1 

(b) 

Table 1. Example and solution of an ICSP 

 Previous day (D-1) Current day (D) 

Positions -5 -4 -3 -2 -1 1 2 3 4 5 6 ……… 

Classes 4 1 4 4 2 3 5 5 4 6 4  

1/2 0 0 0 0 1 1 0 0 0 0 0  

2/5 0 1 0 0 0 1 1 1 0 1 0  

1/3 0 0 0 0 1 0 0 0 0 0 0  

3/5 1 0 1 1 0 0 0 0 1 1 1  

O 
P 
T 
I 
O 
N 

2/3 0 0 0 0 1 1 1 1 0 0 0  

(a) 

 Current day (D) Next day (D+1) 

Positions …. 21 22 23 24 25 26 27 28 29 30 

Classes  3 1 4 5 1      

1/2  1 0 0 0 0 0 0 0 0 0 

2/5  1 1 0 1 1 0 0 0 0 0 

1/3  0 0 0 0 0 0 0 0 0 0 

3/5  0 0 1 0 0 0 0 0 0 0 

O 
P 
T 
I 
O 
N 

2/3  1 0 0 1 0 0 0 0 0 0 

(b) 

Table 2. Evaluation of the solution shown in Table 1  
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For the current production day D, options 1, 3 and 4 do not cause any violation in this part 
of the solution.  Indeed, for each of these three options, we never have a subsequence of size 
s, with more than r cars with the option.  However, for option 2, there are two conflicts 
located between positions 1 to 5 since we have 4 cars having the option while the capacity 
constraint limits the maximum to 2. In addition, there is one conflict located between 
positions 2 to 6, another conflict between positions 20 to 24 and two other conflicts between 
positions 21 to 25, since capacity constraint 2/5 is not satisfied.  For option 5, we also have 
one conflict as capacity constraint 2/3 is not satisfied between positions 1 to 3.   
For the link with previous production day D-1, we have one conflict located between positions 
-1 to 1 for option 1 , two conflicts located between positions -2 to 3 and positions -1 to 4 for 
option 2, and another conflict between positions -1 to 2 for option 5.  For the link with next 
production day D+1, we only have one conflict located between positions 22 to 26 for option 2.   
Considering that the first three options are high-priority and that the other two are low-
priority, we therefore have 10 conflicts for the HPO objective and 2 conflicts for the LPO 
objective for this solution Y.  Then, we only have to count the number of colour changes 
(COLOUR) to complete the evaluation of solution Y. 
The 2005 ROADEF Challenge proposed to tackle the problem using a weighted sum method 
that assigns different weights w1, w2 and w3 to each objective according to their priority 
level, in order to evaluate a solution Y. The quality of solution Y is then given by:  

 F(Y)=w1*obj1+w2*obj2+w3*obj3  (1) 

where obj1, obj2 and obj3 correspond respectively to the values obtained for a solution Y on 
each objective according to the priority level assigned.  The weights w1, w2 and w3 are 
respectively set at 1000000, 1000 and 1 (Nguyen & Cung, 2005). According to the different 
configurations of the Renault plants, the three following objective hierarchies are possible: 
HPO-COLOUR-LPO, HPO-LPO-COLOUR and COLOUR-HPO-LPO. 

3. Introducing problem knowledge in crossover design for the industrial car 
sequencing problem 

Traditional crossover operators are not well suited to deal with the specificities of the car 
sequencing problem.  Indeed, Warwick and Tsang (1995), and Terada et al. (2006) used such 
operators to solve the single objective car sequencing problem found in the literature and 
their results were not competitive.  However, Zinflou et al. (2007) obtained very competitive 
results using two highly-specialized crossover operators for the same problem.   
For the multi-objective ICSP, Jaszkiewicz et al. (2004) proposed to use a common sequence 
preserving crossover. Basically, the purpose of this operator is to create an offspring using 
the common maximum subsequence of the indices of the groups in two given solutions 
(parents). However, even if the results of this approach are promising, they did not allow 
the authors to be part of the twelve finalists during the 2005 ROADEF Challenge. 
The crossover operators proposed by Zinflou et al. (2007) for the single objective car 
sequencing problem, called non-conflict position crossover (NCPX) and interest based crossover 
(IBX), use problem-knowledge to perform recombination. The concept used by NCPX and 
IBX crossovers to use problem-knowledge is called interest.  The idea behind this concept is 
to penalize the conflicting car classes, by counting the number of new conflicts caused by the 
addition of these classes as a cost.  Conversely, if the addition of a car class does not cause 
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new conflicts, then this is counted as a profit equal to the difficulty of class Dv as proposed 
by Gottlieb et al. (2003). Basically, NCPX crossover tries to minimize the number of relocated 
cars by emphasizing non conflict position information from both parents. The IBX crossover, 
in turn, rather tries to keep the cars in the same area of the chromosome as it occupied with 
one of the two parents. For more details about these two crossover operators, the reader 
may consult Zinflou et al. (2007).   
The following sections will show how to adapt the two NCPX and IBX crossover operators 
to the multi-objective ICSP.  

3.1 Adaptation of the interest calculation for the industrial car sequencing problem 

To present the different adaptation of the crossover operators, we must redefine the interest 
concept to be able to take into account the multi-objective nature of the ICSP.  We define the 
total weighted interest (TWI) to establish if it is interesting to add a car of class v, of colour 
colour at a position i in the sequence.  The total weighted interest is expressed by: 

   +  + TWI I * w I * w I * w
v,i,HPO HPO v,i,COLOUR COLOUR v,i,LPO LPOv,colour,i

=  (2) 

where wHPO, wCOLOUR and wLPO correspond respectively to the weight of each objective 
(1000000, 1000 or 1 according to their priority levels) and Iv,i,HPO, Iv,i,COLOUR and Iv,i,LPO 
correspond to the interest in inserting a car of class v at the position i for each objective.  The 
interest concept may be defined according to each objective. 
According to Equation 3, the interest Iv,i,COLOUR to insert a car of class v at position i to 

minimize objective COLOUR is set at 1 if it is possible to complete the current colour 

subsequence with a car of class v.   If it isn’t possible, the interest is set to -1.  

 ( 1) max

, ,

  1 if ( ) 0 & _

1 otherwise

colour i

v i COLOUR

nb v run length rl
I

−
⎧ > <⎪=⎨
⎪−⎩

 (3) 

nb(vcolour(i-1)) indicates the number of cars of class v painted the same colour as the car in 

position i-1, run_length indicates the size of the consecutive subsequence of cars of the same 

colour as the car in position i-1 and rlmax indicates the maximum length of a subsequence of 

the same colour. This notion serves to favour the classes of cars that have the same colour as 

the car located in the previous position, to lengthen the colour subsequence to the maximum 

size.  Conversely, we penalize the car classes for which the addition implies a colour change.   

Iv,i,HPO and Iv,i,LPO indicate the interest to insert a car of class v at position i in the sequence to 

minimize objectives HPO and LPO respectively. According to Equation 4, the interest 

corresponds to the difficulty for class v if the addition of this class does not cause new 

conflicts respectively on high-priority options (k = HPO) and on low-priority options (k = 

LPO).  In the opposite case, we will define the cost that corresponds to the number of new 

conflicts produced on the high-priority or low-priority options, to discourage the insertion 

of this class at position i.  

, , ,

, ,

, ,

if 0

       otherwise

v k v i k

v i k

v i k

D N bN ewC onflicts
I

NbN ew Conflicts

⎧ =⎪= ⎨
⎪−⎩

 
(4) 
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NbNewConflictsv,i,k corresponds to the number of new conflicts for the high-priority options 
(k = HPO) or for the low-priority options (k = LPO) caused by the addition of a car of class v 
at position i.  Dv,k indicates the difficulty of class v for high-priority options (k = HPO) and 
for low-priority options (k = LPO).  The idea behind this concept is simply to penalize the 
classes of cars for which the addition leads to additional conflicts for the high-priority or 
low-priority options, on considering this number of new conflicts as a cost.  Conversely, if 
the addition of a class does not cause new conflicts on the options, we then evaluate the 
benefit of placing this class according to its difficulty.  Gottlieb et al. (2003) established that 
the difficulty of a class of cars v for high-priority or low-priority options (Dv,k) is the sum of 
the utilization rates of the high-priority options (k = HPO) or low-priority options (k = LPO) 
that compose that class. The utilization rate of an option may be expressed as the ratio 
between the number of cars requiring this option and the maximum number of cars that 
may have this option such that the ro/so constraint is satisfied. 

3.2 The multi-objective NCPX crossover operator (NCPX
MO

)  

The NCPXMO procedure for the ICSP is inspired by the NCPX crossover proposed for the 
single objective car sequencing problem (Zinflou et al., 2007) and is carried out in two main 
steps. Step 1 consists of selecting a parent P1 and establishing in this chromosome the 
number of positions that are not part of a conflict for objectives HPO (nbposHPO) and LPO 
(nbposLPO) and the number of positions where there is no colour change (nbposCOLOUR).  Then, 
we randomly select a number nbgk between 0 and nbposk for each objective k (k = HPO, LPO, 
COLOUR).  These three numbers are used to determine, for each objective k, the number of 
"good" genes that will maintain in offspring E1 the same position they had in P1. To take 
into account the priority of the objectives, we must make sure that the number of "good" 
genes kept for the main objective is greater or equal to the number of "good" genes selected 
for the secondary objective, and so forth.  Once we establish these numbers, starting position 
(sPos) that is between 1 and Nb_cars, is randomly selected in the offspring to be created.  The 
process of copying the good genes of P1 to the offspring being created starts from sPos by 
first considering the main objective.  If we reach the end of the chromosome and the number 
of genes copied for objective k is less than its corresponding nbgk, the copy process restarts 
this time from the beginning of the offspring up to sPos-1.  The same process is repeated for 
the other objectives, taking into account the already copied genes.  Thereafter, the remainder 
of the genes from P1 are used to constitute a non-orderly list L for the cars that must still be 
placed.  We then randomly determine a position (Pos) from which the remaining positions 
of chromosome E1 will be completed.   
In Step 2, the cars in L are sorted according to their TWI.  In case of a tie in TWI, if one of the 
cars is in P2 at the position to be completed, this car is then selected.  In the opposite case, 
we randomly select a car amongst those of equal ranking.   
The operation of this cross operator is illustrated in Figure 2 for two parents P1 = 
{21352446/62224622} and P2 = {32621454/26242622} with the following objective hierarchy 
HPO-LPO-COLOUR.  Let us assume that the evaluation of P1 gives 5 positions without 
conflicts for objective HPO and for objective LPO (expressed by 0 in vectors “conflicts on 
HPO and LPO” below chromosome P1), 4 positions where there is no colour change 
(expressed by 0 in vector the “colour changes” below chromosome P1) and the values for 
numbers nbgHPO = 4, nbgLPO =2, nbgCOLOUR =1 and sPos = 3 by random setting.  Starting with 
sPos and considering objective HPO, we may copy genes 5/2, 4/6, 4/2 and 2/6 in the 
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offspring. Repeating the same procedure with LPO, one notes that the three good genes 5/2, 
4/2 and 2/6 are already transferred to the offspring, that corresponds to the number of good 
genes to transfer for this objective.  Also, the two good genes 5/2 and 2/6 are already 
present in the offspring for the COLOUR objective, that corresponds to the number of good 
genes to transfer for this objective.  Genes 1/2, 3/2, 2/4 and 6/2 of P1 are then used to 
constitute non-orderly list L.  In Step 2, assuming that Pos = 7 and that the TWI calculation 
places the genes in the order 3/2, 2/4, 6/2, 1/2 with equal TWI value on genes 2/4 and 6/2.  
We then place 3/2 gene in position 8 and favour placing gene 6/2 in position 3 since it 
occupies this position in P2 and genes 2/4 and 1/2 are placed in positions 2 and 5 
respectively.  In this example, genes 1/2 and 6/2 are directly inherited from P2 since they 
have the same position in the second parent.  The offspring produced from P1 and P2 is then 
E1= {22651443/64222622}. 
A second offspring is created similarly, this time starting with parent P2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Schematic of the NCPXMO crossover 

3.3 The multi-objective IBX crossover operator (IBX
MO

) 

The IBXMO crossover procedure for the ICSP is inspired by the functioning of the IBX for the 
single objective car sequencing problem (Zinflou et al., 2007) and proceed in three main 
steps.  Step 1 consists in randomly determining two cut-off points for both parents P1 and P2.  
Once these temporary cut-off points are determined, the colours of the preceding cars at the 
1st cut-off point and the colour of the cars immediately after the 2nd cut-off point in P1 are 
verified so as not to interrupt an ongoing colour subsequence. As long as the colour of the 
cars located before the 1st cut-off point is the same as the colour of the car located at the cut-
off point, we move the cut-off point to the left.  Inversely, as long as the colour of the car at 
the 2nd cut-off point is identical to the colour of the car after that cut-of point, we move the 
2nd cut-off point to the right.   
In Figure 3, once the cut-off points are set for both parents P1 = {22351446/46222622} and P2 
= {32421465/24662222}, the genes subsequence {351/222} included between the two cut-off 

points of the first parent (a1 ∈ P1) is directly recopied in the offspring.  Thereafter, two non-

 2  1  3  5  2  4  4  6

 3  2  6  2  1  4  5  4

P1 

P2 

 0  0  1  0  1  0  0  1 

 1  0  0  0  0  0  1  1

sPos 

 Step 1                  2  5 4  4  Step 2 

L= 

Pos 

     2 6      1           3   2  5  4  4 

E1 E1 

 1  0  0  0  0  0  0  1

 2  6  2  4  2  6  2  2
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orderly lists (L1 and L2) are created from subsequence b3 = {32/24} and b4 = {465/222} of P2 
and will be used to complete the beginning and the end of offspring E1.  However, during 
this operation, part of the information may be lost by the addition of duplicates.  One effect 
of this process is that the production requirements will not always be satisfied.  In the 
example in Figure 3, we may thus notice that the production constraints for the 2, 3, 4 and 5 
car classes are no longer met.  To restore all the genes and to produce exactly cv cars of the v 
class, replacement of genes 3/2 and 5/2 (obtained from a1-a2) whose number exceeds the 
production constraints are replaced by genes 4/6 and 2/6 (obtained from a2-a1) whose 
number is now lower than the production constraints.  This replacement is done randomly 
in the second step to adjust the L1 and L2 lists.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Schematic of the IBXMO crossover 

Finally, the last step consists in rebuilding the beginning and the end of the offspring using 
the two corrected lists L1 and L2 by using TWI as defined in Equation 2.  In both cases, the 
reconstruction starts from the cut-off point towards the beginning or the end of the 
offspring, depending on the situation.  For example, we calculate the TWI for each car ∈ L1 
to reconstruct the beginning of the offspring. The car class v to place is then chosen 
deterministically in 95% of the cases and in the remaining 5% of the cases the car class v to 
be placed is chosen probabilistically using the roulette wheel principle (Goldberg, 1989). The 
second vector of the solution for this position is then completed by the colour associated to 
this class.  We then remove this class from list L1 and restart the calculations for the next 
position.  The same process is repeated to reconstruct the end of the offspring from list L2. 
A second offspring is created by using the same process, but this time starting from parent 
P2. 

4. Genetic algorithm for the industrial car sequencing problem 

In this section, we present the complete description of the genetic algorithm (GA) used to 
solve the multi-objective ICSP. 
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4.1 Representation of the chromosome 

As shown previously in Table 1(b), instead of choosing classical bit-string encoding, that 

seems ill-suited for this type of problem, a chromosome is represented using two vectors of 

size Nb_cars corresponding respectively to the class and the colour of the car.    

4.2 Creating the initial population 

In the proposed implementation, the individuals of the initial population are generated in 

two ways: 70 % randomly and 30 % using a greedy heuristic based on the concept of 

interest.  Two greedy heuristics are used according the main objective.  If the main objective 

is to minimize the number of colour changes (COLOUR), the greedy heuristic used is 

greedy_colour.  If the main objective is to minimize the number of conflicts on high-priority 

options (HPO), the greedy heuristic used is greedy_ratio.  Figure 4 resumes the operation of 

these two heuristics.  Notice that in both cases, one ensures that the individuals produced 

are feasible solutions.  
 

   greedy _colour  heuristic greedy_ratio heuristic 

1: Start with an individual Y consisting of the D-1 
production day cars 

2 : i=1 ; run_length =1 
3 : previous_colour = Colours(-1)  
4: While there are cars to place  
5:   If run_length < rlmax and there remain cars with 

previous_colour  then 
6:             colour = previous_colour 
7:             run_lenght ++ 
8:       Else 
9:             Choose randomly previous_colour ≠ colour 
10:           run_length = 1 
11:     End If 
12:    Restricted the choice to the m car classes having the  

selected colour  
13:     For each of these m car classes  
14:           Evaluate the interest Iv,i,COLOUR of adding a car 

class v at position i  
15:     End For  
16:     Choose randomly a number rnd between 0 and 1 
17:     If rnd < 0.95 then 
18:    Choose car class v according to Arg Max  

{Iv,i,COLOUR} 
19:             In case of a tie, choose car class v randomly 
20:     Else  
21:            Choose v using the roulette wheel principle  
22:     End If 
23:     Y(i) = v / colour 
24 :    i=i+1 
25: End While 

1: Start with an individual Y consisting of the  D-1 
production day cars 

2 : i=1; run_length =1 
3 : previous_colour = Colours(-1)  
4: While there are cars to place 
5:     If run_length = rlmax then 

6:           Exclude the cars for which colour= previous_colour 
from the candidates cars list 

7:     End If 
8:     For each candidate car class v   
9:           Evaluate the interest Iv,i,HPO  of adding a car class v 

at position i  
10:   End For  
11:   Choose randomly a number rnd between 0 and 1 
12:   If rnd < 0.95 Then 
13:         Choose class v according to Arg Max {Iv,i,HPO} 
14:         In case of a tie, break the tie lexicographically by 

using the interest of the second objective and then 
the third objective (Iv,i,LPO or Iv,i,COLOUR). In case of 
ties for the 3 objectives, choose a class randomly 

15:   Else  
16:         Choose car class v using the roulette wheel 

principle   
17:    End If 
18:   For the selected car class v, choose colour with Arg 

Max {Iv,i,COLOUR}. In case of a tie, choose colour 
randomly 

19:    Y(i) = v / colour 
20:    If run_length = rlmax OR colour ≠ previous_colour then  
21:         run_length= 1 
22 :   Else 
23 :        run_length= run_length +1 
24 :   End If 
25 :   previous_colour=colour  
26 :   i=i+1 
27: End While 

Fig. 4. Greedy construction of an individual us the greedy_colour or greedy_ratio heuristic 
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Greedy_colour begins with an initial solution composed of the cars planned the previous 
production day.  In fact, to link with the previous production day, we only need to know the 
maximum value of so for all the options and this value determines the length of the sequence 
required at the end of the previous day to evaluate the current solution.  Then, we initialize 
the counter for positions i at 1, the length of the current colour subsequence (run_length) that 
is also at 1 and the colour of the last car produced the previous day (previous_colour) (lines 2-
3).  The selection iteration process for the next car to place in the building sequence (lines 4-
25) begins by selecting a current colour (colour) according to rlmax and previous_colour (lines 5-
11).  Once the colour of the next car to place is determined, we limit the selection process to 
the m car classes having that colour.  At this step, for each of the m classes, we evaluate the 
interest Iv,i,COLOUR to place a car of class v at the current position i.  In 95 % of the cases, the 
selected class is the one with the largest Iv,i,COLOUR (Arg Max { Iv,i,COLOUR }).  For the remaining 
5 % of the cases, the car class to place is selected using the roulette wheel principle.  Once 
the colour and the car class are selected, we add the selected car class v and the selected 
colour at position i of sequence Y being built (line 23). This process is thus repeated until an 
entire sequence of cars is built.  The main purpose of this greedy_colour heuristic is thus to 
minimize, in a greedy way, the number of colour changes. 
The second proposed construction heuristic, called greedy_ratio, also uses a greedy approach 

to build an individual Y. However, for this heuristic, the main greedy criterion used to select 

the car to add in the next position of sequence Y being built is the interest Iv,i,HPO.  Just as for 

the greedy_colour heuristic, the greedy_ratio procedure starts with an initial solution 

consisting of cars already sequenced the previous production day.  We then initialize the 

various counters and the colour of the previous car produced on day D-1 the same way as 

for the greedy_colour heuristic.  The main loop of the algorithm (lines 4-27) first checks if the 

maximum length for a subsequence of identical colour, rlmax, has not been reached.  If rlmax is 

reached, we withdraw all the cars of colour previous_colour from the list of classes that may 

be added at current position i (list of candidate car classes). This step ensures that the 

generated solution is feasible.  Then, for each candidate car class v, we calculate the interest 

Iv,i,HPO to place a car of class v at the current position i according to the HPO objective.  Then, 

the selection of the next car class to place in the sequence is made in 95 % of the cases by 

selecting the class with the largest Iv,i,HPO. Note that in case of a tie for the Iv,i,HPO, the tie is 

broken using the highest interest for the second objective and then the third objective, 

respectively.  In 5 % of the cases, the car class to place is selected using the roulette wheel 

principle.  Once the car class is selected, we choose the colour of the car to add from the 

colours available for this class according to Iv,i,COLOUR. If all the colours for this class of cars 

are of the same interest, we choose a colour randomly.  Thereafter, we add the selected car 

class and colour at position i in sequence Y being built. Finally, we update the various 

counters (run_length and i) and previous_colour.  This process is repeated until a complete 

sequence of cars is done. 

4.3 Selection  

Several selection strategies could have been considered in the GA based algorithm to solve 

the multi-objective ICSP.  However, since it is easy to implement and that it is efficient for 

the standard car sequencing problem (Zinflou et al., 2007), the selection procedure chosen to 

solve the multi-objective ICSP is a binary tournament selection.  
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4.4 Mutation operator  
According to the objective hierarchy, four mutation operators are used here: reflection, 
random_swap, group_exchange and block_reflection.  Note that these four operators have often 
been used in the literature for the ICSP to explore the neighbourhood within a local search 
method (Solnon et al., 2007).  For problems with HPO-COLOUR-LPO and HPO-LPO-
COLOUR objective hierarchies, the mutation operators used are reflection and 
random_swap.  A reflection consists in randomly selecting two positions and reversing the 
subsequence included between these two positions. A random_swap simply consists in 
randomly exchanging the positions of two cars belonging to different classes.  For problems 
with COLOUR-HPO-LPO objective hierarchy, the mutation operators used are the 
group_exchange and the block_reflection. The group_exchange mutation consists in 
randomly exchanging the position of two subsequences of consecutive cars painted the 
same colour.  The block_reflection consists in selecting a subsequence of consecutive cars 
painted the same colour and in inverting the position of the cars included in this 
subsequence.  

4.5 Replacement strategy  
The proposed GA is an elitist approach in that it has explicit mechanisms that keep the best 
solution found during the search process.  To ensure that elitism, the replacement strategy 
used is a (λ+μ) type of deterministic replacement.  In this replacement strategy, the parent 
and offspring populations are combined and sorted and only the λ best individuals are kept 
to form the next generation. 
 

1: Generate randomly or using the two greedy heuristics of the initial population POP0 

2: Evaluate each individual Y ∈ POP0 and sort POP0 
3: While no stop criterion is reached  
4:  While | Qt | < N  
5:   Choose randomly a number rnd between 0 and 1  
6:   If rnd < pc then 
7:    Select parents P1 and P2 
8:    Create two offspring E1 and E2 using NCPXMO or IBXMO crossover 
9:    Evaluate the generated offspring 
10:  else 
11:   Generate random migrant using the greedy heuristic 
12:   End If 

13:   Choose randomly a number rnd between 0 and 1 
14:   If rnd < pm then 
15:    Mutate and evaluate the offspring or the migrant  
16:   End If 
17:   Add E1 and E2 or the migrant to Qt 
18:  End While 

19:  Sort Qt ∪ POPt 

20:  Choose the first N individuals of Qt ∪ POPt to the next generation POPt+1 

21:  t = t +1   
22: End while 

23: Return the best individual found so far 

Fig. 5. The proposed GA procedure for ICSP 

Figure 5 describes the general procedure of our GA for the ICSP.  The GA starts building an 
initial population POP0 in which each individual Y ∈ POP0 is evaluated.  Then it performs a 
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series of iterations called generations.  At each generation t, a limited number of individuals 
are selected to perform recombination according to a crossover probability (pc).  Notice that, 
occasionally, a new individual is introduced in the offspring population to maintain 
diversity and avoid stagnation.  This individual called random migrant is created using the 
greedy heuristic used to creation the initial population according to the objective hierarchy 
of the problem to solve. After the crossover, the generated offspring or the migrant is 
mutated according to mutation probability (pm).  Finally, the current population is updated 
by selecting the best individuals from the pool of parents (POPt) and offspring (Qt).  This 
process is repeated until a stop criterion is reached. 

5. Computational experiments 

The GA proposed in this chapter was implemented in C++ and compiled with Visual Studio 
.Net 2005.  The computational experiments were run on a Dell Pentium with a Xeon 3.6 GHz 
processor and 1 Gb of RAM, with Windows XP.  For all the experiments performed, the 
parameters N, pc, pm, Tmax that represent respectively the population size, crossover 
probability, mutation probability and time limit allowed for the GA are set at the following 
values: 5, 0.8, 0.35 and 350 seconds.  The small population size and the mutation and 
crossover probabilities were determined using the theoretical results of Goldberg (1989) and 
the work of Coello Coello and Pulido (2001).  According to these authors, a very small 
population size is sufficient to obtain convergence, regardless of the chromosome length.  
Thus, the use of a small population with a high crossover probability allows, on one hand, 
to increase the efficiency of the GA for the ICSP by limiting the computation time required 
to evaluate the fitness of each individual.  In fact, the evaluation of the fitness of a solution 
for the ICSP requires considerable computation time.  On the other hand, a high crossover 
probability usually allows better exploration of the search space (Grefenstette, 1986).  In 
addition to the difficulties related to the multi-objective nature of the ICSP, a 600 second 
time limit was set for a Pentium 4/1.6 GHz/Win2000/1 Go RAM computer for the 2005 
ROADEF Challenge.  To meet this time limit, we set the running time of our GA at 350 
seconds, that corresponds roughly to the time limit defined in the Challenge, considering 
the differences in hardware. 
Three versions of our GA will be used for the numerical experiments.  The first version 
integrates the NCPXMO crossover operator (AG-NCPXMO), the second uses the IBXMO 
crossover operator (AG-IBXMO) and the third version integrates the NCPXMO crossover 
operator with a local search procedure (AG-NCPXMO+LS). 

5.1 Benchmark problems 

The performance of the proposed multi-objective GAs is evaluated using three test suites 
provided by the Renault car manufacturer and that are available from the Challenge website 
at : http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/.  The first set (SET 
A) includes 16 sets of data to sequence 334 to 1314 cars that have from 6 to 22 options that 
create from 36 to 287 cars classes with 11 to 24 different colours.  This set allowed to evaluate 
the teams during the qualification phase and thus to determine the 18 teams who qualified 
for the next phase of the Challenge.  The second set (SET B) consists of a wide range of 45 
instances each consisting of 65 to 1270 cars having from 4 to 25 options, with 11 to 339 car 
classes and 4 to 20 different colours.  This set was used by the qualified teams to improve 
and tune their algorithms.  Finally, the last set (SET X) consists of 19 instances having from 
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65 to 1319 cars to sequence, with 5 to 26 options, 10 to 328 car classes and 5 to 20 different 
colours. This set remained unknown to the teams until the last phase of the Challenge and 
was used by the jury to establish the final ranking.    
In comparison with the standard car sequencing problem whose largest instances included 
400 cars, 5 options and from 18 to 24 car classes, the resolution of the multi-objective ICSP 
thus represents a large challenge. 

5.2 Experimental comparison 

To evaluate the performance of the algorithms proposed in this chapter, we compare our 
results with the best results obtained during the 2005 ROADEF Challenge for the 61 
instances of SET A and SET B.  All the results of the 2005 ROADEF Challenge are available 
online from the Challenge website.  Thus, Tables 3 to 5 report the comparative results of GA-
NCPXMO, GA-IBXMO and GA-NCPXMO+LS with those of the Challenge Winning Team and 
those of the GLS (Jaszkiewicz et al., 2004) which is the best evolutionary algorithm proposed 
during the Challenge.  The rank of the solution found by each algorithm for the same 
instance is listed in Tables 3 to 5 and is based on the results of the 18 qualified teams and the 
results of the three GAs proposed here . 
In these tables, we group instances in three categories:  

• those for which the main objective is the minimization of the number of conflicts on 
high-priority options (HPO) and where the requirements for these high-priority options 
are considered  “easy” according to Renault (Table 3) ; 

• those for  which the main objective is the minimization of the number of conflicts on 
high-priority options (HPO) and where the requirements for these high-priority options 
are considered “difficult” according to Renault (Table 4) ; and 

• those for which the main objective is the minimization of the number of colour changes 
(COLOUR) (Table 5). 

Each row of Tables 3 to 5 indicates the name of the instance, the value and the rank of the 
solution found respectively by the Winning Team, the GLS (Jaszkiewicz et al., 2004), the GA-
IBXMO, the GA-NCPXMO and the GA-NCPXMO+LS. The best results obtained for each 
instance are highlighted in bold in the different tables.  It is important to note that as for the 
Challenge results, the GAs proposed were run once only and what we report is the solution 
value obtained for this execution. The results reported in the different tables indicate the 
objectives weighted sum value (F(X)) of the solution as calculated in Equation 1. 
Table 3 reports the results for instances with “easy” high-priority options according to 

Renault. These instances have two possible hierarchies that are HPO-LPO-COLOUR or 

HPO-COLOUR-LPO.  By examining the results of Table 3, one may note that GA-NCPXMO 

outperforms GA-IBXMO for all the instances of SET A and SET B, except for instance 

028_ch2_S23_J3 with HPO_COLOUR_LPO objective hierarchy where the two algorithms 

obtain equal results. These results seem to highlight the superiority of the NCPXMO 

crossover operator over the IBXMO crossover operator for the ICSP.  The best performance of 

the NCPXMO crossover operator may probably be explained by its ability to use information 

about non-conflict positions.  Thus, this crossover is able to do a better search intensification 

during the allowed time.  

Except for instance 028_ch2_S23_J3 with HPO_LPO_COLOUR objective hierarchy, that is 
trivially solved by all algorithms, GA-IBXMO ranks between 11th and 19th while GA-NCPXMO 
ranks between 1st and 17th according to the instances.  It should be noted that, contrary to 
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most algorithms of the Challenge, GA-IBXMO and GA-NCPXMO do not use a local search 
procedure in their algorithm. 
By comparing the results of GA-NCPXMO and GA-IBXMO to those of GLS, one may note for 
SET A that GLS globally outperforms GA-IBXMO but GA-NCPXMO clearly outperforms GLS.  
Indeed, GLS outperforms GA-IBXMO for 3 instances of Set A, is worse for one instance while 
it obtains identical results for the remaining instance.  By contrast, GLS is worse than GA-
NCPXMO for 4 of the 5 instances of SET A shown in Table 3.  These results are confirmed 
with a few slight differences for the instances of SET B.  Thus, GLS outperforms GA-IBXMO 
for 10 instances, is worse for 7 instances while obtaining identical results for the remaining 
instance.  Compared to GA-NCPXMO, GLS achieves better results for 6 instances, is worse for 
8 instances while obtaining identical results for the 4 remaining instances.  We may 
therefore notice a slight advantage for GA-NCPXMO for the instances of SET B with easy 
high-priority options.  These results are very promising considering that GLS is a memetic 
algorithm, that is, an approach hybridizing GA with local search method.   
When we now compare the results of GA-NCPXMO and GA-IBXMO to those of the Winning 
Team for the 2005 ROADEF Challenge, one may notice that the results of the two proposed 
GAs are clearly lower than the results of the Winning Team in terms of solution quality.  We 
believe that this gap may be explained by the lack of intensification of the search for this 
type of approach.  By combining GA-NCPXMO with a local search procedure inspired from 
the one proposed by Estellon et al. (2007) and using the mutation operators presented in 
Section 4.4 to explore the neighbourhood, we obtain the results shown in the last column of 
Table 3.  We mention here that GA-NCPXMO+LS was executed with the same time limit as 
the other algorithms presented in this chapter.  We observe that adding the local search 
procedure clearly improves the performance of the algorithm.  Indeed, GA-NCPXMO+LS 
clearly outperforms GA-NCPXMO and achieves competitive results compared to those of the 
Challenge Winning Team for all instances of SET A with easy high-priority options.  In fact, 
GA-NCPXMO+LS ranks first for all these instances and even finds new minimums for 
instance 022_3_4 with HPO_COLOUR_LPO objective hierarchy and for instance 25_38_1 
with HPO_LPO_COLOUR objective hierarchy.  For the instances of SET B, GA-NCPXMO+LS 
obtains similar results as those of the Challenge Winning Team for 10 of the 16 instances.  For 
the remaining instances, we observe a small gap that comes from the results of the second or 
the third objective.  Indeed, GA-NCPXMO+LS is always ranked between 1st and 3rd, except for 
instance 064_ch1_S22_J3 with HPO_COLOUR_LPO objective hierarchy where it ranks 7th. 
Table 4 reports the results obtained by the different algorithms for the instances of SET A 

and SET B considered by Renault as “difficult “ high-priority options.  The two possible 

objective hierarchies for these instances are HPO-LPO-COLOUR and HPO-COLOUR-LPO. 

We may notice again that GA-NCPXMO clearly outperforms GA-IBXMO.  Therefore, for the 

instances of SET A, GA-NCPXMO obtains better results than GA-IBXMO for 6 of the 7 

instances while GA-IBXMO is better for the only remaining instance.  The results are quite the 

same for the instances of SET B where, this time, GA-NCPXMO always outperforms GA-

IBXMO.  GA-IBXMO ranks between 12th and 20th while GA-NCPXMO ranks between 1st and 19th 

depending on the instances.  Despite the fact these two algorithms do not use a local search 

procedure, they are quite competitive with the global results of the teams that qualified for 

the Challenge.  However, for the instances with easy high-priority options, we notice that 

the results of the two proposed algorithms are not competitive with those of the Challenge 

Winning Team. 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

392 

 
Winning 

Team 
GLS 

(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      

HPO_COLOUR_LPO      

 022_3_4 31001 (1) 37000 (14) 32022 (11) 32001 (8) 31001 (1) 

 025_38_1 231452 (4) 262460  (15) 262460 (15) 231772 (6) 229295 (1) 

 064_38_2_ch1 112759 (1) 139757 (15) 184775 (17) 164760 (16) 112759 (1) 

 064_38_2_ch2 34051 (1) 36056 (15) 37156 (16) 34052 (8) 34051 (1) 

HPO_ LPO_COLOUR      

 025_38_1 99720 (2) 200711 (10) 270686 (14) 150767 (6) 97076 (1) 

SET B      

HPO_COLOUR_LPO      

022_S22-J1 19144 (1) 23144 (13) 21174 (12) 20176 (9) 19144 (1) 

025_S22-J3 172180 (1) 281877 (20) 264156 (19) 222711 (13) 179378 (3) 

028_ch_S22_J2 54049124 (1) 54059164 (13) 54072436 (19) 54063113 (14) 54049124 (1) 

028_ch2_S23_J3 4071 (1) 4071 (1) 5078 (17) 4071 (1) 4071 (1) 

039_ch1_S22_J4 78089 (1) 92308 (17) 82731 (14) 79128 (7) 78220 (3) 

039_ch3_S22_J4 189146 (4) 199223 (17) 195718 (15) 192160 (12) 189122 (2) 

048_ch1_S22_J3 161378 (1) 186438 (18) 180440 (16) 170377 (12) 161401 (2) 

064_ch1_S22_J3 130187 (1) 158222 (14) 183149 (19) 177376 (17) 134368 (7) 

064_ch2_S22_J4 130069 (1) 130069 (1) 130088 (14) 130069 (1) 130069 (1) 

HPO_LPO_COLOUR      

022_S22_J1 3109 (1) 3138 (12) 3191 (14) 3186 (13) 3109 (1) 

025_S22_J3 3912479 (1) 3926649 (11) 4041787 (19) 3928619 (12) 3912479 (1) 

028_ch1_S22_J2 54003079 (4) 54021114 (12) 54065112 (14) 54017116 (9) 54003077 (2) 

028_ch2_S23_J3 70006 (1) 70006 (1) 70006 (1) 70006 (1) 70006 (1) 

039_ch1_ S22_J4 29117 (1) 29385 (16) 29375 (15) 29272 (11) 29117 (1) 

039_ch3_ S22_J4 197 (1) 276 (12) 315 (17) 290 (13) 201 (2) 

048_ch1_S22_J3 200 (1) 298 (15) 367 (19) 298 (15) 203 (3) 

064_ch1_S22_J3 182 (1) 1359 (18) 421 (15) 240 (10) 182 (1) 

064_ch2_S22_J4 69130 (1) 69131 (9) 69161 (19) 69132 (11) 69130 (1) 

Table 3. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“easy” high-priority options instances with HPO as the main objective 

If we now compare the performance of GA-IBXMO and GA-NCPXMO with those of GLS, we 
notice that GLS clearly outperforms GA-IBXMO, both for the instances of SET A and SET B.  
Thus, GLS obtains better results than GA-IBXMO for 6 of the 7 instances of SET A and for 11 
of 12 instances of SET B.  We believe that the poor performance of GA-IBXMO may be 
explained by the difficulty of these instances which, combined with the time limit, more 
highlight the lack in terms of intensification of the search process of the crossover operator.  
However, when we compare the results of GLS with those of GA-NCPXMO, we observe 
essentially the same results as those obtained in Table 3 for the instances of SET A.  Indeed, 
GA-NCPXMO outperforms GLS for 6 of the 7 instances of SET A.  But, for the SET B instances, 
the results slightly favour GLS.  Thus, GA-NCPXMO is better than GLS for 4 instances, is 
worse for 5 instances while obtaining identical results for the 3 remaining instances. 
These results confirm the previous observations made and once again highlight the need to 
incorporate more explicit intensification mechanisms in our GA.  By analyzing the results of 
adding a local search procedure to GA-NCPXMO (last column of Table 4), we notice a clear 
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improvement of the performance for all the instances.  In fact, the results of GA-NCPXMO+LS  
are competitive with those of the Challenge Winning Team by obtaining equal or better results 
for 9 of the 19 instances of the two sets, while obtaining significantly closer results for the 
remaining instances. GA-NCPXMO+LS always ranks between 1st and 6th except for instance 
024_38_5 with HPO_COLOUR_LPO hierarchy where it ranks 12th.  Compared to GLS, GA-
NCPXMO+LS always obtains better result except for two instances for which the two 
algorithms obtain identical results. 
 

   
Winning 

Team 
GLS 

(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      

HPO_COLOUR_LPO      

024_38_3 4249083 (1) 4327229 (12) 4471615 (15) 4304266 (9) 4256186 (3) 

024_38_5 4280079 (1) 7347154 (17) 26015122 (18) 6501289 (15) 4392151 (12) 

039_38_4_ch1 13129000 (1) 15179000 (11) 17201000 (14) 14122000 (8) 13129000 (1) 

048_39_1 175615 (4) 202740 (13) 3286796 (18) 191750 (11) 174690 (2) 

HPO_LPO_COLOUR      

024_38_3 4000306 (1) 4041506 (8) 5035482 (13) 6015504 (14) 4033403 (6) 

024_38_5 4034309 (1) 6080457 (18) 58072610 (17) 5068407 (15) 4045349 (6) 

048_39_1 61290 (1) 83403 (11) 246439 (17) 81406 (10) 63323 (4) 

      

SET B      

HPO_COLOUR_LPO      

023_S23_J3 48310008 (1) 48349006 (10) 48465018 (18) 48429000 (13) 48313000 (4) 

024_V2_S22_J1 1074299068 (1) 1100352464 (8) 1124857475 (16) 1106420563 (10) 1078310188 (4) 

029_HPO_ S21_J6 35167170 (1) 35192150 (14) 35187151 (12) 35173150 (6) 35168171 (3) 

035_ch1_ S22_J3 67036064 (7) 67037063 (12) 67044083 (20) 67037063 (12) 67036061 (1) 

035_ch2_ S22_J3 385187351 (1) 385187351 (1) 385187353 (17) 385187351 (1) 385187351 (1) 

048_ch2_ S22_J3 3094029 (1) 3126017 (15) 3131944 (17) 3124086 (12) 3094030 (2) 

HPO_LPO_COLOUR      

023_S23_J3 48000317 (3) 48000406 (10) 65000453 (19) 48000496 (15) 48000316 (1) 

024_V2_S22_J1 1074850430 (1) 1097921524 (9) 1179022413 (19) 1113997557 (13) 1075884555 (4) 

029_HPO _S21_J6 37150167 (1) 37150194 (12) 37150402 (18) 37150182 (9) 37150167 (1) 

035_ch1 _S22_J3 67052049 (1) 67052052 (9) 67059057 (19) 67052052 (9) 67052049 (1) 

035_ch2 _S22_J3 385341205 (1) 385341205 (1) 388350188 (20) 385353192 (19) 385341205 (1) 

048_ch2_S22_J3 3000337 (1) 3000375 (14) 3000405 (17) 3000356 (7) 3000337 (1) 

Table 4. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
“difficult” high-priority options instances with HPO as the main objective 

Table 5 lists the results of the different algorithms for the instances of SET A and SET B with 
COLOUR-HPO-LPO objective hierarchy.  By comparing first GA-IBXMO and GA-NCPXMO, 
we observe once again that GA-NCPXMO globally outperforms GA-IBXMO.  GA-NCPXMO 
obtains better results for 18 instances out of 19 and identical results for the remaining 
instance. However, contrary to the previous observation, the gap between the two 
algorithms is smaller for this group of instances. Except for three instances, the two 
algorithms give the same value for the main objective.  For these instances, the gap between 
the two algorithms is observed for the second and third objective. However, we notice again 
that the results of the two algorithms are not competitive with those of the Challenge 
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Winning Team, except for instance 35_ch2_S22_J4 with COLOUR_HPO_LPO objective 
hierarchy for which all algorithms obtain the same result.  GA-IBXMO ranks between 12th and 
20th while GA-NCPXMO ranks between 1st and 17th. We also notice that, except for one 
instance for GA-NCPXMO and three instances for GA-IBXMO, the two algorithms obtain the 
same value for the main objective as the Challenge Winning Team did. We can make this 
conclusion considering that the weight of the main objective is set at 1000000 and that the 
gap between the algorithms is less than this value.  
 

 
Winning 

Team 
GLS 

(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET A      
COLOUR_HPO_LPO      

022_3_4 11039001 (1) 11041001 (15) 11039131 (12) 11039098 (11) 11039001 (1) 

039_38_4 _ch1 68161000 (3) 68265000 (15) 68265000 (15) 68249000 (12) 68155000 (1) 

064_38_2 _ch1 63423782 (1) 63435799 (15) 63443831 (17) 63423782 (1) 63423782 (1) 

064_38_2_ch2 27367052 (1) 27367052 (1) 27367067 (15) 27367052 (1) 27367052 (1) 

SET B      

COLOUR_HPO_LPO      

022_S22_J1 13022148 (1) 13022154 (11) 13022189 (19) 13022178 (17) 13022148 (1) 

023_S23_J3 51327031 (1) 54349063 (21) 51735264 (20) 51393130 (17) 51343070 (9) 

024_V2_S22_J1 134023158 (1) 135226676 (20) 134902740 (19) 134230457 (14) 134057341 (4) 

025_S22_J3 126127589 (1) 133129840 (21) 126300350 (18) 126136839 (12) 126127589 (1) 

028_ch1_S22_J2 38098201 (4) 38098251 (9) 38099330 (16) 38098334 (12) 38098188 (1) 

028_ch2_S23_J3 4000071 (1) 4000071 (1) 5000078 (18) 4000071 (1) 4000071 (1) 

029_ S21_J6 52711171 (1) 52755179 (14) 52905570 (20) 52763341 (15) 52717428 (8) 

035_ch1_S22_J3 6156090 (1) 6156092 (10) 6156109 (18) 6156092 (10) 6156090 (1) 

035_ch2_S22_J3 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 7651671 (1) 

039_ch1_S22_J4 55045096 (1) 55045235 (9) 55046737 (18) 55045235 (9) 55045096 (1) 

039_ch3_ S22_J4 59214671 (1) 59214698 (12) 59214783 (15) 59214681 (9) 59214671 (1) 

048_ch1_ S22_J3 64115670 (1) 64135847 (14) 64153806 (15) 64124687 (12) 64115670(1) 

048_ch2_ S22_J3 58283180 (1) 58288194 (12) 58312194 (19) 58290183 (13) 58283180 (1) 

064_ch1_ S22_J3 62095288 (1) 62108458 (10) 63116379 (19) 62113381 (12) 62097307 (3) 

064_ch2_ S22_J4 31052178 (1) 31052184 (9) 32052158 (16) 31053188 (13) 31052178 (1) 

Table 5. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
instances with COLOUR as the main objective 

By comparing the results of our algorithms with those of GLS, we again notice that GLS 
outperforms GA-IBXMO for 2 of 4 instances of SET A, is worse for only one instance while 
obtaining an identical result for the remaining instance. However, for the SET B instances, 
GLS clearly outperforms GA-IBXMO by obtaining better results for 11 instances, worse results 
for 3 instances and identical results for the remaining instance.  By comparing the results of 
GA-NCPXMO with those of GLS, one notes that GA-NCPXMO obtains better results for all 
instances of SET A except one where the two algorithms achieve identical results.  For the 
SET B instances, GA-NCPXMO obtains better results than GLS for 5 instances, is worse for 6 
instances while obtaining identical results for the 4 remaining instances.  Again, we observe 
very close performance between the two algorithms. 
By now comparing the results of the two GAs to those of the Challenge Winning Team, we 
notice on one hand that GA-NCPXMO always reaches the same value for the main objective.  
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On the other hand, GLS doesn’t always reach these values. GLS even obtains the worst 
solution for instances 023_S23_J3 and 025_S22_J3 with COLOUR_HPO_LPO objective 
hierarchy. 
By analysing the results of GA-NCPXMO+LS, we observe a clear performance improvement 

for all the instances.  Thus, for SET A instances, GA-NCPXMO+LS always obtains identical or 

better results than those of the Challenge Winning Team. For SET B instances, GA-

NCPXMO+LS obtains identical or better results than those of the Challenge Winning Team for 

11 of the 15 instances. GA-NCPXMO+LS always ranks between 1st and 4th except for instances 

023_S23_J3 and 029_S21_J6 with COLOUR_HPO_LPO objective hierarchy, where it ranks 9th 

and 8th respectively.  Compared to GLS, GA-NCPXMO+LS gets better results for 16 of the 19 

instances while obtaining identical results for the 3 remaining ones. 

Finally, Table 6 gives the results of the different algorithms for the 19 instances of SET X that 
was used in the 2005 ROADEF Challenge to determine the final ranking. Here, instead of 
executing the algorithms once as we did in the previous results, we executed the algorithms 
5 times as was done for the qualified teams in this phase of the Challenge. The values 
reported in this table are thus the average results of 5 runs.   
 

 
Winning 

Team 
GLS 

(rank) 

AG- 
IBXMO 
(rank) 

AG- 
NCPXMO 

(rank) 

AG- 
NCPXMO +LS 

(rank) 

SET X      
HPO_COLOUR_LPO      

023_S49_J2 192466 (1) 246268.20 (17) 246268.40 (18) 211879 (12) 193077 (3) 

024_S49_J2 337006 (1) 421425 (8) 27046420.20 (18) 506015 (11) 346202.20 (2) 

029_S49_J5 110442.60 (2) 120855 (11) 150969.20 (17) 123029.20 (12) 111093.20 (3) 

034_VP_S51_J1_J2_J3 56386.80 (1) 76217.60 (17) 74354.20 (15) 66750 (12) 57577.40 (5) 

034_VU_S51_J1_J2_J3 8087037 (4) 8091450.20 (10) 8112049 (16) 8103064 (15) 8087035.80 (1) 

039_CH1_S49_J1 69239 (1) 69455.60 (6) 69705 (9) 69479.60 (7) 69355.20 (2) 

039_CH3_S49_J1 231030.20 (2) 239593.20 (16) 250670 (17) 235475.40 (13) 231030.40 (3) 

048_CH1_S50_J4 197044.80 (3) 206509.60 (16) 207634 (17) 204182 (14) 197045.40 (4) 

048_CH2_S49_J5 31077916.20 (1) 31104598.80 (12) 31128931 (18) 31106266.2 (13) 31078317.20 (2) 

064_CH1_S49_J1 61187229.80 (1) 61229518.80 (12) 61309246.20 (20) 61223429 (10) 61190429 (2) 

064_CH2_S49_J4 37000 (1) 40400 (14) 42000 (15) 39000 (12) 37000 (1) 

655_CH1_S51_J2_J3_J4 30000 (1) 30000 (1) 30000 (1) 30000 (1) 30000 (1) 

655_CH2_S52_J1_J2_S01_J1 153034000 (1) 153035200 (8) 153047000 (12) 153041000 (11) 153034000 (1) 

COLOUR_HPO_LPO      

022_S49_J2 12002003 (1) 12002003 (1) 12002008 (16) 12002003 (1) 12002003 (1) 

035_CH1_S50_J4 5010000 (1) - 5010000 (1) 5010000 (1) 5010000 (1) 

035_CH2_S50_J4 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 6056000 (1) 

LPO_COLOUR_HPO      

025_ S49_J1 160407.60 (2) 189390.20 (15) 188118.20 (13) 176454.60 (10) 160407.20 (1) 

028_CH1_S50_J4 36370094 (4) 36377907.20 (5) 49863125.80 (20) 39634315.20 (12) 36360092.40 (2) 

  028_CH2_S51_J1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 

Table 6. Results of the Winning Team, GLS, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for 
SET X instances 

When we compare the average results of GA-IBXMO and GA-NCPXMO, we again notice for 
this set that GA-NCPXMO clearly outperforms GA-IBXMO by obtaining better results except 
for 4 instances for which the two algorithms obtain the same average results.  We also notice 
for these 4 instances that the two algorithms always find the same solution for each run.  
Moreover, the results obtained by the two GAs are the same as those of the Winning Team.  
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By looking more closely at the characteristics of these 4 instances, we notice that they are 
small instances where the number of cars to schedule is between 65 and 376.  These small 
sizes probably explain why the two algorithms solve these 4 instances trivially.  As shown in 
the previous results, the gap between the two algorithms seems to be related to the size of 
the instances.  Indeed, GA-IBXMO seems to have more difficulty to converge towards a good 
solution for large instances. This situation is again confirmed using instance 024_S49_J2 with 
HPO_COLOUR_LPO objective hierarchy and 1319 cars to schedule. For this instance, the 
gap between the average results of the two algorithms for the main objective is over 26 
conflicts.  Except for the 4 small size instances solved trivially, GA-IBXMO ranks between 9th 
and 20th while GA-NCPXMO ranks between 7th and 15th. 
If we now compare the results of our two algorithms to those of GLS, we observe similar 
results to those obtained for SET A et SET B.  GA-IBXMO is worse than GLS for 13 instances, 
better for 3 instances while identical for the 3 other instances.  We notice that among the 3 
instances for which GA-IBXMO achieves better average results than GLS, there is one instance 
(035_CH1_S50_J4 with COLOUR_HPO_LPO hierarchy) for which GLS did not provide a 
feasible solution during this phase of the Challenge.  When we now compare GLS to GA-
NCPXMO, we notice that GA-NCPXMO outperforms GLS for 8 instances, is worse for 7 
instances while identical for the 4 remaining instances.  
We also notice that the results of GA-IBXMO and GA-NCPXMO are not competitive with the 
average results of the Winning Team.  However, by adding a local search procedure to GA-
NCPXMO, we considerably improve the performance of the algorithm by obtaining the best 
average results for 10 instances while obtaining very close average results for the other 
instances.  GA-NCPXMO+LS ranks between 1st and 5th for all the instances of SET X. 
Now, to compare the performance of the proposed approaches with the results of the teams 
that qualified for the Challenge, we used the ranking procedure described in the Challenge 
description, that consists in calculating a mark for each instance of SET X according to 
Equation 5.  The mark of each algorithm is calculated according to the best and the worst 
solution found by the 18 teams that qualified for the Challenge and the 3 proposed 
algorithms. The score is a normalized measure of solution quality that necessarily lies 
between 0 and 1. 

 

resultworstresultBest

resultBestresult
oAmark

oA

__

_
)lg(

lg

−

−
=

 (5) 

In Equation 5, Best_result and Worst_result indicate respectively the best and the worst 
average result found for an instance while resultAlgo indicates the average result found by the 
algorithm for which we compute the mark for the same instance.  Then, each row of Table 7 
lists the mark of the Winning Team, the GA-IBXMO, the GA-NCPXMO and GA-NCPXMO +LS 
for each instance of SET X.  The last row of this table lists the total mark of each algorithm 
for the whole set.  On analysing the results of Table 7, we notice that they confirm the results 
of Tables 3 to 6, namely that GA-NCPXMO is a better performer than GA-IBXMO and that GA-
NCPXMO+LS is the best performer compared to the two other algorithms.  It is important to 
mention that, according to the final rank of the Challenge that is published by the organizers 
and that is available online from the Challenge website, GLS ranks 13th with a mark of 
16.8937 while the Winning Team has a mark of 18.9935.  Based on these results, we may 
conclude that the difference between the results of our best genetic approach and those of 
the Winning Team is rather small (0.0345).  We also notice that both GA-NCPXMO obtain a 
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better mark than GLS, with and without local search procedure. We may then conclude that 
the methods proposed in this chapter achieve competitive results for the multi-objective 
ICSP. Thus, we demonstrate that GAs are well suited to address this category of problem if 
they incorporate specific knowledge of the problem to design dedicated genetic operators. 
 

 Marks 

SET X 
Winning  

Team 
AG-IBXMO AG-NCXMO 

AG-
NCXMO+LS 

HPO_COLOUR_LPO     

023_S49_J2 1 0.5575 0.8403 0.9950 

024_S49_J2 1 0.4605 0.9966 0.9998 

029_S49_J5 0.9980 0.4249 0.8200 0.9888 

034_VP_S51_J1_J2_J3 0.9956 0.7949 0.8799 0.9823 

034_VU_S51_J1_J2_J3 1 0.9998 0.9999 1 

039_CH1_S49_J1 1 0.9755 0.9873 0.9939 

039_CH3_S49_J1 0.9999 0.6368 0.9178 1 

048_CH1_S50_J4 0.9999 0.9952 0.9968 1 

048_CH2_S49_J5 1 0.9868 0.9927 0.9999 

064_CH1_S49_J1 1 0.9799 0.9940 0.9995 

064_CH2_S49_J4 1 0.8588 0.9435 1 

655_CH1_S51_J2_J3_J4 1 1 1 1 

655_CH2_S52_J1_J2_S01_J1 1 0.9999 0.9999 1 

COLOUR_ HPO_LPO     

022_S49_J2 1 0.9999 1 1 

035_CH1_S50_J4 1 1 1 1 

035_CH2_S50_J4 1 1 1 1 

HPO_LPO_COLOUR     

025_S49_J1 1 0.9983 0.9990 1 

028_CH1_S50_J4 0.9999 0.9553 0.9891 0.9999 

028_CH2_S51_J1 1 1 1 1 

Total 18.9935 16.6241 18.3569 18.9590 

Table 7. Marks of the Winning Team, GA-IBXMO, GA-NCPXMO and GA-NCPXMO+LS for SET 
X instances. 

6. Conclusion 

In this chapter, we have introduced a GA based on two specialized crossover operators 
dedicated to the multi-objective nature of the ICSP proposed by French automobile 
manufacturer Renault for the ROADEF 2005 Challenge.  If GAs are known to be well suited 
for multi-objective optimization (Barichard, 2003; Basseur, 2004; Zinflou et al., 2006), few 
researchers and industrials decided to use this category of algorithms to solve the ICSP.  
Among the 18 teams that qualified for the second phase of the Challenge, only one proposed 
a genetic algorithm based approach. This situation may be explained by the difficulty in 
defining specific and efficient genetic operators that take into account the specificities of the 
problem.  The approach proposed in this chapter is essentially based on adapting highly 
specialized genetic crossover operators to the specificities of the industrial version of the 
single objective car sequencing problem, for which we have three conflicting objectives to 
optimize.  The numerical experiments allowed us to demonstrate the efficiency of the 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

398 

proposed approach for this industrial problem.  A natural conclusion of these experimental 
results is that GAs may be robust and efficient alternative to solve the multi-objective ICSP.  
These results also again highlight the importance of incorporating specific problem 
knowledge into genetic operators, even if classical genetic operators could be used.  We are 
also aware of the fact that having known the solutions found by the algorithms of the 
different qualified teams has facilitated improving and tuning our algorithms. However, the 
main purpose of this study was to demonstrate that GAs can be an efficient alternative to 
solve this kind of industrial problem. 
The lexicographical treatment of the objectives proposed by Renault is such that it can 
eliminate several “interesting” solutions for the manufacturer.  Indeed, the relaxation of the 
importance granted to the main objective can highlight other attractive solutions for the 
company.  For example, if an additional violation on the HPO objective allows to avoid 5 
colour changes, the production scheduler could then be interested to a such solution to 
make his final schedule. We therefore believe that the industrial problem introduced by 
Renault would benefit to be treated to obtain so-called “compromise solutions”.  In this 
context, the GAs proposed in this chapter represent very interesting alternatives to find 
these compromise solutions.  In fact, GAs are well suited for multi-objective optimization in 
the Pareto sense and these approaches have proven their ability to generate compromise 
solutions in a single optimization step. Since the mid-nineties, an increasing number of 
approaches exploit the principle of dominance (Zitzler and Thiele, 1998; Deb, 2000; Knowles 
and Corne, 2000a; Knowles and Corne, 2000b; Coello Coello and Pulido, 2001) in the Pareto 
sense as defined by Goldberg (1989).  These evolutionary multi-objective algorithms use the 
concepts of dominance, niches and elitism (Deb, 2000; Knowles and Corne, 2000b; Deb and 
Goel, 2001; Zitzler et al., 2001).  The NSGAII algorithm (Deb, 2000), the SPEA2 algorithm 
(Zitler et al., 2001) and the PMSMO algorithm (Zinflou et al., 2007) are recognized as amongst 
the best performing of the elitist multi-objective evolutionary algorithms.  These algorithms 
are said to be elitist because they include one or several mechanisms allowing the 
memorization of the best solutions found during the execution of the GA.   
For future work, we will use this type of approaches to consider the objectives 
simultaneously, without assigning priority or weight.  A set of compromise solutions may 
then be found for comparison to the solution by considering the objectives in lexicographical 
order.  It will thus be possible to highlight different solutions that are much more financially 
interesting for a manufacturer and that are better suited to industrial reality.   
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