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1. Introduction  

There are many problems in various theoretical and practical disciplines that require robust 
structure identification techniques with as few restricting assumptions in terms of model 
structure and potentially relevant input variables (features) as possible. Due to its implicit 
variable selection and the possibility to identify also nonlinear model structures, the basic 
concept of Genetic Programming (GP) has the required descriptive potential and provides 
results in form of easily interpretable formulae as an additional benefit. However, when 
using standard GP techniques, the potential of GP is still rather limited and restricted to 
special applications. 
This chapter presents further developed algorithmic concepts which can be combined with a 
Genetic Algorithm (GA) as well as with Genetic Programming (GP). Especially the latter 
combination provides a very powerful, generic and stable algorithm for the identification of 
nonlinear systems, no matter if the application at hand is in the context of regression, 
classification or time-series analysis. 
After a general introduction in heuristic optimization and Evolutionary Algorithms, the 
further developed algorithmic concepts are explained. Furthermore, some exemplary 
applications of Genetic Programming to data based system identification problems are 
illustrated. 

2. Heuristic optimization 

Many practical and theoretical optimization problems are characterized by their highly 
multimodal search spaces. These problems include NP-hard problems of combinatorial 
optimization, the identification of complex structures, or multimodal function optimization. 
In the area of production planning and logistics such problems occur especially frequently 
(as for example task allocation, routing, machine sequencing, container charging). The 
application of conventional methods of Operations Research (OR) like dynamic 
programming, the simplex method, or gradient techniques, often fails for these kinds of 
problems, because the computation effort grows exponentially with the problem dimension. 
Therefore, heuristic methods with much lower computational costs are applied quite 
frequently, even if they can no longer assure the achievement of a global optimal solution. O
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About three decades ago, inspired by nature, literature started to discuss generic heuristic 
methods which often surpass problem specific heuristics and are moreover much more 
flexible concerning modifications in the problem definition. 
These optimization techniques derived from nature include Simulated Annealing (SA) 
which draws an analogy between the annealing of material to its lowest energetic state and 
an optimization problem, or Evolutionary Algorithms (EAs) which are basically inspired by 
biological evolution. Further recent approaches like Tabu Search (TS), Ant-Colony 
Optimization (ACO), or Particle Swarm Optimization (PSO) are also mentionable in the 
context of bionically inspired optimization techniques. Agent theory is also on the verge of 
achieving greater importance in the field of heuristic optimization. 
 

 

Fig. 1. Taxonomy of optimization techniques 

A well-established taxonomy of optimization techniques is given in Fig. 1 whereby our 
classification describes those classes of methodologies in more detail which are more 
relevant in the context of the present contribution. This has especially been done for the 
class of Evolutionary Algorithms which is described in further detail in the following 
section. The detailed analysis of variants of Genetic Algorithms as shown in Fig. 1 can in 
principle also be applied to Genetic Programming since it is based on the same algorithmic 
and methodological concepts. 

3. Evolutionary computation 

3.1 Evolutionary algorithms: genetic algorithms, evolution strategies and genetic 
programming 
Literature generally distinguishes Evolutionary Algorithms into Genetic Algorithms (GAs), 
Evolution Strategies (ES), and Genetic Programming (GP). 
Genetic Algorithms, possibly the most prevalent representative of Evolutionary 
Computation, were first presented by Holland (Holland, 1975). Based upon Holland's ideas 
the concept of the Standard Genetic Algorithm (SGA), which is still very much influenced 
by the biological archetype, became accepted (described e.g. in (Tomassini, 1995). Due to the 
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enormous increase of computational power since 1975, the potential of GAs has been tapped 
more and more. Consequently the popularity of GA-concepts increased steadily and many 
groups around the world started to solve various problems with GAs. However, it soon 
became clear that for most practical tasks the binary encoding originally used by Holland 
was not at all sufficient. Accordingly many different encodings, and also necessary new 
crossover and mutation operators, were introduced which showed qualitatively very 
diverse behavior. An overview of different encodings and operators developed for various 
applications can for instance be found in (Dumitrescu et al., 2000). Since then GAs have been 
successfully applied to a wide range of problems including many combinatorial 
optimization problems, multimodal function optimization, machine learning, and the 
evolution of complex structures such as neural networks. An overview of GAs and their 
implementation in various fields is given by Goldberg (Goldberg, 1989) and Michalewicz 
(Michalewicz, 1996). 
Evolution Strategies, the second major representative of Evolutionary Algorithms, were 
introduced by Rechenberg (Rechenberg, 1973) and Schwefel (Schwefel, 1994). Evolution 
Strategies tend to find local optima quite efficiently. Though, in the case of multimodal 
solution spaces, Evolution Strategies tend to detect a global optimum hardly, if none of the 
starting values is located in the absorbing region of such a global optimum. Nevertheless, ES 
have lead the way in the implementation of self-adaptive concepts in the area of 
Evolutionary Computation and are considered one of the most powerful and efficient 
concepts for the optimization of real-valued parameter vectors. 
Genetic Programming (GP) has been established as an independent branch in the field of 
Evolutionary Computation even if this technique could also be interpreted as a special class 
of GAs. Based on the basic considerations of Koza (Koza, 1992) to interpret the underlying 
problem representation in a more general and dynamic way than a usual GA, the basic 
mechanisms of selection, recombination, and mutation are adapted and applied in a similar 
manner as found within GAs. The more general problem representation of GP allows the 
definition of individuals of a population as structures, formulas, or even more generally as 
programs. This allows the consideration of new applications of EAs like data based systems 
identification, for example; however, it still seems to be a very ambitious goal to generate 
more complex programs by means of Genetic Programming. 
 

 

Fig. 2. The GP Lifecycle (Langdon & Poli, 2002) 
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In (Koza, 1992) it has been pointed out that virtually all problems in artificial intelligence, 
machine learning, adaptive systems, and automated learning can be recast as a search for a 
computer program, and that genetic programming provides a way to successfully conduct 
the search for a computer program in the space of computer programs. Similar to GAs, GP 
works by imitating aspects of natural evolution: A population of solution candidates evolves 
through many generations towards a solution using evolutionary operators (crossover and 
mutation) and a "survival-of-the-fittest" selection scheme. Whereas GAs are intended to find 
an array of characters or integers representing the solution of a given problem, the goal of a 
GP process is to produce a computer program solving the optimization problem at hand. As 
in every evolutionary process, new individuals (in GP's case, new programs) are created. 
They are tested, and the fitter ones in the population succeed in creating children of their 
own. Unfit ones die and are removed from the population (Langdon & Poli, 2002). This 
procedure is graphically illustrated in Fig. 2. 

3.2 Considerations about selected theoretical aspects of evolutionary computation 
techniques 

Fig. 1 indicates that this classification - especially of the bionic methods - is mainly inspired 
by the natural role-model. For a more directed consideration of algorithmic concepts of the 
different methods, it is reasonable to differentiate these methods by their basic idea. One 
possible (and especially in the context of further considerations drawn in this paper) well-
suited classification is the distinction between neighbourhood-based and non-
neighbourhood-based search techniques as illustrated in Fig. 3. 

 

Fig. 3. Classification of heuristic optimization techniques due to their mode of operation 

As some kind of approximation for the gradient information which is not available for 
problems of combinatorial optimization, a conventional neighbourhood search aims to 
obtain information about the descent/increase of the objective function in the local 
neighbourhood at a certain point. Conventional neighbourhood searches start from an 
arbitrary point in the solution space and iteratively move to more and more promising 
points along a given neighbourhood structure (with respect to the objective function) as 
long as no better solution can be detected in the local neighbourhood. The self-evident 
drawback of this method is that for more complex functions the algorithm converges and 
gets stuck in the next attracting local optimum which is often far away of a global optimum. 
It is a common feature of all methods based upon neighbourhood searches to counteract this 
essential handicap. Simulated Annealing, on the one hand, also allows moves to worse 
neighbourhood solutions with a certain probability which decreases as the search process 
progresses in order to scan the solution space broader at the beginning, and to become more 
and more goal-oriented as the search process goes on. A Tabu Search on the other hand 
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introduces some kind of memory in terms of a so-called tabu list which stores moves that 
are considered to lead to already visited areas of the search space. However, Evolution 
Strategies (ES), a well-known representative of Evolutionary Computation, also have to be 
considered as some kind of parallel neighbourhood search, as asexual mutation (a local 
operator) is the only way to create new individuals (solution candidates) in the standard ES-
versions. Therefore, in the case of multimodal test functions, global optima can be detected 
by Evolution Strategies only if one of the starting values is located in the absorbing region of 
a global optimum. 
Genetic Algorithms (and certainly also GP), the non-neighbourhood-based search 
techniques in our classification of heuristic methods, take a fundamentally different 
approach to optimization, by considering recombination (crossover) as their main operator, 
whereas the essential difference to neighbourhood-based techniques is given by the fact that 
recombination is a sexual operator, i.e. properties of individuals from different regions of 
the search space are combined in new individuals. Therefore, provided that the used 
problem representation and the operators are adequate, the advantage of applying GAs to 
hard optimization problems lies in their ability to search broader regions of the solution 
space than heuristic methods based upon neighbourhood search do. Nevertheless, GAs are 
also frequently faced with a problem which, at least in its impact, is quite similar to the 
problem of stagnating in a local but not global optimum. This drawback, called premature 
convergence in the terminology of GAs, occurs when the population of a GA reaches such  
suboptimal state that the genetic operators can no longer produce offspring which 
outperform their parents (Fogel, 1994). 
A very essential question about the general performance of a GA is, whether or not good 
parents are able to produce children of comparable or even better fitness (the building block 
hypothesis implicitly relies on this). In natural evolution, this is almost always true. For 
Genetic Algorithms this property is not so easy to guarantee. The disillusioning fact is that 
the user has to take care of an appropriate coding in order to make this fundamental 
property hold. In order to overcome this strong requirement we have developed an 
advanced selection mechanism (Affenzeller & Wagner 2004) which is based on the idea to 
consider not only the fitness of the parents, in order to produce a child for the ongoing 
evolutionary process. Additionally, the fitness value of the evenly produced offspring is 
compared with the fitness values of its own parents. The offspring is accepted as a candidate 
for the further evolutionary process if and only if the reproduction operator was able to 
produce an offspring that could outperform the fitness of its own parents. This strategy 
guarantees that evolution is presumed mainly with crossover results that were able to mix 
the properties of their parents in an advantageous way. Via these means we are already in a 
position to attack one of the reasons for premature convergence. Furthermore, this strategy 
has proven to act as a precise mechanism for self-adaptive selection pressure steering, which 
is of major importance in the migration phases of parallel Evolutionary Algorithms. All 
these new generic concepts are very promisingly combined in the SASEGASA-algorithm 
(Affenzeller & Wagner, 2004). Even if the aspect of parallelization is mainly used to improve 
global convergence in our research so far, the next obvious step is to transform these 
massively parallel concepts to parallel computing environments. Furthermore, already 
established parallel GAs should benefit from the recently developed new theoretical 
concepts as the essential genetic information can be assembled much more precisely in the 
migration phases. 
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4. Advanced algorithmic concepts for genetic algorithms 

4.1 General remarks on variable selection pressure within genetic algorithms 

Our first attempt for adjustable selection pressure handling was the so-called Segregative 
Genetic Algorithm (SEGA) (Affenzeller, 2001) which introduces birth surplus in the sense of 
a (μ, λ)-Evolution Strategy (Beyer, 1998) into the general concept of a GA and uses this 
enhanced flexibility primary for adaptive selection pressure steering in the migration phases 
of the parallel GA in order to improve achievable global solution quality. The SASEGASA, 
which stands for Self Adaptive Segregative Genetic Algorithm with aspects of Simulated 
Annealing, is a further development of SEGA and distinguishes itself mainly in its ability to 
self-adaptively adjust selection pressure in order to achieve progress in solution quality 
without loosing essential genetic information which would lead to unwanted premature 
convergence. The SASEGASA is generic in that sense that all algorithmic extensions are 
problem-independent so that they do not depend on a certain problem representation and 
the corresponding operators. 
Therefore we have decided to combine the further deloped algorithmic concepts of 
SASEGASA with Genetic Programming (GP). However, we have observed two major 
differences when combining SASEGASA and Genetic Programming compared to the 
experience in the application of SASEGASA in other domains like combinatorial 
optimization or real-valued optimization (Affenzeller,  2005): 
• The potential in terms of achievable solution quality in comparison with the standard 

algorithms seems to be considerably higher in the field of GP than in standard 
applications of GAs. 

• By far not all algorithmic extensions of SASEGASA are relevant in GP. Only some 
algorithmic aspects of the rather complex SASEGASA concept are really relevant in the 
GP domain which makes the handling and especially parameter adjustment easier and 
more robust. 

Therefore,  the discussion in this article will focus on the algorithmic parts of SASEGASA 
which are really relevant for GP. In doing so, this section is structured as follows: The first 
subsection describes the general idea of SASEGASA in a quite compact way, whereas the 
second subsection focusses on that parts of SASEGASA in further detail which are really 
relevant for the present contribution and discusses the reasons for that. 
For a more detailed description of all involved algorithmic aspects the interested reader is 
referred to the book (Affenzeller, 2005). 
In principle, the SASEGASA introduces two enhancements to the basic concept of Genetic 
Algorithms. Firstly, it brings in a variable and self-adaptive selection pressure in order to 
control the diversity of the evolving population in a goal-oriented way w.r.t. the objective 
function. The second concept introduces a separation of the population to increase the 
broadness of the search process and joins the subpopulation after their evolution in order to 
end up with a population including all genetic information sufficient for locating a global 
optimum. 
At the beginning of the evolutionary process the whole population is divided into a certain 
number of subpopulations. These subpopulations evolve independently from each other 
until the fitness increase stagnates in all subpopulations because of too similar individuals 
within the subpopulations, i.e. local premature convergence. Thanks to offspring selection 
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this can be triggered exactly when an upper limit of selection pressure is exceeded (cf. 
Subsection 4.2). Then a reunification from n to (n-1) subpopulations is performed by joining 
an appropriate number of adjacent subpopulation members. 
Metaphorically speaking this means, that the villages (subpopulations) at the beginning of 
the evolutionary process are slowly growing together to bigger towns, ending up with one 
big city containing the whole population at the end of evolution. By this approach of width-
search essential building blocks can evolve independently in different regions of the search 
space at the beginning and during the evolutionary process. 

4.2 Offspring selection in SASEGASA 

In (Affenzeller & Wagner, 2004) it has been shown that the aspect of segregation and 
reunification is highly relevant in order to systematically improve the achievable global 
solution quality of combinatorial optimization problems as for example the travelling 
salesman problem (TSP). Still, we have not used this parallel approach for our GP-based 
modelling studies. On the one hand, this would lead to a high increase of runtime 
consumption; on the other hand, anyway, we do not expect any significant increase of 
solution quality using this concept for GP-based modelling as results summarized in 
(Affenzeller, 2005) indicate that this parallel approach does not remarkably effect the 
solution quality of optimization problems others than combinatorial problems. 
A very essential question about the general performance of GAs or GP is, whether or not 
good parents are able to produce children of comparable or even better fitness (the building 
block hypothesis implicitly relies on this). In natural evolution, this is almost always true. 
For artificial evolution and exceptionally for Genetic Programming this property is not so 
easy to guarantee. Offspring selection assures exactly that property. 
Offspring selection considers not only the fitness of the parents, in order to produce a child 
for the ongoing evolutionary process. Additionally, the fitness value of the evenly produced 
offspring is compared with the fitness values of its own parents. The offspring is accepted as 
a candidate for the further evolutionary process if and only if the reproduction operator was 
able to produce an offspring that could outperform the fitness of its own parents. This 
strategy guarantees that evolution is presumed mainly with crossover results that were able 
to mix the properties of their parents in an advantageous way. 
As in the case of conventional GAs, or GP, offspring are generated by parent selection, 
crossover, and mutation. In a second (offspring) selection step, the number of offspring to be 
generated is defined to depend on a predefined ratio-parameter giving the quotient of next 
generation members that have to outperform their own(!) parents (success ratio, SuccRatio). 
As long as this ratio is not fulfilled, further children are created and only the successful 
offspring will definitely become members of the next generation; this procedure is 
illustrated in Fig. 4. When the postulated ratio is reached, the rest of the next generation 
members are randomly chosen from the children that did not reach the success criterion. 
Within our new selection model, selection pressure is defined as the ratio of generated 
candidates to the population size. An upper limit for selection pressure gives a quite 
intuitive termination heuristics: If it is no more possible to find a sufficient number of 
offspring that outperform their parents, the algorithm terminates in the simple version as 
being used here or new genetic information is brought in by reunification in the more 
general formulation of the parallel SASEGASA. 
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Fig. 4. Flowchart for embedding offspring selection into a Genetic Algorithm. 

5. Data based systems identification 

Data mining is understood as the practice of automatically searching large stores of data for 
patterns. Incredibly large (and quickly growing) amounts of data are collected not only in 
commercial, administrative, and scientific, but also in medical databases; this is the reason 
why intelligent computer systems that can extract useful information (such as general rules 
or interesting patterns) from large amounts of observations are needed. In short, "data 
mining is the non-trivial process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data" (Fayyad et al. 1996). This is why data based 
machine learning algorithms have to be applied in order to retrieve additional insights into 
human biological processes, how environment factors influence human health or how 
certain human parameters are related. The following three classes of data analysis problems 
are relevant within medical data analysis: Regression, classification and time series analysis. 
In any of these cases, statistical algorithms are supposed to "learn" functions by analyzing a 
set of input-output examples ("training samples"). 
In statistics, regression analysis is understood as the act of modelling the relationship 
between variables, namely between one or more target ("dependent") variables and other 
variables (also called input or explanatory variables). I.e., the goal is to find a mathematical 
function f which can be used for calculating the target variable Y using the input variables 
X1..p: 

Y = f(X1, ..., Xp) 
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Classification is understood as the act of placing an object into a set of categories, based on 
the object's properties. Objects are classified according to an (in most cases hierarchical) 
classification scheme also called taxonomy. A statistical classification algorithm is supposed 
to take feature representations of objects and map them to a special, predefined 
classification label. Such a classification algorithm is designed to learn a function f which 
maps a vector of object features X1,…,Xp into one of several classes. A given sample xi can so 
be classified using f and X1,…,Xp: 

Class(xi) = f(X1(i), ..., Xp(i)) 

There are several approaches which are nowadays used for solving classification problems; 
the most common ones are (as described in (Mitchell, 2000), e.g.) decision tree learning, 
instance-based learning, inductive logic programming (such as in Prolog, e.g.) and 
reinforcement learning. 
Finally, there are two main goals of time series analysis: On the one hand one tries to 
identify the cause of a phenomenon represented by a sequence of observations and its 
relationships with other sequences of observations, and on the other hand the goal is to 
predicting future values of time series variables. Both of these goals require that the pattern 
of observed time series data is identified and more or less formally described. I.e., for the 
target variable Y one wants to identify a function f so that Y at time t can be calculated using 
values of other variables and (if available) also information about the history of Y: 

Y(t) = f(X1(t-{0..z}), ….. , Xp(t-{0..z}), Y(t-{0..z}))  

where z is the maximum time offset for variables used in f. Detailed discussions of time 
series and methods applicable can for example be found in (Box & Jenkins, 1976) or Kendall 
& Ord, 1990). 

6. GP-Based structure identification 

6.1 Introduction, general remarks 

The concept of structure identification is not very common in the literature. Indeed, it is well 
known that every model consists of an equation set (the structure) and of values 
(parameters). System identification actually implies both, but usually the definition of the 
structure is considered either obvious or as the less critical issue, while the consistent 
estimation of the parameters especially in presence of noise receives the largest part of the 
attention. By its very general problem statement, GP allows to approach the problem of 
structure identification and the problem of parameter identification simultaneously. As a 
consequence, GP techniques are used for identifying various kinds of technical systems; 
some approaches use genetic programming to identify the structure in addition to standard 
parameter estimation techniques, many other ones use GP for determining both the 
structure and the parameters of the model of a nonlinear system as for example described in 
(Rodriguez et al., 2000) and (Beligiannis et al., 2005). 
GP-based, data driven systems identification works on a set of training examples with 
known properties (X1...Xn). One of these properties (Xt) has to represent the system's target 
values. On the basis of the training examples, the algorithm tries to evolve (or, as one could 
also say, to "learn") a solution, i.e. a formula, that represents the function that maps a vector 
of input values to the respective target values. In other words, each presented instance of the 
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structure identification problem is interpreted as an instance of an optimization problem; a 
solution is found by a heuristic optimization algorithm. Further details about the operators 
used are given for example in (Winkler et al., 2006a). The goal of the implemented GP 
identification process is to produce an algebraic expression from a database containing the 
measured results of the experiments to be analyzed. Thus, the GP algorithm works with 
solution candidates that are tree structure representations of symbolic expressions. These 
tree representations consist of nodes and are of variable length; the nodes can either be 
nonterminal or terminal ones: 
• Nonterminal nodes represent functions performing some actions on one or more 

property values within the structure to produce the values of the target property (which 
should be the property which indicates which class the objects belong to); 

• A terminal node represents an input variable (i.e., a pointer to one of the objects' 
properties) or a constant. 

The nonterminal nodes have to be selected from a library of possible functions, a pool of 
potential nonlinear model structural components; as with every GP modeling process, the 
selection of the library functions is an important part since this library should be able to 
represent a wide range of systems. When the evolutionary algorithm is executed, each 
individual of the population represents one structure tree. 
Since the tree structures have to be usable by the evolutionary algorithm, mutation and 
crossover operators for the tree structures have to be designed. Both crossover and mutation 
processes are applied to randomly chosen branches (in this context a branch is the part of a 
structure lying below a given point in the tree). Crossing two trees means randomly 
choosing a branch in each parent tree and replacing the branch of the tree, that will serve as 
the root of the new child (randomly chosen, too), by the branch of the other tree. 
Mutation in the context of genetic algorithms means modifying a solution candidate 
randomly and so creating a new individual. In the case of identifying structures, mutation 
works by choosing a node and changing it: A function symbol could become another 
function symbol or be deleted, the value of a constant node or the index of a variable could 
be modified. This procedure is less likely to improve a specific structure but it can help the 
optimization algorithm to reintroduce genetic diversity in order to re-stimulate genetic 
search. 
Examples of genetic operations on tree structures are shown in Fig. 5: The crossover of 
parent1 (representing the expression “5/x1(t-5)+ln(x2(t-2))” and parent2 (“x3(t) * x2(t-1)-1.5”) 
yields child1 (“5/x1(t-5)+x3(t)*x2(t-1)”), child2 and child3 are possible mutants of child1 
representing “5/x1(t-5)+x3(t)” and “5-x1(t-5)+x3(t-1)*x2(t)”. 
Since the GP algorithm tries to maximize or minimize some objectiv fitness function (better 
model structures evolve as the GP algorithm minimizes the fitness function), every solution 
candidate has to be evaluated. In the context of data based modeling, this function should be 
an appropriate measure of the level of agreement between the original target variable's 
values and those calculated using the model to be evaluated. Calculating the sum of squared 
errors J between original values oi and calculated values ci is a simple as well as robust 
measurement of the quality of the formula at hand: 

J = ∑
=

−
n
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Fig. 5. Genetic Operations on Tree Structures. 

6.2 GP Based structure identification: the HeuristicModeler 

On the basis of preliminary work on the identification of nonlinear structures in dynamic 
technical systems (Winkler et al, 2005a), (Winkler et al, 2005b), (Del Re et al, 2005) as well as 
several other enhanced algorithmic and problem specific mechanisms we have implemented 
the HeuristicModeler (Winkler et al, 2006c), a multi-purpose machine learning algorithm 
that is able to evolve models for various different machine learning problem classes. The 
framework used for the implementation of the HeuristicModeler is the HeuristicLab 
(Wagner & Affenzeller, 2005), a framework for prototyping and analyzing optimization 
techniques for which both generic concepts of evolutionary algorithms and many functions 
for analyzing them are available. 
The algorithmic basis for the HeuristicModeler is the SASEGASA (for an explanation see 
Section 4. There are several new hybrid evolutionary concepts combined in this algorithmic 
basis, the most important ones being on the one hand the self-adaptive selection pressure 
steering and on the other hand the so-called Offspring Selection concept. 
The selection pressure measures how hard it is to produce individuals out of the current 
population that improve the overall fitness. As soon as this internal selection pressure 
reaches a pre-defined maximum value, the algorithm is terminated and presents the best 
actual model as the result of the training process. Details can be found in (Affenzeller & 
Wagner, 2004) and (Affenzeller, 2005). 
As already explained in further detail in Section 4, the basic idea of Offspring Selection is 
that individuals are first compared to their own parent solution candidates and accepted as 
members of the new generation's population if they meet certain criteria. In the context of 
structure identification and machine learning we have realized that the use of very rigid 
settings yields best results (Winkler et al., 2006b). 
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Research results obtained within the last two years have lead to the conclusion that a 
simplified version of offspring selection together with a slightly modified parent selection 
shows the best and most robust results in the context of GP-applications. Thus, SuccRatio 
should be set to 1.0, i.e. every offspring for the next generation is forced to pass the success 
criterion. Furthermore, it is beneficial in GP applications to state that a child is better than its 
parents if and only if it is better than the better of the two parents. In the context of 
combinatorial optimization problems where some intermediate value of the parents fitness 
values is used as a threshold value for the success criterion, such settings would massively 
tend to support premature convergence. But in the field of Genetic Programming 
applications these parameter settings lead to high-quality results quite robustly. 
However, there is one aspect concerning parent selection that is to considered  in this 
application domain. It is - applying the parameter settings of offspring selection mentioned 
above – most effective to use different selection methods for the selection of the two parents 
which are chosen for crossover. In the present context this gender specific selection aspect 
(Wagner & Affenzeller, 2005) is implemented most effectively by selecting one parent 
conventionally by roulette-wheel selection and the other parent randomly. 
All together, this especial variant of adapted sexual selection combined with a simplified 
version of offspring selection aims to cross one above-average parent with a randomly 
selected parent (which brings in diversity) as long as a whole new population could be filled 
up with children that were better than their better parent. An upper limit for selection 
pressure acts as termination criterion in that sense that the algorithm stops, if too many 
trials (|POP| * maxSelPress) were already taken and still no new population consisting of 
successful offspring could be generated. In other words, this indicates that it is not possible 
to generate a sufficient amount of children that outperform their parents out of the current 
gene pool; obviously, this seems to be a reasonable termination criterion for an Evolutionary 
Algorithm. This special version of SASEGASA or offspring selection respectively is 
schematically shown in Fig. 6. 
The GP-based structure identification methods described in the previous section have been 
implemented as plug-ins for the HeuristicLab forming the problem specific basis of the 
HeuristicModeler. The following modeling specific extensions have been integrated into the 
general GP workflow: 
• During the execution of a structure identification algorithm it can easily happen that a 

model showing a very suitable structure is assigned a very bad fitness value only due to 
inadequate parameter settings. Therefore we have implemented an additional local 
parameter optimization stage based on real-values encoded Evolution Strategies and 
integrated it into the execution of the Genetic Programming algorithm. 

• As the GP-based model training algorithm tries to evolve better models, it can easily 
happen that models become more and more complex; the more complex models are, the 
better they can fit given training data, but they are also negative effects, namely 
increasing runtime consumption as well as the danger of overfitting. Therefore a 
heuristic tree pruning algorithm has also been integrated into the HeuristicModeler; in 
certain intervals, selected models included in the actual models pool are selected and 
pruned systematically, i.e. formula parts that do not seem to have a measurable 
influence on the model's evaluation are deleted in order to retrieve simpler models 
without significantly losing quality. 
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Fig. 6. Flowchart for embedding a simplified version of offspring selection into the GP 
process. 

Due to its flexible and wide functional basis and the extended concepts described above, the 
GP-based modelling concept implemented in the HeuristicModeler is less exposed to the 
danger of overfitting than other machine learning algorithms; recent results and 
comparisons to other data-based modelling techniques are for example summarized in 
(DelRe et al., 2005), (Winkler et al, 2006f) and (Winkler et al., 2006a). Furthermore, as we will 
show in the following section, the results generated using the HeuristicModeler can easily 
be analyzed and interpreted using the HeuristicModelAnalyzer, a tool for analyzing 
solutions for data analysis problems that includes several enhanced evolutionary modelling 
aspects. 

7. Examples and applications of GP in data based structure identification 

7.1 Regression 

For demonstrating the use of our evolutionary machine learning approach for attacking 
regression problems we have generated a synthetic data set including 5 variables and 400 
samples. This data was analyzed using the HeuristicModeler and a model was trained; this 
model is graphically shown in Fig. 7. There are several possibilities how to evaluate a 
regression model using the HeuristicModelAnalyzer: Apart from drawing the (original and 
estimated) values and a graphical representation of the formula as a structure tree, the 
average squared error can be calculated as well as an overview of the errors distribution (as 
exemplarily shown later in Fig. 11. 
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Fig. 7. A solution to a regression problem, analyzed using the HeuristicModelAnalyzer. 

7.2 Classification 

Several widely used benchmark classification datasets storing medical data (mainly survey 
records and diagnosis information) have already been analyzed using HeuristicModeler and 
HeuristicModelAnalyzer. In (Winkler et al., 2006b), (Winkler et al., 2006a) and (Winkler et 
al., 2006e) we have documented the results achieved for several medical classification 
benchmark problems, for example for the Wisconsin and the Thyroid datasets, which are 
parts of the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/). 
Summarizing the results documented in the publications mentioned above, GP-based 
training of classifiers is able to outperform other training methods (kNN classification, linear 
modeling and ANNs) especially on test data. There are several possibilities how to evaluate 
a classification model using the HeuristicModelAnalyzer: 
Apart from drawing the (original and estimated) values and a graphical representation of 
the formula as a structure tree and calculating the average squared error, confusion matrices 
and (enhanced) receiver operating characteristics (ROC) curves can be generated. 
Furthermore, optimal thresholds are also identified automatically on the basis of a 
misclassification matrix storing information about how to weight misclassification 
dependent on the respective classes involved. This matrix is initially set so that all 
misclassifications are weighted equally; in various different applications it can be necessary 
to manipulate this weighting as it is, for example in the context of medical data analysis, 
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more critical misclassifying a diseased patient as not diseased than vice versa. In Fig. 8 we 
show a graphical representation of a solution for the Wisconsin classification problem that 
was generated using the HeuristicModeler and analyzed using the HeuristicModelAnalyzer. 
As confusion matrices are also frequently used for evaluating classifiers, these are also 
automatically displayed when analyzing a model using the HeuristicModelAnalyzer. 
 

 

Fig. 8. A solution for the Wisconsin classification problem, generated by the 
HeuristicModeler and analyzed using the HeuristicModelAnalyzer. 

Of course, classification problems occur not only in medical data analysis, but for example 
also in the context of data based quality pre-assessment in steel production. In (Winkler et 
al., 2006f) we report on an analysis done within an enhanced data processing process in 
cooperation with a large-scale industrial partner in steel industry. It was shown successfully 
that GP based structure identification is able to identify relationships between process 
parameters and the quality of steel products; on the basis of these results, high quality 
classification pre-estimators for the quality of the final results were formed. 
Last, but not least the HeuristicModelAnalyzer enables the evaluation of classifiers for 
multi-class classification problems on the basis of a multi-class extension of ROC curves. 
Basic ROC analysis provides a convenient graphical display of the trade-off between true 
and false positive classification rates for two class problems (Zweig & Vampell, 1993). In the 
context of two class classification, ROC curves are calculated as follows: For each possible 
threshold value discriminating two given classes, the numbers of true and false 
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classifications for one of the classes are calculated. For example, if the two classes "true" and 
"false" are to be discriminated using a given classifier, a fixed set of equidistant thresholds is 
tested and the true positives (TP) and the false positives (FP) are counted for each of them. 
Each pair of TP and FP values produces a point of the ROC curve. The main idea of Multi-
ROC charts as presented in (Winkler et al., 2006d) is that for each given class ci the numbers 
of true and false classifications are calculated for each possible pair of thresholds between 
the classes ci-1 and ci as well as between ci and ci+1 (assuming that the n classes can be 
represented as real numbers and that ci < ci+1 holds for every i ∈ [1,(n-1)]). The resulting 
tuples of (FP,TP) values are stored in a matrix which can be plotted easily. This obviously 
yields a set of points which can be interpreted analog to the interpretation of "normal" ROC 
curves: the closer the point are located to the left upper corner, the higher is the quality of 
the classifier at hand. For getting sets of ROC curves instead of ROC points, an arbitrary 
threshold ta between the classes ci-1 and ci is fixed and the FP and TP values for all possible 
thresholds tb between ci and ci+1 are calculated. This produces one single ROC curve; it is 
executed for all possible values of ta. An example showing 10 ROC curves is given in Fig. 9; 
this MROC chart was generated for a classifier learned for a synthetical data set storing 2000 
samples divided into 6 classes and is taken from (Winkler et al., 2006d). 
 

 

Fig. 9. An exemplary Multi-ROC chart. 

7.3 Timeseries analysis 

There is a lot of experience using the HeuristicModeler for solving time series problems on 
data recorded in the context of mechatronical systems. For example, in (Del Re et al., 2005) 
and (Winkler et al., 2005b) we report on models trained for the NOx emissions of Diesel 
engines using the GP-based identification method incorporated in the HeuristicModeler. 
Fig. 10 and 11 show the evaluation of one of these models using the 
HeuristicModelAnalyzer: Apart from drawing the (original and estimated) values and a 
graphical representation of the formula as a structure tree, an overview of the errors 
distribution is given. 
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Fig. 10. A model for the NOx emissions of a BMW Diesel engine, generated using the 
HeuristicModeler. 
 

 

Fig. 11. Evaluation of the model shown in Figure 10. 

8. Conclusion 

In this paper we have described a multi-purpose machine learning approach based on 
various evolutionary computation concepts that is applicable for several data mining 

www.intechopen.com



 Advances in Evolutionary Algorithms 

 

46 

aspects in data driven systems identification. We have exemplarily shown how regression, 
classification and time series problems can be attacked using this algorithm. Especially in 
the context of analyzing time series problems of mechatronical systems as well as medical 
data sets we have already achieved very good results. Furthermore, we have also 
demonstrated how to analyze the results for data mining problems as well as selected 
aspects of the underlying enhanced evolutionary algorithm. 
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