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1. Introduction 

Traditional methods of data collection are often expensive and time consuming. We propose 
a novel data collection technique, called Bayesian Adaptive Sampling (BAS), which enables 
us to capture maximum information from minimal sample size. In this technique, the 
information available at any given point is used to direct future data collection from 
locations that are likely to provide the most useful observations in terms of gaining the most 
accuracy in the estimation of quantities of interest. We apply this approach to the problem of 
estimating the amount of carbon sequestered by trees. Data may be collected by an 
autonomous helicopter with onboard instrumentation and computing capability, which 
after taking measurements, would then analyze currently available data and determine the 
next best informative location at which a measurement should be taken. We quantify the 
errors in estimation and work towards achieving maximal information from minimal 
sample sizes. We conclude by presenting experimental results that suggest our approach 
towards biomass estimation is more accurate and efficient as compared to random 
sampling. 
Bayesian Adaptive Sampling (BAS) is a methodology that allows a system to examine 
currently available data in order to determine new locations at which to take new readings. 
This procedure leads to the identification of locations where new observations are likely to 
yield the most information about a process, thus minimizing the required data that must be 
collected. As an example of the application of this methodology, we examine the question of 
standing woods in the United States. In order to estimate the amount of carbon sequestered by 
trees in the United States, the amount of standing woods must be estimated with quantifiable 
uncertainty (Wheeler, 2006). Such estimates come from either satellite images or near ground 
measurements. The amounts of error in the estimates from these two approaches are currently 
unknown. To this end, an autonomous helicopter with differential GPS (Global Positioning 
System), LIDAR (Light Detection and Ranging), stereo imagers, and spectrometers has been 
developed as a testing platform for conducting further studies (Wheeler, 2006). These 
instruments are capable of measuring the reflectance data and the location of the Sun and 
helicopter in terms of the zenith and the azimuth angles (Figure 1). The objective is to develop 
a controlling software system for this robotic helicopter, which optimizes the required ground 
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sampling. There are a number of methods by which data maybe collected. The first simplistic 
data collection method is to conduct an exhaustive ground sampling, that is, to send the 
helicopter to every possible location. The second approach is to perform random sampling 
until the estimates have acceptable standard errors. Although random sampling presents a 
possibility that the helicopter will take samples from the locations that offer the greatest 
amount of information, and therefore reduce the needed sample size, there is no guarantee 
that such a sample set will be chosen every time. The third and more efficient method is to take 
only a few samples from “key” locations that are expected to offer the greatest amount of 
information. The focus of this paper is to develop a methodology that will identify such key 
locations from which the helicopter should gather data. 
 

 

Fig. 1. Viewpoint and Position of the Sun. 
ss
φθ ,  are the zenith and the azimuth angles of the 

Sun, and 
v

θ , 
v
φ  are the zenith and the azimuth angles of the view, respectively (Wheeler, 

2006). 

In the work described here, the key locations are identified using current and previously 
collected data. The software works in tandem with the sampling hardware to control the 
helicopter’s position. Once a sample has been obtained, the data are fed into the system, 
which then calculates the next best location to gather further data. Initially, the system 
assumes an empirical model for the ground being examined. With each addition of data 
from the instruments, the parameter estimates of the model are updated, and the BAS 
methodology is used to calculate the helicopter’s next position. This process is repeated until 
the estimated uncertainties of the parameters are within a satisfactory range. This method 
allows the system to be adaptive during the sampling process and ensures adequate ground 
coverage.  
The application employs a bi-directional reflectance distribution function (BRDF), in which 
the calculation of the amount of reflection is based on the observed reflectance values of the 
object, and the positions of the Sun and the viewer (Nicodemus, 1970). The advantage of 
using this function is that it enables the system to compensate for different positions of the 
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Sun during sampling. Once the reflectance parameters are estimated, BAS uses the principle 
of maximum entropy to identify the next location where new observations are likely to yield 
the most information. 
In summary, the BAS methodology allows the system to examine currently available data  
in order to determine new locations at which to take new reflectance readings. This 
procedure leads to the identification of locations where new observations are likely to yield 
the most information. 

2. Background and related work 

Computing view points based on maximum entropy using prior information has been 
demonstrated by Arbel & Ferrie (1970), where this technique was used to create entropy 
maps for object recognition. Vazquez et al. (2001) also demonstrated a technique for 
computing good viewpoints based on Information Theory. Whaite & Ferrie (1994) 
developed an autonomous explorer that seeks out those locations that give maximum 
information without using a priori knowledge of the environment. Makay (1992) used 
Shannon’s entropy to obtain optimal sample points that would yield maximum information. 
The sample points are taken from the locations that have largest error bars on the 
interpolation function. In our work, the optimal locations that offer the maximum amount of 
information are identified using the principle of maximum entropy, where the maximization 
is performed using techniques suggested by Sebastiani and Wynn (2000). 
A simplified but elucidating version of an example given in Sebastiani and Wynn (2000) is 
as follows:  Suppose that the relationship between a dependent variable y and an 
independent variable x is known to be linear over the domain of interest x ∈  [1,4], and is 
known to be one of two equations with additive noise, yi = 5 + 7xi + εi or yi = 17 + 3xi + εi, 
each with a Bayesian prior belief to update of 1/2. Figure 2 shows the two possibilities  over  
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Fig. 2. Two lines, with circle indicating the region where the two models have the greatest 
diference, and thus where the maximum entropy sampling procedure indicates a new 
observation should be taken in order to best determine which model is more likely correct. 
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the domain of interest. Our intuition tells us that an observation taken at x = 3 will not help 
us to discriminate between the two possible models, as the expected resonse, E( y|x=3) is 
the same for each of the two models. Our intuition further tells us that an observation taken 
at x = 1 will yield a response, y|x=1, providing the most “information” as to the correct 
model, since the two models are most distinct at x = 1. An application of the theorems of 
Sebastiani and Wynn show that the optimal location of the independent variable at which to 
take an observation that maximizes the entropy (expected information as defined by 

Shannon (1948)) is at x* = argxmin{(5 + 7x) - (17 + 3x)}2 = argxmin{144 - 96x + 16x2} 1= , which 

agrees with our intuition.  

3. Application and model 

Surface BRDF is often used to measure vegitation or other attributes of a surface. By it’s very 

nature, BRDF requires measurements taken from a variety of viewing angles and sun 

positions (and hence different times of day), as solar radiation reflected by the surface is not 

uniform in all directions (Zhang et al., 1997), nor is it uniform from the same direction when 

the sun is shining on the location from different directions, as can been seen in Figure 3. This 

shows the importance of including not only the viewpoint position but also the position of 

the sun when taking reflectance measurements in order to accurately measure ground cover.  

The model for the data used in our framework is based on the semi-empirical MISR (multi-
angle imaging spectrometer) BRDF Rahman model (Rahman et al., 1993): 
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where r  = ),,,( vsvsr φφθθ is the measured reflectance, ρ  is the surface reflectance at 

zenith, k is the surface slope of reflectance, b  is a constant associated with the hotspot, or 

"antisolar point" (the point of maximum reflectivity, which is the position where the sensor 

is in direct alignment between the Sun and the ground target), ss φθ , are the zenith and the 

azimuth angles of the Sun, respectively (Fig. 1), and vv φθ , are the zenith and the azimuth 

angles of the view, respectively (Fig. 1), where in each case the zenith angle θ ranges from 0 

to 2/π (horizontal to vertical) and the azimuth angle ranges from 0 to π2  (all the way 

around a circle), thus the viewpoint (and the  sun) are assumed on a half-hemisphere 

centered over the object or in this case region of land to be studied. 
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With this application, the goal of this study is to estimate the parameters ρ , k and b  to a 

predefined level of  accuracy, or as some in the engineering field say, to ˝minimize the 
length of the error bars of the paramater estimates˝, with as few observations as is 
reasonably possible.  
 

 

Fig. 3. The effect of forward scattering of light (on the left) and backward scaterring of light 
(on the right) in two photographs of the same location taken from the same position at 
different times of day (Lucht & Schaaf, 2006).  

4. Methodology 

Our framework consists of the following two steps: 

1. Parameter Estimation: In this step, we estimate the values of the parameters ( ρ , k and 

b ), and their covariance matrix and standard errors, given currently available data of 

the amount of observed reflected light, and the zenith and azimuth angles of the Sun 
and the observer. 

2. Bayesian Adaptive Sampling (Optimal Location Identification): In this step, we use the 
principle of maximum entropy to identify the key locations from which to collect the 
data.  

Once the key location is identified, the helicopter goes to that location, and the instruments 
on the helicopter measure the reflectance information. These data are then fed into the 

Parameter Estimation stage and the new values of the parameters ( ρ , k and b ) are 
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calculated. This process is repeated (Fig. 4) until the standard errors of the parameter 
estimates achieve some predefined small value, ensuring adequacy of the estimated 
parameters. This process minimizes the required number of observations to be taken by 
ensuring that each new observation is taken from a location which maximizes the expected 
information obtained from the forthcoming observation, and using the then observed data 
in order to determine the location from which to take the subsequent observation. 
 

 

Fig. 4. Overview of Bayesian Adaptive Sampling. 

5. Implementation 

5.1 Parameter estimation 
The input to this step is the observed reflectance value (r ), zenith and azimuth angles of the 

Sun ),( ss φθ , and zenith and azimuth angles of the observer/helicopter ),( vv φθ . The 

parameters ( ρ , k , and b ) are estimated using the following iterated linear regression 

algorithm:  Taking the natural logarithm of r = ),,,( vsvsr φφθθ  results in the following near 

linear version of this model: 
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Note that aside from the term ),,,(ln
vsvs

h φφθθ , which contains a nonlinear ρ , the function 

ln(r ) is linear in all three parameters, )ln(ρ , k , and b . “Linearization” of )ln(h  is 

accomplished by using the estimate of ρ  from the previous iteration, where at iteration n in 

the linear least-squares fit the value of ),,,( vsvsh φφθθ from (2) is modified and is taken to 

be the constant in (6)  where )0(ρ is set equal to zero. 
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We thus obtain as out model, for observation i, the linear model 
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where we assume that the errors in the model,
i
ε , are independent and identically 

distributed (iid) random variables from a Normal distribution with mean zero and 

variance 2σ ; 0β = ρln  is the regression constant/intercept to be estimated; 
2,1 ii

xx are the 

independent/ explanatory variables given in (8) and (9), which are functions of the 
viewpoint and the position of the sun as described above and are measured at observation 

time i ; and 
i
y is a function of the response and functions which are known/fixed constants 

at the given time i as shown in (10). 
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Next, linear regression is performed on the model in (7) (with iteration until the convergence 

of the parameters due to the nonlinear term ),,,(
vsvs

h φφθθ being treated as the 

constant ),,,()(

vsvs

nh φφθθ ). From the regression, we find estimates of the following quantities:  

Estimates of the parameters ,and,,0 bkβ  an estimate of 2σ  (the variance of the errors, as 

discussed in and around (7)), and an estimate of the covariance matrix, 1−R , of the parameter 

estimates, i.e., the estimate of the matrix given in (11). Recall that 0β = ρln  so that 

( )0exp βρ = , and through use of the delta method (Casella and Berger, 2002) an estimate 

of ρ is ( )
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5.2 Bayesian adaptive sampling 
This step identifies the most informative location ( vv

φθ , ) to which to send the helicopter to 

take a new reflectance reading. We employ the principle of maximum entropy, in which the 
available information is analyzed in order to determine a unique epistemic probability 
distribution. The maximization is performed as per techniques suggested by Sebastiani and 
Wynn (2000), where in order to maximize the amount of information about the posterior 

parameters  ( ρ , k and b ), we should maximize the entropy of the distribution function. 

Mathematically, maximizing the entropy is achieved by maximizing RXX +Σ′ −1ln  where 

|A| is the determinent of the matrix A, A’ indicates the transpose of the matrix A, Σ  is the 
covariance matrix of the error terms, and X is the regression design matrix where the ith 
row is associated with the ith observation (either a future or past observation, depending on 
the context) 
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As the natural logorithm is a monotone increasing function, and we have assumed that the 

errors are iid N(0, 2σ ) and so I
1

2σ
=Σ  where I is the identity matrix , our criteria reduces to 

maximizing the quantity given in (12). 

 RXX +′
2

1

σ
 (12) 

Note that 2σ  and R  are estimated in the Parameter Estimation step and are thus at this 

stage assumed to be known quantities. As described above, the matrix X contains functions 

of the zenith and azimuth angles of the Sun, ( )
ss φθ , , and the viewpoint/helicopter, ( )

vv φθ ,  

at which future observations are to be taken (i.e., for each time i at which future 
observations are to be taken). Since the times at which future observations are to be taken 
are known, and thus the positions of the sun at these times are known, the only remaining 

unknown quantities in (12) are the values of ( )
vv φθ , . Thus, the new location(s) to which the 

helicopter will be sent are the values of ( )
vv

φθ ,  in the rows of X associated with new 

observations that maximize (12). 

5.3 Initialization 
Before data have been collected, one of course cannot calculate parameter estimates as 
described in section 5.1. Before parameter estimates are collected, one does not have an 

estimate of R or 2σ to use in (12) from section 5.2. In order to initialize the procedure, one 

can use a Bayesian prior for these quantities, or equivalently, any estimate based upon prior 
knowledge of the quantities. In the absence of any prior knowledge, one may take an 

uninformative prior for R  to be the identity matrix I, and any arbitrary estimate of 2σ . See 

the appendix for a more thourough discussion of the quantity in (12) to be maximized. 

6. Simulation 

We conduct two simulated experiments in which the estimates of the model parameters are 
calculated. In the first experiment, “Estimation Using Random Observations”, the data are  
collected by sending the helicopter to random locations. In the second experiment, 
“Estimation using BAS”, the data are collected using BAS.  

We note that the Sun moves through π2  radians in a 24-hour period, i.e., at the rate of 

≈)60*24(2π 0.004363323 or slightly less than 0.005 radians per minute. We will assume it 

takes about 2 minutes for the helicopter to move to a new location. Thus, the position of the 
Sun changes by approximately 0.01 radians between measurements.  

In our simulation, the true values of the parameters ρ , k and b are 0.1, 0.9, and -0.1, 

respectively. For the purpose of this paper, the observed values were simulated with added 
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noise from the process with known parameters. This allows us to measure the efficacy of the 
algorithm in estimating the parameters and minimizing the standard errors of our estimates. 
In actual practice, the parameters would be unknown, and we would have no way of 
knowing how close our estimates are to the truth, that is, if the estimates are as accurate as 
implied by the error bars. 

6.1 Estimation using observations taken at random locations 
In this experiment, we send the helicopter to 20 randomly chosen locations to collect data. 
Starting with the fifth observation, we use the regression-fitting algorithm on the collected 
input data set (the observed reflectance information, and the positions of the Sun and the 

helicopter), to estimate the values of the parameters ρ , k , b as well as their standard errors. 

Table 1 shows the results of this experiment. 
 

Obs 
# vθ  vφ  r 

Estimate (se) 
of ρ  

Estimate (se) 

of k  

Estimate (se) 

of b  

1 0.114 1.673 0.157552    
2 0.882 6.013 0.156616    
3 0.761 0.917 0.192889    
4 0.678 1.308 0.180404    
5 0.260 0.114 0.152558 0.0683 (0.1172) 0.8497 (0.0607) -0.5958 (0.1413) 
6 1.195 2.367 0.146659 0.0767 (0.0932) 0.7906 (0.0476) -0.4506 (0.1040) 
7 0.237 2.805 0.149475 0.0830 (0.0746) 0.8268 (0.0404) -0.3745 (0.0893) 
8 0.166 1.700 0.155497 0.0832 (0.0641) 0.8286 (0.0345) -0.3722 (0.0788) 
9 0.320 2.012 0.154191 0.0831 (0.0572) 0.8277 (0.0307) -0.3735 (0.0713) 

10 1.224 4.085 0.129133 0.0917 (0.0465) 0.8369 (0.0381) -0.2483 (0.0539) 
11 1.409 3.442 0.135005 0.0917 (0.0431) 0.8380 (0.0309) -0.2481 (0.0503) 
12 0.092 1.559 0.154096 0.0920 (0.0394) 0.8398 (0.0285) -0.2462 (0.0471) 
13 0.806 0.891 0.200401 0.0888 (0.0402) 0.8129 (0.0284) -0.2952 (0.0453) 
14 1.256 5.467 0.147654 0.0891 (0.0385) 0.8181 (0.0259) -0.2914 (0.0433) 
15 0.227 1.284 0.155373 0.0889 (0.0368) 0.8169 (0.0248) -0.2919 (0.0418) 
16 1.129 5.522 0.148721 0.0889 (0.0354) 0.8174 (0.0236) -0.2918 (0.0402) 
17 0.507 5.696 0.150381 0.0891 (0.0333) 0.8183 (0.0225) -0.2904 (0.0380) 
18 0.119 4.363 0.142232 0.0890 (0.0302) 0.8181 (0.0207) -0.2908 (0.0357) 
19 0.245 0.524 0.151915 0.0889 (0.0299) 0.8172 (0.0205) -0.2901 (0.0355) 
20 0.446 2.408 0.144471 0.0884 (0.0297) 0.8149 (0.0204) -0.2930 (0.0354) 

Table 1. Observations and Estimates Using Random Sampling 

6.2 Estimation using BAS 
In this experiment, the first five locations of the helicopter are chosen simultaneously using 

an uninformative prior distribution (i.e., as no estimate of R  has yet been formed; it is taken 

to be 2σ I, with 2σ  taken to be 10-6 based on information regarding the accuracy of the 

instrumentation) and an X matrix with five rows in which the positions of the Sun ( )
sisi

φθ ,  

are known and (12) is maximized over five pairs of helicopter viewpoints ( )
vivi φθ , . 

Subsequently, we use BAS to calculate the next single best informative location for the 
helicopter to move to in order to take a new reflectance observation, in which case (12) is 
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maximized with an X matrix containing a single row in which the position of the Sun 

( )
is φθ , is known, 2σ  and R are taken to be their estimated values from the regression 

performed on the data collected to this point, and the only unknowns, to be calculated, are a 

single pair of helicopter viewpoint values, ( )
vv φθ , . After the helicopter is sent to this location 

and takes a reflectance reading, a new regression is performed on all data accumulated to 
this point, and the procedure is repeated. In practice, a computer onboard the helicopter 
would perform the regression, calculate the new next-best location, direct the helicopter to 
that location, take the reflectance reading, and repeat until some predetermined stopping 
point, which might include some fixed number of observations, or until the error bars have 
reached some predefined level indicating an acceptable accuracy in the parameter estimates, 
or perhaps until the helicopter has nearly exhausted it’s fuel supply. In this simulation, we 
stop at the fixed number of 20 observations. 
Table 2 shows the results from this experiment. In both experiments estimates of the 
parameters, along with their standard errors, cannot be formed until at least five 
observations have been taken. 
 

Obs 
# v

θ  
v

φ  r 
Estimate (se) 

of ρ  
Estimate (se) 

of k  

Estimate (se) 

of b  

1 0.460 0.795 0.172364    
2 0.470 0.805 0.177412    
3 1.561 3.957 0.161359    
4 1.561 0.825 0.183571    
5 1.265 3.977 0.129712 0.1041 (0.0325) 0.90904 (0.00879) -0.1249 (0.0290) 
6 0.514 0.845 0.173072 0.1042 (0.0252) 0.90927 (0.00700) -0.1255 (0.0233) 
7 1.561 3.400 0.160130 0.1045 (0.0223) 0.90857 (0.00615) -0.1220 (0.0199) 
8 1.172 4.007 0.130101 0.1029 (0.0192) 0.90547 (0.00577) -0.1329 (0.0180) 
9 0.723 0.875 0.189697 0.1039 (0.0244) 0.90663 (0.00748) -0.1428 (0.0228) 

10 1.561 0.885 0.192543 0.1042 (0.0213) 0.90801 (0.00569) -0.1394 (0.0185) 
11 0.527 0.895 0.172811 0.1042 (0.0193) 0.90796 (0.00523) -0.1392 (0.0172) 
12 1.561 4.047 0.164530 0.1044 (0.0193) 0.90696 (0.00519) -0.1343 (0.0167) 
13 1.561 4.057 0.164822 0.1046 (0.0190) 0.90636 (0.00505) -0.1314 (0.0161) 
14 1.137 4.067 0.131443 0.1038 (0.0169) 0.90483 (0.00471) -0.1365 (0.0148) 
15 0.713 0.935 0.183894 0.1042 (0.0169) 0.90538 (0.00480) -0.1397 (0.0149) 
16 1.561 0.945 0.192280 0.1048 (0.0163) 0.90777 (0.00427) -0.1333 (0.0136) 
17 1.187 4.097 0.134701 0.1047 (0.0146) 0.90757 (0.00399) -0.1340 (0.0125) 
18 0.655 0.965 0.176841 0.1048 (0.0140) 0.90779 (0.00385) -0.1349 (0.0120) 
19 1.561 4.117 0.168819 0.1049 (0.0142) 0.90694 (0.00388) -0.1321 (0.0120) 
20 1.148 4.127 0.132199 0.1045 (0.0132) 0.90617 (0.00373) -0.1349 (0.0114) 

Table 2. Observations and Estimates Using BAS 

6.3 Results 
In this section, we compare and analyze the results of our two experiments. The comparison 

results shown graphically in Figures 5-7 show that the estimates using the data from the 

"well chosen" locations using BAS are closer to the true values, ρ  = .1, k  = 0.9 and b = −0.1, 

than the estimates based on data from the randomly chosen locations. Also, the error bars 
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using BAS are much shorter, indicating higher confidence in the estimates of the parameters 

based on the "well chosen locations", e.g., the length of the error bar for the estimate 

calculated using data/observations from five well chosen locations is as short as the error 

bar based on data collected from 20 random locations. 

 

 

Fig. 5. Estimates and Error Bars for ρ . 

Within each figure, the horizontal axis indicates the number of observations between five 

and twenty that were used in forming the estimates. The vertical axis is on the scale of the 

parameter being estimated. Above each observation number, an "o" represents the point 

estimate (using the data from the first observation through the observation number under 

consideration) of the parameter using the randomly chosen locations and the observations 

from those locations. The "x" represents the point estimate of the parameter using 

observations taken at locations chosen through BAS. The bars are “error bars” and extend 

one standard error above and below the estimated parameter, based on the data collected at 

locations from the appropriate experiment. The horizontal line represents the true value of 

the parameter in our simulation. 

Note that in Figure 6 and Figure 7, the error bars rarely overlap the true value of the 

parameter. This can be attributed to two factors. In large part, this is due to the fact that they 

are engineering "error bars" with a length of one standard error beyond the point estimate. 

Traditional 95% statistical confidence intervals based on two standard errors would in 

virtually every case overlap the true values. Additionally, these are cumulative plots, in 

which the same data are used, adding observations to form the parameter estimates as one 

moves to the right in each figure. Thus the point estimates and error bars are dependent 

upon one another within a figure, and not independent point estimates and confidence 

intervals. 
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Finally, we see that the estimates using BAS (to select the points from which to take 
observation) are generally closer to the truth than when we use random points to take 
observations, and more importantly the standard errors associated with any given number 
of observations are much smaller. 
 

 

Fig. 6. Estimates and Error Bars for k .  

 

 

Fig. 7. Estimates and Error Bars for b . 
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7. Conclusions and future work 

Our initial results have shown that BAS is highly efficient compared to random sampling. 

The rate at which the standard errors, or the error bars, are reduced is much quicker, and 

hence the significant amount of information is found more quickly compared to other 

traditional methods. We have also shown that this methodology performs well even in the 

absence of any preliminary observations. Further simulation has shown evidence that BAS 

can be three times as efficient as random sampling. This efficiency amounts to savings of 

time and money during actual data collection and analysis. 

In addition to the application discussed in this paper, the theoretical framework presented 

here is generic and can be applied directly to other applications, such as, military, medical, 

computer vision, and robotics. 

Our proposed framework is based on the multivariate normal distribution. The immediate 

extensions of this framework will be to accommodate non-normal parameter estimate 

distributions. As part of our future study, we intend to employ sampling methodologies 

using Bayesian Estimation Methods for non-normal parameter estimate distributions. We 

also intend to use cost effectiveness as an additional variable. In this initial work, the focus 

was to identify the viewpoints that would give us the most information. However, it is not 

always feasible or efficient to send the helicopter to this next “best” location. As part of our 

future work, we intend to identify the next “best efficient” location for the helicopter from 

which it should collect data. 
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9. Appendix 

In section 5, we noted that maximizing the entropy of the experiment is equivalent to 

maximizing  the quantity RXX +′
2

1

σ
originally given in (12), where R andσ come from a 

Bayesian prior belief which in this case could be interpreted as the estimates based upon a 

regression of the data collected up to the given point in time. The matrix X contains a row(s) 

with functions of known position(s) of the sun ( )
ss

φθ ,  and unknown positions of the 

                                                 
1 Before this research could be implemented in practice, two of the above mentioned liaisons 
left NASA and the then current funding expired. 

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

400 

viewpoint/helicopter ( )
vv φθ , which are then the parameters over which the objective 

function is maximized. In this setting, X is based on future observations. If the X matrix is 

filled with the appropriate functions (as defined in (8) and (9)) from all of the observations 

already taken, each observation being associated with one row in the X matrix, where we 

might call this matrix obsX  where the subsript “obs” reminds us that this matrix is based on 

previous observations rather than future observations, then the quantity  

 
obsobs2ˆ

1
XX ′

σ
 (13) 

 

is known as the observed Fisher Information. In this setting, the observed Fisher 

Information matrix is the inverse of the estimated variance matrix of the parameters 

(Cassella and Berger, 2002; Weisberg, 2005; Montgomery et al., 2006), and thus (13) IS the 

matrix R that is used above after the intial set of observations are taken and estimates can be 

formed. 

Any linear algebra textbook will show that stacking two conformable matricies, say 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ℵ

X

X

A
obs

, 

 

will give the result  XXXX obsobs
′+′=ℵℵ′  and thus, after obtaining intial estimates of the 

variances from the regression and using them for our prior R , and also estimating the error 

variance 2σ , our objective function given in (12) can be written as RXX +′
2ˆ

1

σ
= 

obsobs XXXX ′+′
22 ˆ

1

ˆ

1

σσ
= ( )

obsobs XXXX ′+′
2ˆ

1

σ
= ( )

obsobs
XXXX ′+′⎟

⎠
⎞

⎜
⎝
⎛

3

2ˆ

1

σ
= ℵℵ′

6ˆ

1

σ
 

where the third equality follows from the fact that for scalar a and a matrix A  of 

dimnension nxn, AaaA
n= , and that obsobsXXXX ′+′ is a 3x3 matrix since we are estimating 

three parameters. Noting that we have no control over 2σ̂ , the estimated variance of the 

error terms, we see that maximizing (12) is equivalent to maximizing ℵℵ′ , where the first, 

say, n rows of ℵ  are based on the functions of visivisi
φφθθ ,,, in (8) and (9) for observations 

which have already been taken, and one final row in which the position of the sun, ss φθ , , is 

known and the maximization occurs over the two parameters vv φθ , which will indicate the 

new position to which the helicopter should move in order to take the next observation.2 

                                                 
2 Of course, this assumes that we are using prior data to define our Bayesian prior for R . If 
we have a strong belief for some other prior distribution of the parameters (and thus a 

different variance matrix 1−
R ), then the above will not hold. 
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In summary, we find that maximizing the expected Shannon Information, i.e. the entropy, of 

an experiment, in which the experiment is associated with a regression fit where the errors 

are assumed to be Normally distributed, is equivalent to maximizing the determinent of the 

Fisher Information associated with that experiment. Further study is waranted in cases 

which are not regression based and/or where errors are not neccessarily Normally 

distributed.  
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