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1. Introduction 

Imagine a person who has a fear of other people. Let us call her Anna. She is afraid of 
people watching her every move as she stands in a line or walks down the street. Meeting 
new people is almost impossible as she always feels stared at and judged by everyone. This 
fear, or maybe even a phobia, can make Anna’s life very complicated. It is difficult for her to 
travel through public spaces in order to get to work, to deal with a bus or taxi driver, shop 
for groceries, etc. Anna’s leisure time activities are also very limited. The situation is indeed 
a vicious cycle, as it is even difficult for her to seek treatment and go to a therapist.  
In USA alone, there are approximately 15 million people like Anna who suffer from social 
anxiety disorder (Anxiety Disorders Association of America, 2008). A total of 40 million 
people suffer from different anxiety disorders. The associated yearly costs of mental health 
care exceed 42 billion U.S. dollars. Thus, emotional disorders are a significant public health 
issue. There is a need for demonstrably effective and efficient new methods for therapy. 
Computer systems have recently been applied to the treatment of many emotional 
disorders, including different phobias (Krijn et al., 2004; Wiederhold & Bullinger, 2005). 
These systems provide controlled virtual exposure to the object of the disorder, for example, 
a computer simulation of a spider or a room filled with other people. In this form of 
behavioural therapy, patients are systematically desensitized by gradual exposure to a 
computer generated representation of the object of their fear (Weiten, 2007; Krijn et al., 
2004). At first, the level of exposure is kept mild and constant, for example, by keeping the 
object of the fear visually distant and far away. Then, the level of exposure is increased little 
by little, for example, by moving a virtual spider closer or increasing the number of virtual 
people. The underlying theory is that such exposure replaces anxiety provoking memories 
and thoughts with more neutral ones that are acquired in a safe, controlled environment.  
It has been shown that people react to computer generated stimuli in the same manner as to 
authentic, real-life stimuli. For example, socially anxious people are cautious about 
disturbing embodied artificial characters in virtual reality (Garau et al., 2005). People have 
also reported higher anxiety and shown increased somatic responses when speaking to 
negative as compared to neutral and positive audiences consisting of virtual agent 
characters (Pertaub et al., 2002). As these studies have shown that virtual characters are able 
to evoke emotions or anxiety, computer generated stimuli show clear potential as a new 
method for treating different social and emotional disorders by enabling controlled 
exposure to anxiety provoking stimuli.  
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Advantages of computer generated stimuli include accurate control of the grade of 
exposure, the relative easiness of creating diverse stimuli and varying their characteristics, 
and the cost-efficiency of therapy. For example, a person who has a phobia of flying can 
experience a whole virtual air plane trip from take-off to landing at a relatively low cost. 
Further, the experience can be replicated again and again with small variations to factors 
that would be very difficult to control in real situations. Virtual environments even allow 
the re-enactment of traumatic episodes, such as bombings and car accidents. In fact, there 
are various conditions that have been successfully treated using virtual exposure to artificial 
stimuli, including fear of flying, fear of driving, fear of confined spaces, fear of public 
speaking, social phobia, post-traumatic disorders, and panic disorders (Krijn et al., 2004; 
Wiederhold & Bullinger, 2005). However, Krijn et al. (2004) concluded in their review of 
virtual exposure methods that there is little conclusive evidence about the relative 
effectiveness of virtual reality and real, in vivo exposure. One particular concern was the lack 
of evidence for the effectiveness of virtual exposure therapy as a stand-alone treatment.  
There is evidence that the effectiveness of exposure therapy can be further improved by 
applying physiological measurements (Wiederhold & Wiederhold, 2003). For example, 
physiological signals can be registered and displayed to the patient during exposure therapy 
(Wiederhold & Bullinger, 2005; Wiederhold & Wiederhold, 2003). This way, the patient can 
gain awareness of physiological processes and learn to voluntarily control them. Voluntary 
control of emotion-related physiological functions has been shown to influence emotional 
reactions associated with, for example, fear and facial expressions (Vanhala & Surakka, 
2007a; Wiederhold & Wiederhold, 2003). In other types of setups, the clinician can monitor 
these signals, estimate the progress of therapy, and adjust its intensity accordingly.  
Previous research has established a number of physiology-based measures of emotional 
states that can be used as a basis for adapting the therapy (Vanhala & Surakka, 2007a; 
Vanhala & Surakka, 2007b; Partala et al., 2006; Anttonen & Surakka, 2005; Wilhelm et al., 
2006; Surakka & Vanhala, accepted). These measures include electrical brain and facial 
muscle activity, heart rate, respiration, and skin conductivity. However, it is not possible to 
use a single measure as an index of emotional states, as each individual measure is affected 
by a number of psychological and physiological factors (Ward & Marsden, 2003). Emotions 
themselves are often categorized according to a number of dimensions, such as arousal and 
emotional valence (Bradley & Lang, 1994). Further, emotional processes are tightly 
interconnected with other psychophysiological processes, including cognition and attention 
(Surakka et al., 1998). Thus, it is necessary to take other psychophysiological processes (e.g., 
attention) into account when recognizing and analyzing emotions (Ward & Marsden, 2003). 
As multi-signal, online monitoring of human psychophysiology involves signals with 
several varying characteristics (e.g. sample rate and frequency content) and as each measure 
reflects several inter-linked physiological systems, the amount of information can easily 
overwhelm a human operator. One way to deal with this challenge is to build perceptual 
intelligence into computers themselves (Pentland, 2000). Signal analysis of measured 
psychophysiological signals and states could be performed automatically. Further, the role 
of human actors in this kind of a virtual therapy system could be changed. Currently, 
humans need to process all information that is used to control the parameters of a virtual 
therapy system. Proactive computing could be used to remove this bottleneck 
(Tennenhouse, 2000). A system that responds to the emotional and physiological state of a 
person could automatically adapt the computer system according to the rules of 
desensitization. This way, both the person being treated and the therapist could focus on 
training to regulate emotions instead of actively interpreting and estimating them.  
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The main goal of the present work is to present a new model for computer systems that 
proactively support emotion regulation. First, in the next section we present examples of 
single and compound measures of psychophysiological states that could be used to build 
perceptual intelligence for this kind of a system. Then, in the following section we discuss 
studies demonstrating the effectiveness of computers in regulating emotions. In the process 
we identify several computer-generated stimuli that could be used to influence emotional 
and social processes. In the fourth section we combine these findings into a model that 
supports both computer-assisted regulation and voluntary control of emotion related 
psychological and physiological processes. Finally, we discuss the advantages and 
challenges of this model and suggest pertinent research areas for future work. 

2. Measuring emotions 

As our aim is to support the regulation of emotions, we need to be able to evaluate the 
results of this regulation, that is, changes in emotional responding. Researchers generally 
view emotions as a concurrent change in experiential, behavioural, and physiological 
systems that organize human motivational behaviour (e.g., Frijda, 1986; Mauss et al., 2005). 
Thus, our first task is to identify measures that capture a wide view of emotional processes. 
There have been two research traditions of emotions. The first tradition views emotions as 
discrete states, such as, disgust, fear, joy, sadness, and surprise (Ekman, 1993). The second 
tradition views emotions as a three-dimensional space varying in emotional valence, 
arousal, and dominance (Bradley & Lang, 1994; 2000). These traditions have direct 
consequences especially for measuring the experiential component of emotions. For 
example, one common method is to ask people to rate their experiences using bipolar scales 
of emotional valence (i.e., from negative to positive), arousal (i.e., from calm to aroused), 
and dominance (i.e., from feeling of being in control to being controlled).  
The measurement of the experiential component of emotion often requires that the person is 
interrupted and asked to report her or his experiences. For example, during exposure 
therapy patients are periodically asked to rate the intensity of their anxiety using a scale of 
subjective units of discomfort (SUD) ranging from 0 to either 10 or 100 (see, e.g., review by 
Krijn et al., 2004). The rating is used to evaluate when the level of anxiety has changed and 
requires the therapist to adapt the exposure. When the anxiety is very high, the exposure 
may be decreased, for example, with instructed relaxation. Low anxiety suggests that the 
patient is ready to proceed to a higher level of exposure, for example, to take one step closer 
to a spider. This way, the person is gradually exposed to the object of their fear and 
habituated to ever increasing amounts of exposure in the process.  
The drawback of reporting subjective experiences is that it distracts the person’s attention 
from any ongoing tasks that she or he may be performing. This may hinder a person’s 
experience of being present in the virtual therapy environment. There is some evidence pro 
the view that this feeling is critical for the success of exposure therapy, as it is required for 
the experience of relevant emotions and learning to regulate them (Krijn et al., 2004). In this 
sense, behavioural and physiological components of emotion are somewhat more 
convenient to measure. It is feasible to acquire these measures continuously and in real-time 
without distracting the person (Öhman et al., 2000; Teller, 2004; Wilhelm et al., 2006; 
Mandryk & Atkins, 2007). This also creates potential for more accurate timing of emotional 
responses. For example, the exact time of a reaction to some surprising event is more readily 
identified from changes in facial behaviour as compared to a post study questionnaire.  
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Measures of facial behaviour have been frequently used for detecting emotional responses. 
For example, Ioannou and others (2005) reported results from using an adaptive system to 
classify the facial behaviour of one person. The system classified emotional facial 
expressions into three classes based on features extracted from video images. The classes 
represented three out of four quadrants of a two-dimensional emotional space (i.e., high 
arousal – negative, high arousal – positive, low arousal – negative). The classification 
accuracy of a general (i.e., person-independent) model was about 58%. After adapting this 
model to the particular person, the performance increased to approximately 78%.   
In contrast to Ioannou et al. (2005), typically the classes in video-based classification of facial 
behaviour have been based on a view of discrete emotions (see, e.g., reviews in Donato et 
al., 1999; Cowie et al., 2001). The accuracies for these kinds of classifiers are impressive at 
their best. For example, Sohail & Bhattacharya (2007) reported an average accuracy of over 
90% in classifying six emotional facial expressions. However, discrete classifiers usually do 
not address the intensity of emotional states which is used in adapting the amount of virtual 
exposure. As an exception, Bailenson (in press) recently developed a classifier for both the 
discrete facial expression and the intensity of the expression. In any case, most previously 
investigated discrete classifiers are limited in their applicability to virtual therapy.  
Video-based measures can be used to detect facial activity in a non-invasive manner, for 
example, without restricting the movements of the person by electrode wires. However, 
video-based methods can only be used to detect clearly visible facial behaviour, while 
electrophysiological measures have the potential to register very small changes in muscle 
activity (Ekman et al., 2002). There is also evidence that physiological measures can reflect 
emotional responses that do not evoke observable behaviour (e.g., Gross & Levenson, 1997). 
Furthermore, video-based measures are very sensitive to lighting and head orientation as 
well as to inaccuracies in detecting facial landmarks (e.g., Cowie et al., 2005). For these 
reasons, physiological measures may be seen to reflect a more objective (e.g., context-
independent) view of the emotional response.  
A common method for measuring the physiological activity that underlies visible facial 
behaviour is electromyography (EMG). Facial EMG is performed by attaching electrodes 
that register the electrical activity of facial muscles over specific muscle sites (Tassinary & 
Cacioppo, 2000). Especially the EMG activity of the corrugator supercilii (activated when 
frowning) and the zygomaticus major (activated when smiling) muscles has been frequently 
found to co-vary with subjective experiences of emotional valence (e.g., Lang et al., 1993; 
Larsen et al., 2003). The corrugator supercilii muscle which knits and lowers the brow is 
located in the forehead. Its activity has been found to increase when a person experiences 
negative emotions and to decrease during positive experiences. The zygomaticus major is a 
relatively large muscle located in the cheek. When activated it pulls up the corner of the 
mouth. The intensity of its activity varies with emotional valence in the opposite manner to 
the corrugator supercilii muscle.  
Although some physiological reactions are quite straight-forward to interpret, humans do 
not normally evaluate emotional expressions of other people from electrophysiological data. 
Even one electrophysiological signal can contain lots of information, which may overwhelm 
a human observer. For example, facial EMG activity may reflect both the intensity of facial 
muscle activations and the fatigue in muscles (Tassinary & Cacioppo, 2000).  
Automatic analysis and interpretation of physiological signals can help in perceiving which 
changes in signals are related to emotional processes. There is evidence that even the 
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subjective component of an emotion (i.e., emotional experiences) can be automatically 
estimated from electrical facial muscle activity. For example, Partala and others (2005; 2006) 
were able to build systems that automatically estimated and classified emotional 
experiences evoked by picture and video stimuli. The first system (Partala et al., 2006) was 
adapted to the individual responses of each person as follows. First, participants were 
shown a calibration block of 24 pictures selected from the standardized set of International 
Affective Picture System (IAPS). After each stimulus, the participant rated the emotional 
valence that she or he experienced using a 9-point bipolar scale. Then, the statistical models 
that estimated the emotional valence were adapted to the person based on the ratings and 
the EMG data from the calibration block. Finally, the system was tested using 28 pictures 
and six videos that showed a female or a male actor crying, smiling, and portraying a 
neutral facial expression. Subjective ratings of emotional valence were collected after each 
stimulus. These ratings and the system’s estimate of emotional valence were compared in 
order to determine the accuracy of the system. The results showed that the best models were 
able to separate negative and positive emotional responses with accuracies of over 70 
percent for pictures and over 80 percent in the case of video stimuli. Further, the largest 
correlation between the subjective ratings and the system’s estimate of emotional valence on 
a 9-point scale was over 0.9. Thus, the results of the first system showed that subjective 
emotional experiences can be estimated based on measures of electrical facial activity with 
relatively simple models in real-time. Although there is still room for improvement, the 
accuracy achieved in this study is already sufficient for many applications.  
The second system was person-independent and therefore did not require a separate 
calibration period (Partala et al., 2005). The valence of emotional experiences was estimated 
based on the direction of change in EMG activity from a baseline period of 0.5 seconds 
before stimulus onset. This system was able to distinguish between reactions rated as 
positive or negative at an accuracy of nearly 70 percent for pictures and over 80 percent for 
videos. In summary, facial activity shows clear promise as a reliable measure for automatic, 
real-time classification of emotional valence, as both person-adapted and person-
independent systems were demonstrated to perform at a reasonable accuracy.  
In addition to measures of electrical facial muscle activity, there is a wide variety of other 
physiological measures that have been shown to vary between emotional reactions, such as 
the mean heart rate and its frequency components (Anttonen & Surakka, 2005; Levenson & 
Ekman, 2002; Bradley, 2000; Malliani et al., 1991). For example, Rainville and others (2006) 
investigated classification of emotional responses using a large set of heart activity and 
respiration related features. Participants recalled and experientially relived one or two 
autobiographical episodes associated with the experience of fear, anger, sadness, or 
happiness. The system was able to detect which of the four emotions the participant was 
experiencing (i.e., according to subjective ratings) at an accuracy of about 65%.  
One challenge that has rarely been investigated in previous classification studies is the 
recognition and accurate timing of emotional responses. In other words, participants 
themselves have typically reported the onset and offset of emotional responses and data has 
been segmented by hand. It is clear that in order to react to the events in real-time, a system 
should be able to segment the collected data without human intervention. Vanhala & 
Surakka (2007b) recently reported a study of this kind of an online system. The system 
automatically detected the onset and offset of emotion related events (i.e., voluntary smiling 
and frowning) based on less than half a second of heart rate data. The onset of activity was 
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detected with a statistically significant accuracy of 66.4% and the offsets were detected with 
an accuracy of 70.2%. However, the rate of false recognitions was 59.7% which is quite high. 
Thus, the results showed that the heart rate can be used to support recognition and 
classification of emotional responses, but it should be used as one of several corroborative 
measures in practical applications.  
In fact, previous studies have usually employed more than one measure in classifying 
emotional states (e.g., Kim et al., 2004; D’Mello et al., 2007; Mandryk & Atkins, 2007). 
Otherwise, recognizing mental states and responses can be challenging, as physiological 
responses are person-dependent and they reflect several overlapping reactions and mental 
processes. For example, Bailenson and others (in press) compared classifiers that used facial 
activity as such or combined it with several physiological measures of heart activity, skin 
conductance, and finger temperature. The use of physiological measures significantly 
improved the precision of classification (i.e., the proportion of correctly classified samples in 
each classified group) as compared to classifiers that used only hand-coded facial features. 
The best improvements were over 15% for classifying sadness and about 9% for classifying 
amusement. Similarly, Zeng and others (2004) were able to improve the accuracy of their 
emotion classification system to 90 percent when both facial expressions and prosodic cues 
of speech were used. When only one of these modalities was used, the accuracies dropped 
to 56 and 45 percent, respectively. Busso and others (2004) achieved similar results with a 
system that recognized emotions from speech and facial expressions. In an earlier work, 
Picard and others (2001) identified specific physiological responses from four physiological 
signals (i.e., facial electromyogram, blood volume pressure, skin conductance, and 
respiration) and used these response patterns in classifying emotional experiences to eight 
classes. They achieved a classification accuracy of 81 percent.  
The measurement of bioelectric signals can be criticized based on the complex arrangements 
(e.g., electrodes, amplifiers, and skin cleaning) that are required for measuring them. 
Recently, several wireless and non-invasive technologies have been developed for 
measuring physiological signals, including facial EMG (e.g., Anttonen & Surakka, 2005; 
Teller, 2004; Wilhelm et al., 2006). For example, the electrical activity of forehead muscles 
(e.g., corrugator supercilii) can be measured with an easy-to-wear wireless headband that 
contains embroidered silver thread electrodes (Vehkaoja & Lekkala, 2004; Nöjd et al., 2005). 
As another example of non-invasive and easily applied measurement technology, Anttonen 
and Surakka (2005; 2007) were able to reliably measure emotion related heart rate changes 
with a regular looking office chair. The chair contained embedded electromechanical sensors 
in the seat, arm rests, and back rest. The sensors can be used to detect pressure changes due 
to heart activity, body movement, or changes in posture. Based on these recent advances in 
non-invasive technologies, physiological measures are quickly catching up on the current 
benefits of video-based methods for tracking changes in emotion related behaviour.  
In summary, there are several well-tried methods for measuring the different aspects of 
emotion. Our present review suggested that especially physiological measures show 
potential as objective and sensitive measures of emotion related processes. Thus, there is no 
need to rely on any single measure of emotional processes, such as SUD in adjusting the 
exposure in virtual therapy. In fact, typically several measures have been fused together in 
order to derive more accurate compound measures. This also helps in interpreting the data, 
as it can be pre-processed into a form that is more accessible to a human observer. Further, 
physiological measures are less prone to distract the person as they can be continuously 
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acquired without intervention. However, monitoring emotion related processes can still 
require considerable human effort after integration and interpretation by the computer. The 
model that we present in the current paper is aimed to facilitate this work. 

3. Regulating emotions with computers 

Social and emotional cues from computers have been found to evoke significant responses 
in their human observers. For example, synthesized speech with emotional content has been 
found both to evoke positive emotions and to enhance problem solving activity (Partala & 
Surakka, 2004; Aula & Surakka, 2002). Aula & Surakka (2002) used synthesized speech to 
provide neutral, negatively, or positively worded auditory feedback that seemed to reflect 
participant’s performance in solving arithmetic problems. In reality, the content of feedback 
was random and independent of the participant’s performance. Nonetheless, positive 
feedback significantly facilitated the speed of solving problems. In a later study, Partala & 
Surakka (2004) investigated emotionally worded interventions after a pre-programmed 
mouse delay during computerized puzzle solving tasks. Similar to the previous study, 
problem solving performance was significantly better after positively worded interventions. 
In terms of facial EMG measurements, participants also smiled more and frowned less after 
positive interventions as compared to facial activity after neutral and negative interventions.  
These kinds of studies have shown that explicit feedback and interventions from computers 
can affect human cognitive and emotional processes. There is also evidence that even more 
subtle social and emotional cues are effective in human-computer interaction. For example, 
in one of the first studies of virtual proximity, Partala and others (2004) investigated 
reactions to the simulated distance of a virtual head. When the head appeared to be closer, 
participants rated that they felt dominated by it. Vice versa, when the head was further 
away, participants felt that they were controlling it. Vanhala and others (submitted) recently 
found similar subjective dominance reactions to the simulated proximity of an embodied 
computer agent. Some researchers have even described computers as social actors, meaning 
that people have a strong tendency to behave socially when interacting with computers 
(Nass et al., 1994; Reeves & Nass, 1996). 
The effectiveness of virtual stimuli in evoking social and emotional reactions is the basis for 
virtual exposure therapy. The idea is that new neutral memory structures are formed during 
virtual exposure. These memory structures should replace the previous anxiety related 
structures when responding to real-life situations (Krijn et al., 2004). In other words, people 
should react to provoking virtual stimuli in the same manner as to authentic, real-life 
stimuli. There are some studies that support his view. For example, socially anxious people 
get highly distressed when they talk to or need to disturb embodied artificial characters in 
virtual reality (Pertaub et al., 2002; Garau et al., 2005). Further, the effects of virtual exposure 
to spiders have been found to generalize to real-life behaviour as measured by the 
Behavioural Avoidance Test (Garcia-Palacios et al., 2002). That is, people were able to 
approach a real spider more easily after exposure to a virtual one.  
In addition to these computer generated stimuli that regulate emotional responses, emotions 
can also be actively self-regulated. Gross & Thompson (2007) have described the 
development of emotion self-regulation as a continuum. In the first stages emotions are 
consciously regulated. Later, emotion regulation becomes more automatic and effortless. 
Thus, the process of learning to regulate emotions resembles the process of skill acquisition 
in general (Anderson, 2000). In this view, less skilled emotion regulators use cognitive 

www.intechopen.com



 Affective Computing, Focus on Emotion Expression, Synthesis and Recognition 

 

412 

processes extensively to support the regulation. For example, they may deliberately rely on 
instructions and examples of successful regulation. After practise, the regulation of emotions 
becomes autonomous and efficient, demanding much less cognitive processing. For 
example, a skilled self-regulator does not need to explicitly apply instructions (e.g., from a 
therapist) in order to regulate emotions.  
Instructions that support emotion regulation may be relatively simple. For example, 
Vanhala & Surakka (2007a) investigated whether computer-guided voluntary facial 
activations have an effect on autonomous nervous system activity. Participants were 
instructed to activate either the corrugator supercilii muscle or the zygomaticus major muscle at 
one of three intensity levels (i.e., low, medium, or high). Instructions for each task and real-
time feedback about the intensity of facial muscle activations were provided to the 
participant on the computer screen. Subjective ratings of emotional valence were collected 
after the activation. It was found that different muscle activations produced both task-
specific emotional experiences and significant changes in heart rate and heart rate 
variability. Thus, the results showed that relatively simple computer-instructions allow 
people to actively influence their involuntary physiological reactions and subjective 
experiences that are associated with emotions.  
Physiological feedback as such can also help in learning to regulate emotions. Usually, 
either skin conductivity or breathing patterns are registered and displayed to the patient or 
the therapist during computer-assisted therapy sessions (Wiederhold & Bullinger, 2005). 
This way, a person can become aware of unconscious physiological responses and 
processes, which can enable voluntary control over them. As an impressive example in 
favour of the effectiveness of virtual exposure therapy, Wiederhold & Wiederhold (2003) 
followed the behaviour of a group of 10 patients inflicted with fear of flying who were 
treated using virtual exposure and physiological feedback. As the terrorist attacks on 
September 11th, 2001 were quite directly related to flying, they could have caused relapses in 
terms of intensifying the fear of flying in these patients. However, everyone of this group 
was able to fly without medication or further treatment just four months after the attacks.   
Physiological data can also be collected for later reflection. For example, Lindström and 
others (2006) presented an “affective diary” that provided a multimodal (i.e., auditory and 
visual) representation of sensor data. A measure of arousal was extracted from the 
physiological measures and the estimated level of arousal affected the posture of a virtual 
character displayed on the screen. Users of the diary could later reflect their experiences and 
manipulate the character in order to match it to their recollection of those feelings. This 
application illustrates the interplay of involuntary emotion related physiological reactions 
(i.e., visually coded sensor data) and voluntary regulation of emotions (i.e., later reflection 
and adjustment in “affective diary”). However, a crucial component for supporting the 
training of emotion regulation is the online adjustment of emotional stimulation, for 
example, the amount of exposure to virtual stimuli. This requires a real-time system for the 
evaluation and reflection of psychological and physiological processes.  
In summary, computer systems show potential for regulating human emotions. First, 
studies have shown that people react socially and emotionally to computers and virtual 
environments. Second, the effects of virtual stimuli (e.g., habituation of anxiety responses) 
have been further facilitated when feedback of emotion related physiological activity has 
been provided. Third, we found that voluntary regulation of emotion related processes 
seems to be a potential key factor both in learning the regulation as such but also in 
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modulating the functioning of involuntary mechanisms activated during emotion related 
processes. Fourth, we reviewed a large number of physiological measures that show 
potential as sensitive and objective measures of emotional responses. The relevant 
information from these measures could be extracted using automatic classification of 
emotional responses. This way, it would be possible to avoid overwhelming a human 
observer, while still using all of the available information in order to maximally support 
emotion regulation. In the next section we present a model that supports this goal by 
integrating perceptual intelligence to the system. 

4. Adaptive support for emotion regulation 

Figure 1 shows a model of how virtual exposure therapy is currently performed. The model 
contains a set of different actors that take part in an interaction loop. First, the relevant 
emotional state is observed using different emotion related measures. Then, a human 
facilitator monitoring these measures decides how the virtual stimuli should be adapted. For 
example, if the patient reports a relatively low subjective experience of discomfort, the 
facilitator may proceed to increase the amount of exposure, for example, by moving a 
virtual spider closer. Note that the facilitator may in fact be the person who is being 
measured and treated, that is, the person may choose to control the amount of stimulation 
her or himself. Finally, the interaction loop in Figure 1 is closed after the adaptation by the 
newly modified stimulation. For example, if the virtual spider was moved closer, it may 
now provoke stronger anxiety reactions. These anxiety reactions are then reflected in the 
measures of emotion related processes, which leads to another cycle of interaction. The 
underlying idea of these continuous cycles is that the person learns to regulate emotional 
responses to increasing levels of stimulation.  

 
Fig. 1. A diagram of the current model used in virtual exposure therapy. Different actors are 
presented as boxes and labelled arrows represent the flow of information.  

Although the model is quite compact and straight-forward, there are three major challenges 
involved when it is applied. First, although previous work has shown that virtual 
stimulation is effective in evoking similar emotional and social responses as real-life stimuli, 
the effects of virtual stimulation and its online adaptation have not been extensively 
investigated. It has also been found that computer-generated stimuli may significantly 
facilitate cognitive processing and effectively support regulation of anxiety responses. 
However, more information is still needed about how adapting the different parameters of 
stimulation in real-time affects emotion related processes. This challenge should be resolved 
by controlled experimental studies of each virtual stimulus in the future. 
The second challenge is that there are several emotion related measures that provide 
complementary, non-overlapping information. There is a large amount of information 
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contained in each of these measures. A human observer is often forced to choose between a 
broad view of the emotional state and an in depth analysis of it. Perceptual intelligence can 
be used to solve this challenge. Different methods for building computers that perceive 
emotion from physiological and behavioural measures were reviewed in the second section. 
These methods form the basis for the perceptual intelligence in our new model.  
Figure 2 presents a model where perceptual intelligence has been included into the system. 
The model is similar to the previous one with the exception that the interpretation of 
emotion related measures is performed automatically. Thus, the facilitator has access to a 
higher level representation or a summary of information that is relevant to therapy. Simply 
stated, the computer acts as a kind of a translator that deciphers the information in the 
measured signals into a summary that is more accessible to the human observer. This way, 
the facilitator is less likely to be overwhelmed with the load of information available from 
different experiential, behavioural, and physiological measures. However, the actual 
adaptation is still controlled by a human facilitator acting on the basis of the summarized 
information.  

 
Fig. 2. A diagram of a perceptually intelligent model to be used in virtual exposure therapy. 
Different actors are presented as boxes and labelled arrows represent the flow of 
information.  

The third and final challenge in using the conventional model is that it places the human 
facilitator as a part of the real-time system (see Figs. 1&2). This requires that a person must 
continuously attend to the measurements and decide when and how to react to any changes 
or even to a lack of changes. Figure 3 shows a final model designed to more efficiently 
support emotion regulation in virtual exposure therapy. The continuous monitoring of 
emotion related information is now built into the computer system itself. In contrast to 
conventional computer systems that place humans as a part of the processing loop, this 
model can support emotion regulation without distracting the person or requiring constant 
attention. The system provides this support by taking the initiative and adapting the 
stimulation when it is appropriate, that is, by being proactive (Tennenhouse, 2000).  
In this kind of a system, the role of the human facilitator is to supervise the process of 
therapy. In order to perform this task, the supervisor needs information about the therapy 
process and the functioning of the system. Further, this information should be concise if we 
are to retain the main advantage of automatic signal analysis and reasoning which was to 
allow people to focus on the task at hand. One potentially efficient way to do this is to 
provide an explanation of the system’s reasoning to the supervisor. This type of a model fits 
the definition of an expert system which solves problems in a narrow domain of expertise 
(i.e., virtual exposure therapy) and is able to explain its own reasoning (Bratko, 2001). For 
example, if the system moved the object of the phobia closer to the person, it could be asked 
why it did this. A brief explanation could be that, for instance, the physiological signals 
showed that the current level of anxiety was very low. Then, the person could further query 
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the specifics of these signals, if she or he so desires. This way, the users confidence of the 
system’s functioning could be increased by making it transparent to the user. Of course, this 
would also allow the system’s reasoning to be monitored and tuned when appropriate.  
 

 

Fig. 3. A diagram of a proactive model for virtual exposure therapy. Different actors are 
presented as boxes and labelled arrows represent the flow of information.  

During the operation of the system its supervisor may exert control over the system either 
by adapting the stimulation directly or through interaction with the person who is being 
trained. For example, a therapist may instruct the person to relax by performing controlled 
breathing exercises. This voluntary control affects the physiological state which is further 
reflected in the collected emotion related measures. As a result, the changes in these 
measures lead to corresponding adaptation of the stimulation. As another example, the 
person may directly influence those measures that affect the intensity of stimulation. This is 
feasible as the same expressive channels that reflect spontaneous emotional reactions can 
also be voluntarily controlled. For instance, the person may voluntarily frown in order to 
signal a high level of discomfort and move the spider further away. This also highlights 
another advantage of proactive adaptation. As responses to measured changes (i.e., 
voluntary activity) are explicit pre-programmed reactions, they can be guaranteed to be 
consistent. This might not be the case if the responses were selected by a human operator.  
In summary, a perceptually intelligent and proactive system enables a wide variety of 
information to be used in regulating emotions. First, perceptual intelligence enables more 
efficient processing of measured emotion related signals. This enables the monitoring of a 
larger set of emotional measures, which then results in a more comprehensive and reliable 
view of the emotional state, for example, attending to multiple physiological and 
behavioural changes. Second, proactive reasoning may be used to adapt the stimulation in 
an appropriate and consistent manner. The adaptation can be based on findings that show 
how virtual stimulation affects human emotions and cognitive processing. As a whole, a 
system that uses this model can function independently without constant human 
supervision, helping people to regulate emotions without distracting them. 

5. Discussion and future work 

The current work presented a model for a computer system that supports the regulation of 
emotion related processes during exposure to provoking stimuli. We identified two main 
challenges for these kinds of systems. First, emotions as such are complex, multi-component 
processes that are measured with several complementary methods. The amount of 
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information can overwhelm a human operator. Second, the adaptation of stimulation 
requires real-time reasoning about the current emotional state and the effects of adaptation. 
This reasoning may distract a human facilitator from tasks related to emotion regulation. 
Further, a human operator may respond inconsistently to changes in emotional processes, 
which effectively removes the control of the system from the person who is being trained.  
In the present work we addressed the first challenge of identifying emotional reactions by 
including perceptual intelligence to our model. Several measures for automatic analysis of 
emotional state have been investigated in previous studies. Especially physiological 
measures were found to show potential as objective and reliable measures of emotional 
processes. For example, there are several new wireless and wearable measurement 
technologies that enable continuous and non-invasive measurement of emotion related 
physiology. Thus, automatic analysis of emotion related physiological activity can help to 
identify significant emotional responses during virtual exposure therapy. For a human 
observer, this pre-processed data is easier to interpret and apply to emotion regulation.  
The second challenge of adapting virtual stimulation was addressed with proactive 
reasoning. First, we reviewed studies of human responses to virtual stimulation. These 
studies showed that human cognitive functioning and emotional responses may be 
significantly regulated using different computer-generated social and emotional cues, for 
example, virtual proximity. Second, we suggested a model where the computer 
automatically adapts the virtual stimulation according to the emotional state that it has 
perceived. This way, perceptual intelligence and artificial reasoning result in a proactive 
system that does not require humans to process data in real-time. In other words, when our 
model is applied to virtual exposure therapy, a person can focus on the training itself 
instead of monitoring and responding to measured physiological signals.  
In spite of the promising findings from previous studies, there are still open questions in the 
computer perception of emotional responses to provoking stimuli. For example, some 
findings suggest that physiological reactions of phobics and healthy people may be 
significantly different (Wilhelm & Roth, 1998). Although the responses may be similar in 
terms of direction of change from a baseline (e.g., heart rate accelerated in both phobics and 
healthy subjects exposed to provoking stimulation), the differences in the magnitude of 
change may affect the results of automatic recognition. This raises the question whether 
automatic classification methods for emotional responses in healthy people provide 
information that is applicable to treating emotional disorders (i.e., abnormal emotional 
responses). Thus, there is a need to study systems where automatic perception has been 
included in a virtual therapy system.  
The previous research on automatic classification of emotional states has used both person-
independent methods and methods that are calibrated to each individual person. These two 
types of methods are suited for different kinds of applications (Bailenson et al., in press). 
Systems based on a universal model of emotional responses are suited when lots of people 
use the same interface, for example, a public computer at a library. An idiosyncratic model 
that adapts to each person is more suitable when the same person repeatedly uses the 
interface. The latter case is typical in virtual therapy applications, as the person is treated 
over multiple similar sessions (Krijn et al., 2004; Wiederhold & Wiederhold, 2005). However, 
a person-independent model could be used as a starting point for the adaptation, similar to 
the video-based system by Ioannou and others (2005). This would enable the system to 
provide estimates of emotional experiences even before a set of person-specific physiological 
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data is collected and calibration is performed. Then, later adaptation of the model could be 
performed to improve its accuracy.  
Another challenge in perceptual intelligence that has received little attention is the 
automatic segmentation of collected measures. Most previous studies of automatic 
classification of emotional responses have used hand-segmented data. Typically, a 
participant reports the onset and the offset of an emotional state and the data is segmented 
off-line. In contrast to these methods, virtual exposure therapy requires a system that 
analyses the data online and adapts to the emotional state of a person in real-time. If 
perceptual intelligence is to be included in this kind of a system, there is a need to 
investigate online, automatic segmentation of physiological data. Our preliminary results of 
heart rate responses have shown that such automatic segmentation is feasible (Vanhala & 
Surakka, 2007b). However, there is a need to investigate systems that use multiple 
complementary signals in order to improve the reliability and accuracy of methods.  
On a general level, our review suggested that people appreciate computer systems that 
respond to their emotions, for example, display empathy (Klein et al., 2002; Brave et al., 
2005). Although it seems a small step to assume that people would appreciate computers 
that administer virtual exposure therapy by responding to anxiety, there can be a 
fundamental difference. Emotion regulation aims not only to respond but also to change the 
emotional reactions to virtual and real-life emotional stimulation. There is a need to study 
how people experience this kind of a system and whether it helps in regulating emotions.  
In summary, the present work showed how automatic perception of emotions and proactive 
adaptation of a computer system could help in facilitating virtual exposure therapy. The 
skill of regulating emotions is gradually acquired by adapting virtual stimuli according to 
the emotional state of the person. This principle is applicable to other emotionally intelligent 
applications as well. For example, we might be less likely to loose our temper if the desktop 
computer could display empathy when an important document gets accidentally deleted. 
Thus, research on perceptual intelligence and proactive reasoning in virtual exposure 
therapy systems has the potential to improve the quality of human-technology interaction in 
general. The current work identified the state-of-the-art and the future research that will 
help in reaching this goal.   
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