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1. Introduction 

The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free 
PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as 
PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general 
purpose population-based evolutionary algorithms. The success of GAs is unquestionable 
(Goldberg, 1989). Despite that, PBIL has shown to be superior in many aspects. 
PBIL is a evolutionary algorithm developed as an attempt to mimic the behavior of the 
Genetic Algorithms in an advanced stage of its execution, “in equilibrium”. The result 
shows unexpectedly that the PBIL surpasses (Baluja, 1995) the genetic algorithms in almost 
all aspects. The PBIL is faster and finds better results (Machado, 1999). However, PBIL 
depends on five parameters which need to be adjusted before each application. For example, 
variations in the learning rate produce completely different behaviors (Baluja, 1994). 
Up to today, every evolutionary algorithm, like PBIL, just mentioned, depends on at least 
one parameter which, if not adjusted properly, can cause the algorithm to be very inefficient. 
Consequently, the less parameters an algorithm has, the minor the risk of it not reaching all 
its potential in some particular application; and the less the time spent in finding the 
appropriate parameter’s values. 
One of the benefits of FPBIL—perhaps the most important—is that it is a parameter free 
algorithm (the origin of the F in FPBIL), which means that a parameter optimization, an 
application-dependent procedure required by other algorithms in order to achieve better 
results, is not necessary in FPBIL. Parameter optimization demands intense computational 
effort, a precious time often not taken into account when somebody claims that an algorithm 
finds a better result in a shorter amount of time. 
Based on PBIL, FPBIL is built with the guarantee of a better performance than that of PBIL, 
which also means (whenever the PBIL has a good outcome) a better performance in 
comparison to other algorithms, besides the advantage of none additional computational 
cost in adjusting parameters. 
We begin this chapter by describing the PBIL algorithm and, then, we present the main 
steps to the FPBIL algorithm it self. Afterwards, we compare the performance of FPBIL 
against other algorithms in typical benchmark problems and finally we propose some 
concluding remarks. 

2. PBIL algorithm 

The PBILwas created in 1994, by Shumeet Baluja. It was inspired in its previous work with 
Ari Juels (Juels et al., 1993) in an attempt to simulate the behavior of the genetic algorithms O
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(Holland, 1992; Goldberg, 1989) in “equilibrium state”, after repeated applications of the 
crossover operator. The algorithm referenced here by “PBIL” had its publication later, in 
1995 (Baluja, 1995), in which 27 problems, commonly explored in the literature of genetic 
algorithms, were examined by seven different optimization techniques, PBIL having 
achieved optimum performance in more than 80% of the cases. PBIL algorithm is shown in 
figure 1. 
 

 

Fig. 1. PBIL Algorithm. 

In PBIL, a subset BS of the search space B of some optimization problem is explored from 

one hypercube Hn ≡ [0, 1]n, in such a way that each vertex of Hn, that is, each point of 

  ≡{0, 1}n corresponds to a point of BS . This correspondence is made by the mapping 
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(1) 

with Ik ≡ [k] ∈ {0, 1}, meaning that n

BSM maps a bit vector with n bits into a point of BS —

a candidate solution to the problem. 

After the vertices of Hn are duly mapped into BS , the PBIL works exactly in the same way, 

independently of the current application and this is what makes the PBIL algorithm1 
versatile, meaning that the necessary and sufficient condition in order that an optimization 

problemcan be boarded by PBIL is the existence of n

BSM . 

A point  ∈ Hn is called probability vector and it plays a central role in PBIL-like 

algorithms. Its n components pk ≡  [k] ∈ [0, 1] are suitable for representing the probability 

of choosing by chance the number 1 in a set Ω= {0, 1}. From  is possible to construct an 

army of  objects. All we have to do is to pick Ik to be 1 or 0, probabilistically, according to 
pk—the more pk is close to 1, the more is Ik likely to be 1. 

At the beginning of PBIL each point of BS  must be treated as potential best solution and P 

vertices of Hn are, therefore, chosen randomly from a uniform probability distribution. This 

uniform probability distribution is nothing but 0 = (0.5, 0.5, . . . , 0.5), the center of Hn. 

In PBIL’s terminology, the P vertices k of Hn selected from  forma “population”—the 

“generation” G—and each k  is called an “individual”. The PBIL algorithm consists in, once 

established the individuals of generation 0, constructing 1, which will generate the next 
population—generation 1. The process is repeated until an individual of some generation is 
considered to be good enough. In this sense, the PBIL algorithm may be viewed as the 

motion of  inside Hn until  gets close enough to some point of  corresponding to a 

satisfactory solution; the laws of motion being the PBIL rules by which  is updated from 
generation to generation. 
The measure of how good an individual is, is given by the fitness function 

 
(2) 

whose form depends explicitly on the application. 

The construction of +1 from the individuals of the generation G is the main process in a 

PBIL-like algorithm. Any point +1 of Hn different from 0 generates a non-uniform 

probability distribution on . The strategy is to modify, generation after generation, this 
probability distribution trying to turn ever more likely the sprouting of †, the optimum 
solution. In PBIL, +1 is constructed in two steps. 

In the first step, the following operations are carried through: 

 (3) 

                                                 
1 This is also true for other algorithms working with bitstrings, such as Genetic Algorithms. 
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(4) 

where + and -  are respectively the best and worst individuals of generation G. That is,  

initially is dislocated towards + and then, away from -, with the intention to favor the 

occurrence of better individuals in the following generation. 

In the second step   suffers mutation, whose objective is to allow that some component 

of  reaching the value 1 (or 0) has the possibility to evolve again—since, once pk = 1 (or pk = 

0), it can not change by means of equation (4). Such mutation consists of moving the 

components of  in the direction of DM (randomly 0 or 1). This means that each 

component [j] will suffer, or not, a displacement (according to the “mutation 

probability”) in the form of: 

 
(5) 

As can be verified in figure 1, the PBIL algorithm needs five parameters to work, whose 

values were determined experimentally in order to maximize the average performance of 

the algorithm in a set of different applications. In the next section, we will show how to 

extend PBIL to be parameter-free. 

3. FPBIL: parameter-Free PBIL 

FPBIL is a variation of PBIL which basically tries to eliminate the necessity of the PBIL’s 

parameter by modifying some of its fundamental principles. The result is a more efficient 

algorithm, with a superior search power and without parameters. 

As in PBIL, the FPBIL algorithm presents a probability vector , with n components  

pk ∈ [0, 1], from which P individuals k of some generation are created. The characteristic 

that differentiates them is that FPBIL uses generic mechanisms to become free of 

parameters, especially in the way  is updated and the mutation is implemented. The 

FPBIL Algorithm is presented in figure 2. 

3.1  update: eliminating the parameters α and β 

In the algorithm PBIL, the probability vector is updated by suffering a small displacement 

approaching to the best individual and another displacement moving away from the worst 

individual. In some variants of the PBIL (Baluja & Caruana, 1995; Baluja & Davies, 1998; 

Machado, 2005), only the best individual is used, or only the worst individual, or also, the 

average of the first best individuals. The fact is that, in order to evaluate who are the best 

and worst individuals, all the individuals must be evaluated, which means that all PBIL 

algorithms waste almost all the information available about the search space. 
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Fig. 2. FPBIL Algorithm. 

The rule according to which the FPBIL updates its probability vector is 

 

(6) 

which reflects exactly an average in which all P individuals are used. The difference is that 

this average is weighed by the fitness Fi ≡ F( i) of each individual. In order to appreciate 

better the change caused by this detail, it can be deduced that 
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(7) 

with 

 
(8) 

and 

 

(9) 

Note that 
1i=∑ P

i /P is approximately   so that equation (7) resembles the structure of 

equations (3) and (4) corresponding to PBIL. 
The advantage in using  is that the direction of the displacement is not based only on the 
best and worst individuals, but in all the available information about the search space at 

some generation (P evaluated individuals). Another detail about   is that the averages are 

not simple, but weighed by the differences between the fitness of each individual and the 
average fitness, so that very bad or very good individuals exert more influence than others 
with fitness next to the average. 

It is worth noting that each point  of Hn can be associated to an average fitness F  

through 

 

(10)

The reason is that from , each individual i has a probability  ( i) of being picked. After 

P tries, the individual i is picked Pi times. In the limit when P becomes sufficiently big, we 

have 

 

(11)

 
(12)

Since F is such an average, it is continuous, differentiable and it doesn’t have any local 

maximum or minimum in Hn - , which means that the extreme points of F in Hn 

occurs for † and ┴ in , with † F = F( †) and ┴ F  = F( ┴)—where ┴ 

represents the worst individual in . And that is just interesting. 
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In each generation of FPBIL, we have F  ≈ F  and the P individuals k are divided 

into two groups: those with F( k) > F  and those with F( k) < F . If we represent each 

of these groups respectively by the points 

 
(13)

and 

 
(14)

we see from equation (9) that FPBIL works in such a way that  moves in the direction that 

F grows, leading, theorically at least, to +. Just to compare, in PBIL, + and -  are 

used instead of > and <, which means that PBIL is much easier to get caught by local 
optimums. 

Obviously we can only bet that the approximation F ≈ F is good enough. Only in the 

limit P → ∞ can we be sure. The same limit when we would have already evaluated every 

element of , so that we would no longer need a search algorithm. Fortunately, the FPBIL 

algorithm also have proper mechanisms that compensate for the finiteness of P. ξ can be 

considered to be one of those. 

It can be verified that ξ plays a similar role just like α or β, related to the intensity of the 

displacement suffered by . While α and β are constants, ξ varies in accordance to the 

fitness distribution of each generation. More precisely, ξ is the half of the mean absolute 

deviation, relative to the average, of the fitness: 

 
(15)

 
(16)

 
(17)

The mean absolute deviation (δ) is a measure of dispersion of a distribution, just like the 

standard deviation. δr is only another way to express the same dispersion relative to the 

average. 
At the beginning of an execution of the FPBIL, the individuals generally possess a very bad 

fitness. While no individual detaches, ξ is small—the algorithm does not take risks by 
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making a decision on which direction to follow. When the first good individuals appear, ξ 

increases considerably. As the average fitness goes up, ξ diminishes gradualy—preventing 

itself from premature convergence. Finally, when the optimum solution is near, ξ becomes 

very small, making sure that  will not have great oscillations around it but, instead, it 
might be reached. 

3.2 Mutation: eliminating the parameters  and γ 
The role of mutation is to give “second chances” to the components of  that reach the 

values 0 or 1 when they were not supposed to do so. In the limit P →∞, FPBIL would not 

need mutation at all, as we have already discussed. But in a real situation, mutation is 

another mechanism that compensates for finite P, and it is essential to FPBIL. 

The PBIL carries mutation probabilistically (in accordance to ) through random 

displacements (proportional to γ) in the components of . The FPBIL algorithm follows a 

more direct strategy, exploring the meaning of the probability vector. First, the algorithm 
hinders any component of  from reaching the values 0 or 1. This way the emergence of any 

individual in  is always possible. That is accomplished by restricting every component pk 

of  to the interval [d, 1 — d]. As a consequence, the probability of choosing by chance any 
individual from  will always be between dn and (1 — d)n. 
Given any value d, the number c of components of  with pk ≤ d or pk ≥ 1 — d is considere to 
be the number of components which are in the correct position. Then it is possible to find 
the optimum value of d, so that it maximizes the probability of choosing from  an 
individual with the corresponding c correct components and so that is also capable of 
inverting the trend of some component going toward the wrong direction. The probability 
which must be maximized is, therefore, 

 (18)

giving 

 
(19)

The FPBIL algorithm takes d to be initially (in generation 0) d2 = 1/3—the biggest value of dc 

different from 0.5. After  is updated to , we count how many (c) components of  
 satisfy pk ≤ d2 (or pk ≥ 1 — d2). If c ≥ 3, d becomes d3 = 1/4. If d = d3 and c ≥ 4 (the number 

of components of   that satisfy pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d4 = 1/5, and so on. 

Thus, it is possible to diminish d gradually as P gets close to some point in — +, 
expectedly. 

But there is also a mechanism that allows d to grow. If, for example, d = d5 = 1/6 but c [ 6, 

we count how many (c′) components of  satisfy pk ≤ d4 (or pk ≥ 1—d4). If c’ < 5, d 

becomes d4 = 1/5. If d = d4, c [ 5 and c′< 4 (the number of  components that satisfy  

pk ≤ d3 (or pk ≥ 1 — d3)), d becomes d3 = 1/4, and so on, until d hits the value d2 = 1/3, the 
biggest allowed. 
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After we count c and c′and update d, mutation do its real job: it brings back to d (or to  

1—d) any  component smaller than d (or bigger than 1—d), transforming  into 
. FPBIL’s mutation is illustrated in figure 3, where each point  represents a 

component of . As we can see, d values work as “gates” that open or close depending on 

the values of c and c′. 
 

 

Fig. 3. Two examples of mutation: in the first, d diminishes; in the second, it grows. 

3.3 Variable population size and reinitializations: eliminating the parameter P 

The size of  is 2n, which is usually very large. The population sizes commonly used in 
PBIL are very small fractions of this value. Therefore, it is reasonable to use the relation 

 2=P
n

w  (20) 

for some w. 
Perhaps the most remarkable aspect of FPBIL (and PBIL) is that the population size does not 

have to be a constant—sheer nonsense for GA users. Since every population is generated 

from  instantly after  is created, it does not matter whether we generate only one or a 

thousand individuals. There is no higher complexity involved than choosing how many 

individuals we want. 

As the number c of correct components of  increases, we must, therefore, need only 
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(21)

individuals, where the factor k/(1—d)c only appears to assure that the correct component are 
reproduced with 99.9% of probability (for k = 7) (Caldas, 2006). Using equation (19), it can be 
written as 

 
(22)

where P0 is the initial population, corresponding c = 0. FPBIL is initiated with P0 = Pn and 

every time c suffers a fluctuation, P0 is increased by 1. That occurs because, when the time 

average Gc of c stops varying, the algorithm must be imprisoned in a local optimum, so it 

must be reinitiated. The difference is that in each reinitialization P0 will be each time bigger 

(due to the fluctuations of c), increasing gradually the power of search of the FPBIL. A 

fluctuation in c will be computed whenever c does not grow or decrease directly, that is, 

whenever c, as a function of G, reaches a minimum, a maximum or simply remains constant; 

and Gc stands for the time average of c between reinitializations. 

3.4 About the fitness function 
Although FPBIL is parameters-free, it still depends on the form of the fitness function. There 

are several functional forms for F capable of determining the same order F( -) ≤ F( i) ≤ 

F( j) ≤ · · ·≤ F( +) and each one of them can generate different  and ξ values, which 

would result in equally different behaviors. Consider the analysis of equations (8) and (9) in 
two simple examples: 

1. With the transformation F '

i
= f ·Fi ( f ∈ R), one has ′ =  e ξ′ = ξ, that is, the 

multiplication of the fitness by a constant factor, does not modify anything in the 
behavior of FPBIL. 

2. With the transformation F '

i
 = t + Fi (t ∈ R), however, ′ = , but 

 
(23)

meaning that if t >> F  then ξ′ ≈ 0, that is, the addition of the fitness to a constant term 

modifies the intensity of the steps of the FPBIL, making the FPBIL impracticable for big 
values of t. 

Item 2 suggests that one good practice may be the use of the fitness F '

i
= Fi—F( -), 

guaranteeing that ξ will never be smaller than necessary. Following such recommendation, a 

generic procedure was adopted to construct the fitness—based on the procedure used by 

Koza in the genetic programming algorithm (Koza, 1992)—described as follows. 
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The raw fitness Fr is the natural amount of the problem that one desires to maximize or 

minimize, also called objective function. From the raw fitness, the standard fitness Fs is 

constructed, which possesses the characteristic of having 0 ≤ Fs( a) < Fs( b) whenever a is 

better than b, and, preferentially, with Fs( +) = 0. From the standard fitness, the adjusted 

fitness Fa is calculated from 

 
(24)

Finally, following the recommendation of having F '

i
= Fi—F( -), the fitness function used 

everywhere in this work (excep when expressly told) will be 

 

(25)

where Fa(
1

−

−G ) it is the adjusted fitness of the worse individual of the previous generation. 

The excuse for using Fa(
1

−

−G ) is that, to find F( -), it is necessary to evaluate all the 

individuals of a generation, which implies that, in order to calculate F '

i
= Fi —F( -), all the 

individualsmust be evaluated twice every generation or all the individuals of a generation 
must be stored in some data structure. The adopted solution, besides economical, does not 

harm too much the original recommendation since generally Fa(
1

−

−G ) ≈Fa ( -). 

Next, we will see how to put all this into practice. 

4. Problems 

This section is intended to show how PBIL and FPBIL behave in different problems of 

growing complexity. These problems belong to specific classes, which are, ultimately, 

numerical or combinatorial, so we can learn how to proceed in both cases. Besides the 

opportunity to see how these two algorithms works in practice, we will use the results then 

achieved to quantitatively compare them and, whenever interesting, compare their results to 

those of other techniques. Let us begin with the simplest. 

4.1 A simple problem in 
2

H  

In order to visualize better the differences between FPBIL and PBIL, we will use them in a 

very simple problem: to find the greatest number in B = N4 ≡ {1, 2, 3, 4}. We can chose 

BS = B, so that we need only n = 2 bits to cover all BS (because 22 = 4 = number of elements 

in BS )—FPBIL and PBIL will work in H2, which is nothing but a simple (easy to visualize) 

square. That means that we can correspond each point of  to a member of BS . We may 

choose, for example, n

BSM to be the following map: 
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 (26)

Given the simplicity of this problem and the fact that we are, in this first moment, more 
interested in seeing what happens inside the hypercube, a few simplifications will be done: 
we will fix the population size; there will be no reinitializations; and the fitness will be the 
raw fitness, which we choose to be: 

 (27)

We make two experiments. In the first, we fix the population size to be P= 1, 000, 000, which 

compared to the size of BS can be considered to be infinite. The result is shown in figure 4. 

The contour lines represent constant values of F , according to equation (10) for the 

fitness defined in equation (27). The lines describe the movement of FPBIL’s and PBIL’s 
probability vectors. 
 

 

Fig. 4. Comparison between FPBIL and PBIL in H2; P=1,000,000. 

We see clearly that PBIL certainly finds the result to be “4”, but FPBIL’s line ends 
mysteriously. This is FPBIL’s mutation in action. Since n = 2, the minimum value of d 

allowed is dn = d2 = 1/3—FPBIL’s   can move only inside [1/3, 2/3]2. This doesn’t mean 
FPBIL can’t find the result “4”. In fact, from point (2/3, 1/3), the probability of getting the 
result “4” is 4/9, 2 times higher than the probability of getting “1” or “2” and 4 times higher 
than that of getting the result “3”.The mutation in PBIL is more subtle and can be observed 
in the two sudden breaks suffered by PBIL’s line. 
We also highlight, in the same figure, the blue arrows which represent the gradient of 

F . Note that before the FPBIL’s line reach the limits of [1/3, 2/3]2, it (differently from 

PBIL’s line) follows a direction very near from that of the gradient, which is just excellent, 
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considering the discussion in section 3.1, meaning that in the limit of big values of P, 

FPBIL’s line can follow the gradient of F to the optimum solution. 

From this first experiment we are tempted to think PBIL is much better. But let us not forget 
this was an “almost infinite” population size experiment. In real applications we generally 
cannot span completely (whenever we can, we surely will not need FPBIL). Hence, in the 

second experiment, we fix P = 2 (at maximum, half the elements of BS ). The results are in 

figure 5. This time we see what generally happens in a real world problem. Both PBIL and 
FPBIL get more confused, but while FPBIL’s mechanisms keep it doing its search inside 
[1/3, 2/3]2, PBIL converges prematurely to a local optimum. 
The next problem is, in a sense, a tougher version of this first. 
 

 

Fig. 5. Comparison between FPBIL and PBIL in H2; P=2. 

4.2 Banana 
The banana problem consists in minimizing the Rosenbrocks function (Gill et al., 1981): 

 (28)

From a simple observation of the expression of this equation, we may conclude, without 

trouble, that a minimum of B(x, y) occurs for (x, y) = (1, 1). Also it is not difficult to show 

analytically that this is the only point where B(x, y) becomes stationary. However, looking at 

the graph of B(x, y) it is impossible to come to the same conclusion. 

It is quite obvious the existence of a valley located at y = x2, but finding the exact point of the 

valley where B(x, y) is minimal is not simple at all. The difficulty in having such a view is 

due to the factor 100 that multiplies only (y—x2)2 , leaving out the term (1—x)2. Only when 

observed in a logarithmic scale, such as in figure 6, does the region where the minimum is 

located become apparent. The white line is a contour line that shows the banana shape, 

which names the problem. 
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The Rosenbrocks function have been classically used to test optimization algorithms, exactly 
because of the difficulty that this function imposes, especially for gradient-based search 
algorithms. 

The set BS ⊂ R to be codified into binary vectors, for the use of PBIL and FPBIL algorithms 

will be [- 4.194304; 4.194304)2, with a granularity of 0.000001 in both variables x and y. This 

means that each variable needs 23 bits to represent BS , resulting in a total of 246 = 70, 368, 

744, 177, 664 possibilities. 

More formally we have, with n = 2 ·23 = 46, 

 (29)

With 

 
(30)

 
(31)

 

Fig. 6. Contour lines of log10 B(x, y). The white curve, in a banana shape, highlights the blue 
area where the minimum occurs. 

Where G1( ) is the decoding of the first half of  and G2( ), of the second, both using Gra 
code2 (Knuth, 2002). The fitness function of the banana problem used in this work is simply 
B(x, y): 

 (32)

                                                 
2 The use of Gray code may improve results considerably (Baluja, 1995). 
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Since we are dealing with a minimization problem and Fp(
+) = 0, the standard fitness we 

use will be the raw fitness itself: 

 
(33)

In order to compare FPBIL to PBIL, we executed each algorithm 100 times and computed the 
average of the corresponding best individuals after a number of fitness evaluations. The 
result is shown in figure 7. We can see that the initial advantage of PBIL is amply overcome 
in the last fitness evaluations (approximately by a factor of 106). PBIL stagnates after 2, 000 
fitness evaluations while FPBIL keeps finding better results in a constant rate until the end. 
The next problem is a classical one concerning evolutionary search algorithms based on bit 
vectors. 
 

 

Fig. 7. Comparison between FPBIL and PBIL. 

4.3 The four peaks problem 

Consider the two functions defined on  100: 

 O( ) = number of contiguous 1’s of  starting in position 1; (34) 

 Z( ) = number of contiguous 0’s of  ending in position 100; (35) 

where, for example, O(011 ⋅ ⋅ ⋅ 111) = 0, O(111 ⋅ ⋅ ⋅ 111) = 100, Z(111 ⋅ ⋅ ⋅ 110) = 1 and  

Z(000 ⋅ ⋅ ⋅  010) = 1. Consider also the reward function 

 

(36)

defined on {0, 1, 2, . . . , 100}2 ×{0, 1, 2, . . . , 50}. In the four peaks problem, the objective is to 

maximize the function 
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 (37)

Observing FT’s plot in figure 8, one perceives that the four peaks problem is highly 

deceptive. There are two regions. One rewarded, corresponding to the upper surface, and 

another one, not rewarded, corresponding to the lower one. No point of the not-rewarded 

region (which increases with T) supplies us with any indication of the existence of the 

reward, giving the wrong impression of the existence of just peaks P1 and P2—

corresponding to FT( ) = 100—while there still are the peaks P3 and P4—corresponding to 

FT( ) = 200, the global optimums. 

 

 

Fig. 8. Plot of FT( ), the objective function of the four peaks problem. 

All the tests of the four peaks problem , carried through in this work have had T = 30 

corresponding to a great bigger difficulty than the maximum difficulty used in (Baluja & 

Caruana, 1995), when, amongst a 25 total executions, the PBIL prematurely converged 20 

times (the best result) and the genetic algorithms, between 22 and 25 times. 

The raw fitness used in the four peaks problem was simply the value of FT( ): Fr( i) = 

FT( i). Since one is dealing with a maximization problem and Fs(
+) = 200, the standard 

fitness was Fs( i) = 200—FT( i). Figure 9 shows the comparison between FPBIL and PBIL, 

where the averages of the best fitness, after a number of fitness evaluations, are plotted for 

each algorithm. In 100 runs, PBIL was not able to reach the rewarded region, while the 

FPBIL did it every time, having as worst result Fr( i) = 178. 

In the four peaks problem, the observation of the probability vector’s evolution gives avery 

interesting insight into the algorithms. Figure 10, for example, illustrates a typical FPBIL 

run. It can be very clearly seen that during the first 1, 000, 000 fitness evaluations there were 

4 reinitializations. After the second reinitialization, around the 2000th generation, FPBIL 

clearly reaches the global optimum. The PBIL, on the other hand, as shown in figure 11, 

converges, by the 2000th generation, to P2. It is also worth noting the occurrence of mutation 

in PBIL. The white region corresponds to the probability vector’s component equal to 1. The 

many red spots are the effects of mutation on the several components, making them change 

toward the value 0.5. 
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Fig. 9. Comparison between FPBIL and PBIL. 

 

Fig. 10. Typical evolution of the probability vector in FPBIL. 

4.4 TSP Rykel48 
A traveling salesman must visit N cities, returning, in the end, to the city of origin, so that no 
city is visited twice. There are several possible routes (for N > 2). In fact, the number of 
routes is (N—1)!. The traveling salesman problem (TSP) consists in finding the shortest 
route. 
The TSP is a NP problem, meaning that there is not yet an algorithm of polynomial order 
that can solve it. TheNP class can be considered as an intermediary computational 
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complexity class, between classes P and EXP; as only a great amount of combinations is 
responsible for the demand of time (Lewis & Papadimitriou, 2000), the evaluation of each 
combination is usually the easy part. 
 

 

Fig. 11. Typical evolution of the probability vector in PBIL. 

Rykel48 (TSPLIB, 2006) is a asymmetrical TSP with 48 cities resulting in a total of 258,623, 

241,511,168,180,642,964,355,153,611,979,969,197,632,389,120,000,000,000 possible routes. In an 

asymmetric TSP the distance from one city A to another city B may be different from the 

distance from B to A, modeling, perhaps, single handed roads. Although the symmetric and 

asymmetric TSPs share the same number of routes (for the same amount of N), the 

asymmetry mixes up the search space topology, resulting in more complexes TSPs. 

An important difference between Rykel48 TSP and the former problems is that the 

restriction that no city can be visited more than once prevents the direct codification of 

routes into bit vectors. The routes must be represented in an indirect way. In this work, we 

used the random keys representation (Bean, 1994; Caldas, 2006). 

The Rykel48 TSP’s raw fitness used in this work was simply the length of each route Ci 

corresponding to individual i : 

 (38)

Since it is a minimization problem, we could have Fp( i) = Fb( i). But since Fp(
+) = 14, 422 

≠ 0, the standard fitness used will be 

 (39)

Figure 12 shows the result. As it can be seen, FPBIL keeps the lead formost of its execution, 
especially in the latest 500,000 fitness evaluations. 
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Figure 13 shows the minimum and maximum values found after a number of the algorithms 

execution. The shortest route found by FPBIL was 14, 674, only 1.75% higher than the global 

optimum. Note that the PBIL presented a greater dispersion around the average. 

At this point, it must be emphasized that the route length 14, 422 is not easily reached by 

any general purpose search algorithm. For example, the genetic algorithms only reach 

values close to 16, 500 (Machado, 1999) and the algorithms based on ant colonies—designed 

specifically to find smaller routes—achieve the optimum value only when processed in 

parallel, even so, only when assisted with heuristics (de Lima, 2005). Fig. 13 shows that PBIL 

is capable of reaching values just below 15, 000. The fact that FPBIL finds routes with the 

length of 14, 674 is a remarkable achievement. 
 

 

Fig. 12. Comparison between FPBIL and PBIL. 
 

 

Fig. 13. Maximum and minimum values after a number of executions. 
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5. Conclusion 

It can be affirmed, in conclusion to this chapter, that the FPBIL is an evolutionary algorithm, 

competitive with the best current optimization techniques, compact, relatively modest in the 

use of computational resources—like PBIL—, well founded, efficient, robust, self-adaptable, 

simple and parameterless. 

Furthermore, the examples show that the FPBIL is efficient at both numerical and 

combinatorial problems. Here we should highlight the Four Peaks Problem, a highly 

deceptive problem handled very well by FPBIL. 

FPBIL is conceptually simple and intuitive, since it does not require much sophisticated 

knowledge; it is compact, in the sense that it can be programmed with a few lines of code; 

and uses little amount of memory, since there is no need to store individuals of a population 

in some data structure. 

The radically different way the mutation is handled in FPBIL is based on the probabilitie 

distribution inherent of the probability vector itself. This is updated using all the available 

information in each generation. These modifications enable the FPBIL to acquire self-

adjustable features—such as the mechanism of variable population size—making the 

algorithm more efficient and more robust. Efficient in the sense that it finds solutions in less 

time; robust, meaning it has more resources to escape from local optimums. 

With the proposition of FPBIL, we expect to have added relevant theoretical and practical 

tools, presenting feasible improvements with a considerable economic return, in both cost 

and benefit. 

There still are, however, improvements which might be incorporated into FPBIL. After 

escaping from a local optimum, the FPBIL tends to approach the global optimum more 

slowly than other algorithms—PBIL, for example. Considering the process as a whole, the 

FPBIL takes advantage (since PBIL get caught more easily), but maybe it is possible to 

combine FPBIL with some other fast search algorithm, resulting in an even more efficient 

algorithm. 

Other improvements can appear by constructing a multi-objective FPBIL— adapting the 

techniques from (Machado, 2005)—or even a parallel FPBIL—based on the techniques of (de 

Lima, 2005). One can still try to incorporate some kind of heuristic to the FPBIL perhaps 

some described in (de Lima, 2005). Works in these directions prove that these 

complementary techniques tends to produce better solutions. 
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