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Multiresolutional Filter Application for Spatial 
Information Fusion in Robot Navigation 

Özer Ciftcioglu 
Delft University of Technology     

The Netherlands 

1. Introduction  

Robot navigation is one of the major fields of study in autonomous robotics (Oriolio, G., 
Ulivi, G. et al., 1998; Beetz, M., Arbuckle, T. et al., 2001; Wang, M. & Liu, J.N.K., 2004). In the 
present work, application of a multiresolutional filter for spatial information fusion in vision 
robot navigation is described. The novelty of the research is the enhanced estimation of the 
spatial sensory information in autonomous robotics by means of wavelet decomposition 
into multiresolutional levels and the fusion of the processed information while the 
processing takes place at the respective levels. Although wavelet-based information fusion 
is used in different applications (Hong, L., 1994; Hsin, H.C. & Li, A.C., 2006), its application 
in robotics is not common in literature.  A wavelet-based filtering application in perceptual 
robotics is articulated earlier where human perception was central to the research. In the 
present work, optimal vision signal estimation for an autonomous robot is presented, where 
vision information is obtained by appropriate shaping of the visual sensory information and 
optimal estimation is obtained by a multiresolutional filter.  One of the peculiarities of the 
research is essentially the wavelet-based dynamic filtering rather than static wavelet 
decomposition for image analysis or off-line decomposition for signal analysis. A 
multiresolutional dynamic filtering is a rather complex system. In this system vector form of 
wavelet decomposition is required as briefly mentioned by Hong (Hong, L., 1993) where the 
description of a multi-sensor fusion rather than wavelet decomposition was central to the 
study. In contrast to (Hong, L., 1993), in this work the multiresolutional dynamic filtering is 
central to the study together with the emphasis on application peculiarities in autonomous 
robotics; namely,  several options for vector-wise operations are pointed out and one of the 
options is described in detail. Also, in autonomous robotics, the estimation of angular 
velocity is not a measurable quantity and it has to be estimated from the measurable state 
variables so that obstacle avoidance problem is taken care of. Therefore, the angular velocity 
estimation in real-time is a critical task in autonomous robotics and from this viewpoint the 
multiresolutional spatial information fusion process is desirable for enhanced robot 
performance. For the fusion process extended Kalman filtering can be used and is actually 
used in the present study. Perceptual vision employed in this study is one of the vision 
alternatives in robotics providing several essential possibilities characterizing the robot as to 
its performance. Especially perceptual robotics is gaining importance in the last decade as to 
its expected connection to human-like behaviour. The organization of the work is as follows. O
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After brief description of wavelet transform, a detailed description of vector wavelet 
decomposition and inverse wavelet transform is presented with a vector decomposition and 
reconstruction example. The optimal processing of decomposed information is briefly given 
as proposed by Hong (Hong, L., 1993). This is followed by fusion of information from 
different multiresolutional levels that it is based on minimum fusion error covariance. 
Finally, autonomous robot implementation is described with the experimental results 
illustrating the sensory information and estimated trajectory thereby demonstrating the 
effective navigation of a moving robot. The work is accomplished in a virtual environment 
with the intention of realization in real-life environment in due course as the work 
constitutes a common place for diverse robotics areas like autonomous, perceptual, vision, 
cognitive etc.  

2. Perceptual vision and multiresolutional decomposition 

In this work a robot with perceptual vision is considered. The robot is provided with vision 
via sensors which can measure the distance between the robot and the forward direction via 
rays interacting with the environment. The rays can be conveniently shaped within a vision 
cone with a narrow solid cone angle. This is illustrated in figure 1. 
 

 
Fig. 1. Perception measurement in the virtual reality. Perception is determined as probability 
by means of the rays impinging on an object. 

Vision rays interact with the environment which includes side walls and hindrance along 
the forward direction. For an environment a permanent fictive vertical planes at certain 
threshold distances are considered. If a distance is more than the threshold value it is taken 
to be the threshold value. This means if the real environment is in front of that fictive plane 
the actual distance measured by the sensor is considered as distance. If the measured 
distances are beyond the predetermined threshold distances the robot moves forward 
without any angular velocity. The position estimation of robot is accomplished by means of 
Kalman filtering via the states of the robot navigation dynamics as presented earlier 
(Ciftcioglu et al., 2007). In this work, the enhanced estimation of the states is investigated via 
wavelet transform (Mallat, S.G., 1989; Ogden, T., 1997; Mallat, S., 1999; Percival, D.B. & 
Walden, A.T., 2000).  
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2.1 Wavelets 
The novel feature of wavelets is that they are localized in time and frequency as to signals. 
This behaviour makes them convenient for the analysis of non-stationary signals. It is an 
elementary introduction of wavelets by introducing a scaling function, such that 

 ( ) 2 (2 )
k

k

t h t kϕ ϕ= −∑  (1) 

A counterpart of this function is called mother wavelet function obtained from 

 ( ) 2 (2 )
k

k

t g t kψ ϕ= −∑  (2) 

where lk and hk are related via the equation 

 
1

( 1)k
k k
g h −= −  (3) 

In signal processing literature (3) is known as the quadrature mirror relation and the filter h 
and g as quadrature mirror filters. The coefficients gk and hk that is, the quadrature mirror 
filters are used to compute the wavelet transform. φ(t) and ψ (t) form orthogonal functional 
low-pass and high-pass filters respectively which are spaces in L2(ℜ) where inner product of 
functions with finite energy is defined. The orthogonal spaces satisfy the property 

 
, , 1,

( ) ( ) ( )
m k m k m k
t t tϕ ψ ϕ +∪ =  (4) 

where  

 /2

,
( ) 2 (2 )m m

m k
t t kϕ ϕ= −  (5) 

 /2

,
( ) 2 (2 )m m

m k
t t kψ ψ= −  (6) 

m=0 constitutes the coarsest scale. The simplest filter coefficients are known as Haar filter 
and given by 

 
1 2

1 2

1
[ ] [1 1]

2

1
[ ] [1 1]

2

h

h

h h h

g g g

= =

= = −
 (7) 

Haar wavelets have generally practical value for several reasons. The building blocks in 
decomposition are discontinuous functions that are not effective approximating smooth 
functions. However, because of their very simple form, especially in real-time measurement 
applications their value is eminent. The present application constitutes such an application 
and demonstrates their effectiveness. More about wavelets can be found in the literature 
(Mallat, S.G., 1989; Ogden, T., 1997; Mallat, S., 1999; Vidakovic, B., 1999; Percival, D.B. & 
Walden, A.T., 2000). 

2.2 The Kalman filter 
Kalman filter is an estimator of states of a dynamic system with a minimal error variance 
and in this sense it is optimal. The dynamic system is given in a form which is 
terminologically referred to as state-space: 
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 ( 1) ( ) ( ) ( ) ( )x k A k x k B k w k+ = +  (8) 

 )()()()( kvkxkCkz +=  (9) 

where A is the system matrix, B process noise matrix, C is the measurement matrix. Further, 
w(k) and v(k) are Gaussian process noise and measurement noise  respectively with the 
properties 

 

otherwise

lkforkQlwkwE

kwE

T

0

)(})()({

0)}({

=
==

=
 (10) 

In this work, Kalman filter is used to combine the information from the measurements at 
different resolutional levels and enhance the state estimation rather than to employ single 
measurement at each time-step. The estimation by Kalman filter is accomplished 
recursively. As to the conventional notations used in the literature (Anderson, B.D.O. & 
Moore, J.B., 1979; Maybeck, P.S., 1979; Brown, R.G. & Hwang, Y.C., 1997; Zarchan, P. & 
Musoff, H., 2005; Shalom, Y.B., Li, X.R. et al., 2006; Simon, D., 2006), the recursion is carried 
out by standard matrix equations given below. 

 ( 1| ) ( ) ( | )x k k A k x k k+ =  (12) 

 ( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T TP k k A k P k k A k B k Q k B k+ = +  (13) 

 
( 1 | ) ( 1)

( 1)
( 1) ( 1 | ) ( 1) ( 1)

T

T

P k k C k
K k

C k P k k C k R k

+ +
+ =

+ + + + +
 (14) 

So that the updated state variables and covariance matrix are 

 
( 1| 1) ( 1| )

([ ( 1) ( 1) ( 1| )] ( 1)

x k k x k k

z k C k x k k K k

+ + = + +
+ − + + +

 (15) 

 ( 1 | 1) [ ( 1) ( 1)] ( 1 | )P k k I K k C k P k k+ + = − + + +  (16) 

2.3 The Multiresolutional filter 
N-level multiresolutional dynamic system can be described by 

 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( 1) ( ) ( ),

( ) ( ) ( ) ( )

1,...,

N N N

N N N

i i i i

i i i i

x k A k x k

z k C k x k k

i N

ν
+ =

= +
=

 (17) 

where i=N is the highest resolution level, so that 

 

[ ]

[ ] [ ] [ ]

( ) 0,

( ) ( ) ( ),

0

N

N

N N T N

N N N

E w k

E w k w l Q k k l

k l

=⎡ ⎤⎣ ⎦
= =⎡ ⎤⎣ ⎦

= ≠

 (18) 
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Referring to the measurements z(Shalom, Y.B., Li, X.R. et al.)(ki) at different resolution levels, we 
write 

 

[ ]

[ ] [ ] [ ]

( ) 0,

( ) ( ) ( ),

0

i

i

i i T i

i i i

E w k

E w k w l Q k k l

k l

=⎡ ⎤⎣ ⎦
= =⎡ ⎤⎣ ⎦

= ≠

 (19) 

and 

 

[ ]

[ ] [ ] [ ]

( ) 0,

( ) ( ) ( ),

0

i

i

i i T i

i i i

E k

E k l R k k l

k l

ν

ν ν

=⎡ ⎤⎣ ⎦
= =⎡ ⎤⎣ ⎦

= ≠

 (20) 

Measurements at different resolution levels can be carried out in different ways. One way of 
doing this is shown with the following scheme.  

1

0      1      2 

0   1   2   3   4

2

3     4 

5   6   7   8

3

5      6      7

9  10  11 

l=1

l=2

l=3

0 4

 
where different resolution levels are indicated by l=1,2,3 while the highest resolution level is 
for l=3. In this implementation a moving window is used. When samples 0 and 1 are 
available in the window at l=3, sample 0 is calculated at the resolution level l=1 by wavelet 
decomposition; when the samples 1 and 2 are available at l=3, the sample 1 is calculated at 
the resolution level l=2 which is followed by the calculated sample 0 at the level l=1 using 
the samples 0 and 1 at the level l=2. In this way the moving window multiresolutional 
dynamic filtering can be executed. 
Another alternative for the multiresolutional measurements can be accomplished by the 
following scheme. 

1

0      1     

0   1   2   3   4

2

2       3  

5   6   7   8 9  10  11 

i=1

i=2

i=3

0

4       5  

time

data blockdata block data block

 
In this scheme each data block at the highest resolution level (i=3) contains 4 samples and at 
this very level, the  Kalman filtering estimations within the data block are carried out using 
the last data sample of the preceding block, together with the respective data samples within 
the block. Namely, for instance using the data sample 3 at the level i=3, 1-step ahead, 2-step 
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ahead, 3-step ahead and 4-step ahead Kalman predictions are made and as the data samples 
4, 5,6, and 7 are available, the respective estimations are made in sequence at the time points 
where the measurements are available; that is at the time points 4, 5, 6, and 7. 
Another scheme of measurements at different resolution levels are shown in figure 2 and the 
wavelet decomposition of state variables in a data block is shown in figure 3. This is the 
actual scheme implemented in this work and therefore explained in details as follows. It is 
to note that propagation as to state estimation occurs block-wise at the highest resolution 
level. Decomposition of the states by wavelet transform and reconstruction by inverse 
wavelet transform is effective in this scheme due to better estimation of the error covariance 
as to the state estimation as explained below. 
 

1

0      1     

0   1   2   3   4

2

2       3  

5   6   7   8 9  10  11 

i=1

i=2

i=3

0

4       5  

time

data blockdata block data block

 
Fig. 2. Measurements at different resolution levels 
 

data block

x[1](k1)

x[2](k2) x[2](k2+1)

x[3](k3) x[3](k3+1) x[3](k3+2) x[3](k3+3)

i=1

i=2

i=3

time index ki  
Fig. 3. Wavelet decomposition of state variables in a data block 

Within a data block, the state variables at resolution level i are designated as 

 

[ ]

[ ]

[ ]

[ ] 1

( )

( 1)

.......

( 2 )

i

i

i

m

i i

x k i

x k i
X

x k i −

⎡ ⎤
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (21) 
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[ ]

,1

[ ]

,2[ ]

[ ]

,

( )
....

i

k

i

ki

i

k s

x

x
x k i

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 

where m is data block index and s is the number of state variables. In a data block, there are 
2i-1 state variables. Each state variable has s state components. A lower resolution state 
variable is computed from 

 [ ] [ 1] [ 1]

1 1 2 1
( ) ( ) ( 1)i i i

i i i
x k h x k h x k+ +

+ += + +  (23) 

where h1 and h2 are the Haar low-pass filter coefficients. The details component i.e., high 
frequency part after the decomposition is computed via 

 [ ] [ 1] [ 1]

1 1 2 1
( ) ( ) ( 1)i i i

i i i
y k g x k g x k+ +

+ += + +  (24) 

where g1 and g2 are the Haar high-pass filter coefficients. The reconstruction of the states is 
carried out by combining (22) and (23) in a matrix equation form as given below. 

 
[ 1]

1 [ ] [ ]

[ 1]

1

( )
( ) ( )

( 1)

i

i i i

i ii

i

x k
x k y k

x k

+
+

+
+

⎡ ⎤
= +⎢ ⎥

+⎣ ⎦

T T
h g  (25) 

Wavelet decomposition and reconstruction is carried out according to the scheme shown in 
figures 4 and 5.  
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Fig. 4. Wavelet decomposition of state variables in a data block 
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Fig. 5. Wavelet reconstruction of state variables in a data block 
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The wavelet matrix operator G and the scaling matrix operator H in the decomposition and 
their counterparts G* and H* in the reconstruction contain two-tap Haar filters and they are 
related by 

 * *T TG G H H= =  (26) 

 It is to note that the state variable estimations are carried out at the respective resolution 
levels, as follows. 

 1 (1) (2) ( )
{(1/ 2) , (1/ 2) ,...., (1/ 2) }

i i K

h h h
H diag h h h

+ → =  (27) 

where K is the number of filters involved in a decomposition from the resolution level i+1 to 
i. For instance from 2 to 1, then i=1, and K is given by  

 12 1iK −= =  (28) 

as this is seen in figure 2, as the block length is 2. For the s state variable of the system, the H 
matrix is composed of s Haar filters at the diagonal as  

 1 1 1

[1] [2] [ ]
{ , ,......, }i i i i i i

K
H diag H H H+ → + → + →=  (29) 

Similarly, for the reconstruction filter, we write 

 1 (1) (2) ( ){( 2) , ( 2) ,...., ( 2) }i i K

h h h
G diag g g g+ → =  (30) 

 1 1 1

[1] [2] [ ]
{ , ,......, }i i i i i i

K
G diag G G G+ → + → + →=  (31) 

As K is given by (27). For the inverse transform scheme given by figure 5, we write 

 * 1 1 1

[1] [2] [ ]
{ , ,......, }i i i i i i

K
H diag H H H→ + → + → +=  (32) 

 * 1 1 1

[1] [2] [ ]
{ , ,......, }i i i i i i

K
G diag G G G→ + → + → +=  (33) 

where 

 1 (1) (2) ( )
{( 2) , ( 2) ,...., ( 2) }

i i T T T K

h h h
H diag h h h

→ + =  (34) 

 1 (1) (2) ( ){(1/ 2) , (1/ 2) ,...., (1/ 2) }i i T T T K

h h h
G diag g g g→ + =  (35) 

Above T indicates transpose and K is given by (28). 

2.3.1 Example block-wise 2-way multiresolutional computation 

An example block wise wavelet computation is presented in this subsection. For this we 
consider figure 2 and the initial data block designated as 0 with the data samples as x0 and 
x1 at the resolution level i=2.  Also for the sake of simplicity we consider s=2; namely only 
two state variables of the system. Therefore the data samples are denoted as x01, x02 and x11, 
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x12; first index is for the data sample, second index for the state variable. We define an 
auxiliary matrix L as follows 

 [2]

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (36) 

which yields 

 

[2] [2]

01 01

[2] [2]

02 11[2] [2]

[2][2]

0211

[2] [2]

12 12

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

m

x x

x x
L X

xx

x x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (37) 

where m is index of the data block which is m=0, above. It is to note that, the sate variables 
are grouped slightly different for computational convenience; namely the decomposition is 
carried out by 

 [ 1] [ 1] [ ] [ ]i T i i i

m m
X L H L X− −=  (38) 

 [ 1] [ 1] [ ] [ ]i T i i i

m m
Y L G L X− −=  (39) 

where Ym are the wavelet coefficients. From the definition given by (27) and (30) 

 [ ]1 (1){(1/ 2) } 1/ 2 1/ 2i i

h
H diag h+ → = =  (40) 

 [ ]1 (1){( 2) } 1 1i i

h
G diag g+ → = = −  (41) 

Also from (29) and (31) 

 

1 1

[0] [1]

1 1

[0] [1]

{ , }

{ , }

i i i i

i i i i

G diag G G

H diag H H

+ → + →

+ → + →

=

=
 (42) 

In (34) substituting i=2, the decomposition at the level i=1, becomes 

 

[2]

01

[2] [2][2]

01 1102[1] [1] [2] [2]

0 [2] [2][2]

02 1211

[2]

12

1 0 0 0

.5 .51 0 .5 .5 0 0 0 0 1 0

0 1 0 0 .5 .5 0 1 0 0 .5 .5

0 0 0 1

T

m

x

x xx
X L H L X

x xx

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= = × × = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (43) 

which is a low-pass filtered data block by averaging. The wavelet coefficients which are the 
high-pass filtered data samples are obtained in a similar way as 
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[2]

01

[2] [2][2]

01 1102[1] [1] [2] [2]

0 [2] [2][2]

02 1211

[2]

12

1 0 0 0

1 0 1 1 0 0 0 0 1 0

0 1 0 0 1 1 0 1 0 0

0 0 0 1

T

m

x

x xx
Y L G L X

x xx

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= = × × = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (44) 

(43) and (44) are the multiresolutional decomposition of the data block 0, from level i=2 to 
the level i=1. 
The inverse wavelet transform is carried out according to the general scheme given by figure 5. 

 [ ] [ ] * [ ] [ 1] [ ] * [ 1] [ 1]i T i i i T i i i

m m m
X L H L X L G L Y− − −= +  (45) 

From (32) and (33), we write 

 * 1 2 1 2

[1] [2]

1 0

1 0
{ , }

0 1

0 1

H diag H H→ →

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥= = ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (46) 

 * 1 2 1 2

[1] [2]
{ , }G diag G G→ →= =

.5 0

.5 0

0 .5

0 .5

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (47) 

 so that, (45) becomes 

 [2] [2] * [1] [1] [2] * [1] [ ]

0 0 0

T T iX L H L X L G L Y= +  (48) 

The substitution of the respective matrices into (48) yields 

 

2 [2]

01 11

[2] [2]

02 12

1 01 0 0 0

1 0 .5 .50 0 1 0 1 0

0 1 0 0 0 1 .5 .50 1

0 0 0 1 0 1

.5 01 0 0 0

.5 00 0 1 0

0 1 0 0 0 .5

0 0 0 1 0 .5

x x

x x

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ +⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
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which is Xm[2] as given in (37). 
For the same decomposition from i=3 to i=2, the auxiliary matrix L is given by 

 [3]

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (50) 

For this case i=2, and K is given by  

 12 2iK −= =  (51) 

as this is seen in figure 2, where the block length is 4. 

2.3.2 Estimate updating 

The basic update scheme for dynamic multiresolutional filtering is shown in Fig. 6 where at 
each resolutional level, when the measurement is available, the state variables are updated 
and when the block is complete the inverse wavelet transform and fusion is performed. 
During the inverse transformation wavelet coefficients Ym+1|m+1[i] saved aside are used. 
 

m+1 KmX

m+1 KmP

m+1 KmX

m+1 KmP

[N-1]

[N-1]

m+1 KmX

m+1 KmP

[1]

[1]

m+1 Km+1X

P

[N]

m+1 Km+1

[N]

m+1 Km+1X

P

[N-1]

m+1 Km+1

[N-1]

m+1 Km+1X

Pm+1 Km+1

[1]

[1]

update with Z
[N]

update with Z
[N-1]

update with Z
[1]

fusion

fusion m+1 Km+1X

Pm+1 Km+1

m+2 Km+1X

Pm+2 Km+1

propagation

[N]

[N]

 
Fig. 6. Wavelet decomposition of state variables in a data block 

Explicitly 

 

[ ] [ ]

1| 1|[ ]

1| [ ] [ ]

1| 1|

i i

XXm m XYm mi

m m i i

YXm m YYm m

P P
P

P P

+ +

+

+ +

⎡ ⎤
= ⎢ ⎥
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 (52) 
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 [ ] [ ] [ ] [ ] [ ] [ ]

1| 1 1| 1 1 1 1|
( )i i i i i i

m m m m m m m m m
X X K Z C X+ + + + + + += + −  (53) 

and  

 [ ] [ ] [ ] [ ]

1| 1 1 1 1|
( )i i i i

XXm m m m XXm m
P I K C P+ + + + += −   (54)   

As Xm+1|m[i] and Ym+1|m[i], Ym+1|m[i+1] are correlated, the covariance matrices PXYm+1|m[i] and 
PYXm+1|m[i] are also updated. However, the wavelet coefficients Ym+1|m[i] and their covariance 
matrices PYYm+1|m[i] are not updated.  The minimum variance Kalman gain matrix Km+1[i] at 
each level, is determined by 

 ( ) 1
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1| 1 1 1| 1 1

i i i T i i i T i

m XXm m m m XXm m m m
K P C C P C R

−

+ + + + + + += +  (55) 

where the measurent matrix Cm=1[i] and Rm+1[i] are given by 

 
[ ] 1 [ ] 1 1
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1 [ ] 1
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..... , [( 1) 2 1]

i i i i i
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m i i

C m C m
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C m
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+ −

+ + − +⎡ ⎤
= ⎢ ⎥+ + +⎣ ⎦

 (56) 
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i i i i i

i

m i i

R m R m
R diag

R m
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+ −

+ + − +⎡ ⎤
= ⎢ ⎥+ + +⎣ ⎦

 (57) 

Once, within the moving window, the sequences of updated state variables and error 

covariances [ , ]

1| 1

N i

m m
X + + and [ , ]

1| 1

N i

m m
P + + for i=1,2,..,N are determined, they must be fused to 

generate an optimal [ ]

1| 1

NF

m m
X + + and [ ]

1| 1

NF

m m
X + + . [ ]

1| 1

NF

m m
X + + and [ ]

1| 1

NF

m m
X + + . For the 

minimum fusion error covariance [ ]

1| 1

NF

m m
X + + , the fused estimate [ ]

1| 1

NF

m m
X + + is calculated as 

 ( ) ( ) 1
[ ] [ } [ , ] [ , ] [ ] [ ]

1| 1 1| 1 1| 1 1| 1| 1|
1

( 1)
N
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X P P X N P X
−
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=

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑  (58) 

where the minimum fusion error covariance   [ ]

1| 1

NF

m m
P + +  becomes  

 ( ) ( ) ( )1 1 1
[ ] [ , ] [ ]

1| 1 1| 1 1|
1

( 1) .
N

NF N i N

m m m m m m
i

P P N P
− − −

+ + + + +
=

= − −∑  (59) 

The fused estimate [ ]

1| 1

NF

m m
X + + is a weighted summation of both predicted [ ]

1|

N

m m
X + and 

updated [ , ]

1| 1

N i

m m
X + + , for i=1,2,..,N. The sum of the weight factors equal to the identity I. This 

can be seen by substitution of [ ]

1| 1

NF

m m
P + + given above into the expression of [ ]

1| 1

NF

m m
X + + in 

(58). 

3. Autonomous robot navigation 

The computer experiments have been carried out with the simulated robot navigation. The 
state variables vector is given by (22) while taking i=N. 
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[ ]

,1

[ ]
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,

( )
....

N
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N
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k s

x

x
x k N

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (60) 

Explicitly,  

],,,,[)(][ ω••
= yyxxNkx N

 
where ω is the angular rate and it is estimated during the move. When the robot moves in a 
straight line, the angular rate becomes zero. The other state variables are x and y coordinates 
and the respective velocities.  
The experiments are carried out as follows. For a pre-defined trajectory, perception 
measurements along the trajectory are obtained in a virtual reality environment. This 
trajectory is designated as reference. The measurements as data samples are used in 
sequence for a real-time robot navigation by multiresolutional dynamic filter estimation. 
Designing the experiment in this way allows one to assess the effectiveness of the robot 
navigation by comparison of the actual navigation path with the estimated one. The overall 
robot trajectory is shown in figure 7 where there are three lines plotted but only two of them 
are visible. The line marked by * sign represents the measurement data set. The line marked 
by •  is the multiresolutional dynamic filter estimation. The line indicated by o sign is the 
reference trajectory. These lines are not explicitly seen in the figure. For explicit illustration 
of the experimental outcomes the same figure with a different zooming ranges and the 
zooming powers are given in figures 8-11. 
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Fig. 7. The overall Robot trajectory with measurement (* signs), and multiresolutinal 
dynamic filter estimation (• signs). 
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Fig. 8. Enlarged robot trajectory, measurement, and multiresolutinal dynamic filter 
estimation in angular velocity mode. The * sign is for measurement, o sign for the reference 
and • sign is the estimated trajectory. 

From the experiments it is seen that, the multiresolutional filtering is effective for estimation 
of the trajectory from perception measurement. Estimations are more accurate in the 
straight-ahead mode seen in figure 11, compared to the cases where angular velocity does 
not vanish. This can be explained by noting that in the straight-ahead mode the angular 
velocity is zero and the system matrix is fixed. However in the non-linear mode the system 
matrix is approximate due to the estimation error of the angular velocity. In this case the 
slight difference between the reference trajectory and the estimated trajectory is markedly 
seen due to the approximation error caused by the Taylor’s series expansion and ensuing 
linearization in (extended) Kalman filtering. 
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Fig. 9. Enlarged Robot trajectory, measurement multiresolutinal dynamic filter in angular 
velocity mode. The * sign is for measurement, o sign for the reference and • sign is the 
estimated trajectory. 
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Fig. 10. Enlarged Robot trajectory, measurement multiresolutinal dynamic filter in angular 
velocity mode. The * sign is for measurement, o sign for the reference and • sign is the 
estimated trajectory. 
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Fig. 11. Enlarged robot trajectory, measurement multiresolutinal dynamic filter straight-
ahead mode. The * sign is for measurement, o sign for the reference and • sign is the 
estimated trajectory. 

4. Discussion and conclusion 

The detailed description of processing of spatial information for a perceptual robot is 
described. Especially, the perception is considered to be a probabilistic concept and defined 
as such (Ciftcioglu, Ö., Bittermann, M.S. et al., 2006) so that the probabilistic consideration in 
perceptual robot is desirable for human-like robot navigation. This facilitates the robotic 
movement coupling the cognition of a robot with the environment. In this context, Bayesian 
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perception and cognition studies (Knill, D.C. & Richards, W., 1996) can be more 
substantiated with more accurate priors. This is especially important when one deals with a 
certain scene but from a different vantage point.  
In vision robotics autonomous navigation is a challenging issue. Using the perceptual  
spatial information vision robot can navigate autonomously by perception-based sensory 
information so that it can react better with respect to the environmental and circumstantial 
situations. Better is in the sense of obstacle avoidance and way finding without crash. In the 
present work, the processing the spatial information is accomplished by means of wavelet 
technology that is the main component in the information fusion process.  The simplest form 
of wavelets is used to cope with the real-time requirements in the navigation and it is 
demonstrated that, this choice is justified. Kalman filtering is the machinery for the fusion 
process, as well as it plays the role of optimal observer (Friedland, B., 1986) of the 
measurements referring to distance (r), angle (θ) and the scalar velocity (v). These may 
partly be computed from the estimated state variables, in the case of unavailable actual 
measurement counterparts. For that matter, it is the angular velocity for which the 
measurements are unavailable, in this work. The work is a clear demonstration of the 
working state observers and therefore an important hint for the physical robotics exercises. 
It is reminded that, the present work is an autonomous robotics simulation implemented in 
a virtual reality and the results reported are the computer experiments. 
Applications of vision robot are countless and they are well documented in the literature. 
Autonomous robotics with perception is a new dimension in a vision robot as such its vision 
can be shaped for application dependent vision properties. The investigations presented in 
this work are motivated by measuring the perception aspects of an architectural design from 
different vantage points and altogether to obtain a compromise among them, as to a final 
decision-making for that design. Such a task in one hand is a routine work for a robot in 
virtual reality and the actual (real) scene having been represented in the virtual reality, the 
scene can be perceived in many different ways as desired. The same task for a human is in 
the first place extremely tedious but more importantly subjective in terms of perception 
measurement and therefore can be deemed to be inconclusive due to probable 
inconsistencies among different observers and even for a single viewer. This is because of 
the complexity of the task due to the number of objects involved in the scene. Here the 
objects may be a number of dwelling units subject to marketing by a building project 
developer. Since a number of locations and architectural requirements impose condition on 
perception aspects, the task is a multi-objective optimization subject to these impositions as 
constraints. Also, in this situation one is interested in a solution on a Pareto front. Such 
complexities are today effectively dealt with thanks to evolutionary algorithms (Deb, K., 
2001; Coello, C.A.C., Veldhuizen, D.A. et al., 2003; Sato, H., Aguirre, H.E. et al., 2007). Some 
endeavours in the context of architecture are reported in (Bittermann, M. et al., 2008; 
Ciftcioglu, O. & Bittermann, M.S., 2008). The present research is another endeavour along 
this line revealing the exhaustive details of spatial information fusion as to accurate robot 
navigation using multiresolutional dynamic filter approach. 
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