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1. Introduction     

It is well known that linear controllers can exhibit serious performance limitations when 
applied to nonlinear systems since nominal linear models used during design cannot 
represent the nonlinear plant in its whole operating range (Arslan et al., 2004). For this 
reason, several researches has been proposed new techniques in order to supply a solution 
for this problem. The main alternative technique, proposed by academy, to resolve the 
referred problem is known as multi-model approach. The basic idea of multi-model 
approach consists in decompose the system’s operating range into a number of operating 
regimes that completely cover the chosen trajectory as showed in (Foss et al., 1995). There 
are, basically, two approaches for multi-model. The first one consists of to design a set of 
suitable controllers (one for each operating regime) and to calculate weighting factors to 
them as showed in (Arslan et al., 2004) and (Cavalcanti et al., 2007a). The global control 
signal is a weighting sum of the contributions of each controller. The second one consists of 
to build a global model as a weighting sum of each local model as showed in (Foss et al., 
1995) and (Cavalcanti et al., 2007b). In both cases, a way to measure distances between 
models is defined. Multivariable Model Predictive Control (MMPC) has been presented in 
this chapter. MPC is the an of the most important control technique used in industry. 
Multivariable Bilinear Generalized Predictive Control (MBGPC) is formulated and, its 
alternative solution, Multivariable Bilinear Generalized Predictive Control with Iterative 
Compensation (MBGPCIC) is presented.  This chapter shows either proposed metrics in 
order to build multi-model based controllers (based in MBGPC and MBGPCIC) and 
presents simulation results applied in distillation columns. 

2. Multivariable Bilinear Generalized Predictive Control (MBGPC) 

MBGPC is a MPC technique based in the minimization of a objective function. This objective 
function considers the predicted output of a system. The prediction is obtained by a 
mathematical model of this system. 
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Considering a multi-input, multi-output (MIMO) system, as showed in Fig.1, with p-inputs 
and q-outputs, being y the system’s output and u the system’s input. 
 

 
Fig. 1. Block diagram, Multivariable system 

Considering that this system is described by the following matrix polynomial expression, 
showed in (Fontes, 2002): 
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where qRky ∈)(  is the process output vector, pRku ∈)(  is the process input vector and 
qRke ∈)(  is the Gaussian white noise with zero mean and covariance )( 2σdiag . The 

matrices )( 1−qA , )( 1−qB  and )( 1−qC  are polynomials matrices in shift operator 1−q  and are 
defined by: 
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where qqRqA ×− ∈)( 1 , pqRqB ×− ∈)( 1 , qqRqC ×− ∈)( 1 , pq

e
RqD ×− ∈)( 1  and qp

d
RqD ×− ∈)( 1 . 

The matrix )]1([ −kuD  is defined as: 
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The nonlinear model presented in (1) is quasi-linearized to be used in MBGPC. The 
multivariable quasilinear multi-model must be obtained by rewriting the expression (1) of 
the following form: 
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where  

 )()]1([)()(),( 11111 −−−−− −−= qDkuDqDqqAuqA de
 (9)  

The polynomial matrix ),( 1 uqA −  is calculated considering its parameters as constant in 

prediction horizon. The polynomial matrix ),( 1 uqA −  is considered diagonal in this work. 

The output prediction i-step ahead may be obtained of the expression (8), such that: 

 )()()1()()()(),(
~ 1111 ikeqCikuqqBikyuqA

p
++−+Δ=+ −−−−  (10) 

where )(),(),(
~ 111 −−− Δ= quqAuqA

q
. In this case, the polynomial matrix C(q-1) is equal to 

Ipxp due the fact that  the noise be supposed white. Considering the following Diophantine 
equation: 
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Pre-multiplying (10) for ),( 1 uqE
i

−  we obtain: 
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Rewriting (9) of the following form: 
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Substituting (15) in (14) we obtain: 

 )1()()(),()(),()(),()( 11111 −+Δ+++=+ −−−−− ikuqqBuqEikeuqEkyuqFiky
piii

 (16) 

As the degree of ),( 1 uqE
i

−  is 1−i , then the sub-optimal prediction of )( iky +  is: 

 )1()()(),()(),()(ˆ 1111 −+Δ+=+ −−−− ikuqqBuqEkyuqFiky
pii

 (17) 

In order to separate past and future values, we make: 
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ipa

i
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As the degree of  ),( 1 uqH
i

−  is less than 1−i , the predictor may be written as: 

 1 1 1 1 1ˆ( ) ( , ) ( ) ( , ) ( ) ( 1) ( , ) ( ) ( 1)
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The last term of (19) considers the future inputs (forced response) and the two first terms 
consider only past inputs (free response). So, we define: 

 
lipi
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where 
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The expression (21) is the free response. The objective function is given by:  
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where 
1
N  is minimum prediction horizon, NY  is prediction horizon, NU is the control 

horizon, R  and Q  are weighting matrices of error signal and control effort in instant k in 

the chosen trajectory, respectively, )(ˆ iky +  is the sub-optimum i-step ahead predicted 

output, )( ikr +  is the future reference trajectory. The control effort is obtained, without 

constraints, by the minimization of the objective function (22).  
Consider the predictions set: 
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The objective function (22) may be rewritten of the following form: 

 
NUp

NU
T

plNNUpN

T

lNNUpN
UQUyUHRyUHJ

yyuyyu

ΔΔ++Δ+Δ= )()(
1111

 (28) 

where 
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This minimization is obtained by the calculation of its gradient (making it equals zero), of 
the following form: 

 0=
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 (31) 

The minimization of (28) produces the following control law: 
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Because of the receding control horizon, only the first p rows of (32) are computed. 

3. Multivariable Bilinear Generalized Predictive Control With Iterative 
Compensation (MBGPCIC) 

3.1 Motivation 

The quasi-linearization presented in (8) produces a prediction error that degrades the 
controller performance. This prediction error increases with the prediction horizon. In order 
to solve this problem, several algorithms has been proposed (Fontes et al., 2002), (Fontes et 
al. 2004), (Fontes and Ângelo, 2006) and (Fontes and Laurandi, 2006). This section presents 
the multivariable case showed in (Fontes and Laurandi, 2006). 
The basic quasi-linear algorithm, presented by (Goodhart, 1994), calculates the output 
prediction i-step ahead considering the terms ),( 1 uqA

j

−  with naj ,,1A=  depending only of 

known values of the input (until k-1 step). The approximation of this approach generates a 
prediction error that increases with the prediction horizon and degrades the controller 
performance.   

3.2 The basic idea of iterative compensation algorithm 

The idea of the iterative compensation algorithm consists of consider the effort control 
sequence (obtained by the classic quasi-linear algorithm) to correct the parameters of 

),( 1 uqA − . Considering the following sequence of effort control, calculated in k step: 

 [ ]T
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The classic quasi-linear algorithm, considering (30),  calculates the sequence of future 
control efforts, that is given by: 
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where: 
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The iterative compensation algorithm uses the values of (34) to correct the polynomial 
matrix (9). This correction will produces a new prediction and a new sequence of control 
efforts. This process is repeated until a stop criterion be achieved. It is important to 
remember that this algorithm considers the receding horizon too. When the algorithm 
converges, only the first p rows of (34) are sent to the process. 

3.3 Convergence and stop criterion 

The stop criterion of the algorithm is based in the norm variation of the vector 
NUp

UΔ . The 

procedure of correction of ),( 1 uqA −  is repeated until that the norm of the variation 

calculated in the iteration r be less than a tolerance value ε established: 
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It is important to remember that this algorithm may not to converge. In this case, another 
stop criterion must be established. The second stop criterion is based in the maximum 
number of iterations of the algorithm: 

 
max
Nr <  (37) 

where 
max
N is the maximum number of iterations of the algorithm. If the algorithm stops for 

the 
max
N  criterion, the control effort sent to the process is the control effort calculated by the 

classic quasi-linear algorithm. 

4. Multi-models approaches for MPC 

Considering a bilinear multivariable model showed in (1) that describes the system’s 
behavior in a small region. This structure is valid around its operating regime and more or 
less invalid outside this regime. Considering yet that the process has been decomposed into 
NOR operating regimes, the first step to develop a multi-model structure is to identify NOR 
local models (in this case bilinear), of the following form: 
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where NORj ,,1A= . 
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4.1 Building a global model 

The first multi-model approach consists in to obtain a global model from the local bilinear 
models showed in (38). To build the global model, we must consider that there is a validity 
function )(k

j
δ  that is designed such that its value is close to one for operating points where 

the local model structure is a good description of the system and close to zero otherwise, in 

instant k. In this case, each polynomial matrix )( 1)( −qP k  of (1) for each instant k would be 

calculated of the following form: 
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where )( 1)( −qP k  the global built polynomial matrix of the bilinear model, )( 1
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 is the 

polynomial matrix of the jth bilinear model, and: 
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where 
kj

w
,

 is a weighting factor to the jth bilinear model in instant k. Theses approaches has 

the following defined property: 
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4.2 Building a global controller 

The second multi-model approach consists of to build a global controller from a set of 
controllers. In this case, one controller is designed to each operation point. A validity 
function )(k

j
δ  is designed too, in order to evaluate what controller must have a greater 

weighting factor. Considering the control effort )(
,
ku

ji
 with NORj ,,1A=  and pi ,,1A=  

of each controller (one for each operation point), the control effort sent to the process is 
given by: 
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=

=
NOR

j

jikji
kuwku

1

,,
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where 
kj

w
,

 is calculated as showed in (39). 

4.3 Metric based in norms 

The validity function is usually called by metric. In multivariable case, in a process with p-

inputs and q-outputs, the output is qRky ∈)(  and the input is pRku ∈)( . In a known 

trajectory of process output, the distance from the first operation point to the last operation 
point is given by: 
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21,1

yyd
NORNOR

−=  (42) 

To measure the distance from the current operation point to the operation point of jth 
designed controller, we can use the expression: 

 NORi
yky

d

i
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j
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)(
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−
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To this metric, only monotonic (increasing or decreasing) trajectories must being considered. 

4.4 Metric based in phase margin 

Phase margin has been chosen as measurement parameter in order to quantitatively 
estimate the distance between two different models. 
One of the most important techniques for measure the robustness of a dynamic system is the 
margin phase technique. In general terms, in a linear time-invariant system, phase margin is 
maximum phase angle that can be added, such as this system not becomes instable. In this 
chapter, a multivariable bilinear model is obtained for each operating regime, and this 
model is quasi-linearized. Each obtained model has a phase margin value (or multivariable 
equivalent). An interpolated model is calculated to obtain the current valid model (that 
depends of the current operation point). The difference between the interpolated model and 
models of the chosen operating regimes is calculated. This difference is considered to the 
computation of a set of weighting factors to the controllers. An equivalent method to the 
multivariable margin phase calculus is showed. 
The model showed in (8) is time-step quasi-linear (linear at each time instant). We obtain a 

transfer function in 1−z  operator, pre-multiplying (8) for ),( 1)(1 uzA
i −−  of the following form: 
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are interpolated polynomial matrices in instant k. From 

(44), the matrix transfer function for the interpolated model in instant k is given by: 
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In this approach, we consider the qp×  transfer functions from (45), and calculate 

individually the phase margin from each one transfer function.   

For each operating regime, the minor margin phase is chosen. Considering that )( jMPM  
represents the minor phase margin of the matrix transfer function in the jth operating regime 

and that )max( )( jMPM  is the maximum of phase margin for NORj ,,1A= and 

)min( )( jMPM  is the minimum phase margin for NORj ,,1A= . 

Considering yet that ),( 1

)(
uzG

k

−  is an interpolated transfer function given in k instant, and 
)(kMPM  is its minor phase margin, the distance factor to the designed controller in the jth 

operating regime, in instant k is given by: 
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j
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−

−
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It is important to observe that the interpolated model’s parameter (in this case, obtained by 
cubic spline interpolation method) is always in the bounds of the estimated model’s 
parameter (it is guaranteed by the algorithm). The algorithm guarantees also that, if a 

calculated phase margin is out of bounds )min( )(iMPM  and )max( )(iMPM , the designed 

controllers of these bounds have weighting factor equals 1 (maximum). 

5. Applications of multi-model controllers based in proposed metrics 

This section shows some applications of the combinations between: 
• approaches showed in sections 4.1 and 4.2; 
• controllers showed in sections 2 and 3, and; 
• metrics showed in sections 4.3 and 4.4. 
The application showed in this chapter is based in a simulated debutanizer distillation 
column. Debutanizer distillation column is usually used to remove the light components 
from the gasoline stream to produce Liquefied Petroleum Gas (LPG). The most common 
control strategy is to manipulate the reflux flow rate and the temperature in column's 
bottom and, to control the concentrations of any product in butanes stream and in C5+ 
stream as showed in (Almeida, et al., 2000). The chosen process variables are: concentration 
of i-pentane in butanes stream (y1) and concentration of i-butene in C5+ stream (y2). The 
studied column is simulated in Hysys software and is showed in Figure 2. 
 

 
Fig. 2. Distillation Column simulated in Hysys Software 
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The reflux flow rate (u1) is manipulated through the FIC-100 controller and the temperature 
of column's bottom (u2) is manipulated through the TIC-100 controller.  The reflux flow rate 
is measured in m3/h and the temperature of column's bottom is measured in oC. 
In the applications showed in this chapter, three operation points were chosen, as showed in 
Table 1. The identified bilinear models were obtained using the multivariable recursive least 
squares algorithm and the model's structure has been chosen by using the Akaike criterion.  
In all points, the chosen sample rate is 4 minutes. Only monotonic trajectories are being 
considered. The trajectory of 

1
y  is monotonically increasing and the trajectory of  

2
y  is 

monotonically decreasing. 
 

Operation 
Point 

Input 
Output 

(Mass Fractions) 

u1 = 40 m3/h Y1 = 0.014413 
1 

u2 = 147 oC Y2 = 0.001339 

u1 = 37 m3/h Y1 = 0.017581 
2 

u2 = 147.5 oC Y2 = 0.001161 

u1 = 34 m3/h Y1 = 0.021994 
3 

u2 = 148 oC Y2 = 0.001004 

Table 1. Three operation points chosen in distillation column. 

In order to quantitatively asses the performance of multi-model quasi-linear GPC, some 
indices like showed in (Goodhart, et al., 1994) are calculated. Theses indices may be 
extended to multivariable case, of the following form: 

 Nku
ii

/)(
,1 ∑=ε  (47) 

where pi ,,1A=  and N  is the amount of control effort applied in the process to achieve 

the desired response. The index showed in (47) is the account of total control effort to 
achieve a given response. The variance of controlled actuators is: 

 Nku iii /))(( 2

,1,2 ∑ −= εε  (48) 

The deviation of the process of integral of absolute error (IAE) is: 

 Nykr jjj /)(,3 ∑ −=ε  (49) 

where qj ,,1A= . The overall measure of effectiveness is defined as: 
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p

i

jiiiij ,3

1

,2,1
)( ερεβεαε ∑

=
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The factors 
i

α , 
i

β  and 
j

ρ  are weightings chosen to reflect the actual financial cost of 

energy usage, actuator wear and product quality, respectively. In this case, we consider 
1.0=

i
α , 15.0=

i
β  and 5.0=

j
ρ  because we have established as priority the product quality. 
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5.1 Application 1 - Controller based in global model, norm-2 metric and MBGPC 

In this simulation, the process is in the 3rd operating regime and a deviation in reference is 
applied in the proposed controller. With this reference deviation, the process will come to 
close to the 1st operating regime. The proposed quasi-linear multi-model is compared with 
quasi-linear single-model (using the model of the 3rd operating regime). Figures 3 and 4 
show the process’s output and Figures 4 and 6 show the control effort. 
 

 
Fig. 3. Process Output 1. Comparison between single-model and multi-model approach 
(application 1). 

 
Fig. 4. Process Output 2. Comparison between single-model and multi-model approach 
(application 1). 

 
Fig. 5. Reflux Flow rate. Comparison between single-model and multi-model approach 
(application 1). 
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Fig. 6. Temperature in column's bottom. Comparison between single-model and multi-
model approach (application 1). 

Figures 3, 4, 5 and 6 shows the better performance of multi-model approach, so much of 
point view of the process response as of the control effort. 

5.2 Application 2 - Controller based in global controller, norm-2 metric and MBGPC 
In this simulation, the same reference deviation as in section 5.1 is applied. The proposed 
quasi-linear multi-model is compared with quasi-linear single-model (using the model of 
the 3rd operating regime). Figures 7 and 8 show the process’s output and Figures 9 and 10 
show the control effort. 

 
Fig. 7. Process Output 1. Comparison between single-model and multi-model approach 
(application 2). 

 
Fig. 8. Process Output 2. Comparison between single-model and multi-model approach 
(application 1). 
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Fig. 9. Reflux Flow rate. Comparison between single-model and multi-model approach 
(application 2). 

 
Fig. 10. Temperature in column's bottom. Comparison between single-model and multi-
model approach (application 2). 

5.3 Application 3 - controller based in global controller, phase margin metric and 
MBGPC 

In this simulation, the same reference deviation as in section 5.1 and 5.2 is applied. The 
proposed quasi-linear multi-model is compared with quasi-linear single-model (using the 
model of the 3rd operating regime). Figures 11 and 12 show the process’s output and Figures 
13 and 14 show the control effort. 

 
Fig. 11. Process Output 1. Comparison between single-model and multi-model approach 
(application 3). 
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Fig. 12. Process Output 2. Comparison between single-model and multi-model approach 
(application 3). 
 

 
 

Fig. 13. Reflux Flow rate. Comparison between single-model and multi-model approach 
(application 3). 
 

 
 

Fig. 14. Temperature in column's bottom. Comparison between single-model and multi-
model approach (application 2). 

5.4 Qualitative comparison between applications 1,2 and 3 

This section shows the qualitative comparison between application 1,2 and 3. The 
comparison is based in the indices showed in (47), (48), (49) and (50) with N=100. 
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The table 2 shows, in all the cases, that multi-model approach has better performance in 
relation of single-model approach in terms of less energy usage, less actuator wear and 
better product quality. Application 2 has presented better performance in relation of the 
other multi-model approaches. 
 
 

I/O Approach 1ε  2ε  3ε  ε  

1 Single 40.47 2.61 287.46 163.00 

2 Single 147.38 0.63 142.40 90.47 

1 Application 1 38.72 0.31 255.20 146.26 

2 Application 1 146.88 0.36 117.71 77.52 

1 Application 2 38.38 0.32 248.41 142.83 

2 Application 2 146.94 0.29 103.48 70.36 

1 Application 3 38.55 0.33 253.41 145.36 

2 Application 3 147.01 0.31 113.71 75.51 

 

Table 2. Qualitative comparison between applications 1,2 and 3. 

5.5 Application 4 - controller based in global controller, norm-2 metric and MBGPCIC 

In this simulation, the process is the following operation point: u1 = 31 m3/h, u2 = 148.5 oC, 

y1=0.028125 e y2=0.000874. The reference deviation 0.01371 and 0.000465 are used in this 
application. This approach has been compared with application 2. Figures 15 and 16 show 
the process’s output and Figures 17 and 18 show the control effort. 
 
 

 
 

Fig. 15. Process Output 1. Comparison between MBGPC and multi-model approach and 
MBGPCIC multi-model approach (application 4). 
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Fig. 16. Process Output 2. Comparison between MBGPC and multi-model approach and 
MBGPCIC multi-model approach (application 4). 
 

 
 

Fig. 17. Reflux Flow rate. Comparison between MBGPC and multi-model approach and 
MBGPCIC multi-model approach (application 4). 
 

 
 

Fig. 18. Temperature in column's bottom. Comparison between MBGPC and multi-model 
approach and MBGPCIC multi-model approach (application 4). 

Figures 15, 16, 17 and 18 show the better performance of MBGPCIC multi-model approach, 
so much of point view of the process response as of the control effort. The justification to 
this significant improvement of MBGPCIC multi-model approach in relation to MBGPC 
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multi-model approach is the wide variation in control effort. So, the iterative compensation 
procedure founds more space to minimize the prediction error.  
Due too the large operating range, this approach has not been compared with single-model 
approach, because its performance was very poor.  
Table 3 shows the performance indices of this comparison for N=400. 
 
 

I/O Approach 1ε  2ε  3ε  ε  

1 MBGPCIC Approach 50.47 6.61 1219.90 632.02 

2 MBGPCIC Approach 40.71 5.78 1151.12 595.48 

1 MBGPC Approach 148.27 8.00 952.00 498.07 

2 MBGPC Approach 147.21 1.73 260.98 150.41 
 

Table 3. Qualitative comparison between MBGPC and multi-model approach and 
MBGPCIC multi-model approach (application 4). 

6. Conclusion 

This chapter showed the importance and the relevance of multi-model approaches. 
Several researches has been proposed in order to solve design problems in process that 
operates in a large range (like batch processes). Some proposals of multi-model have been 
presented in this chapter and its comparison with classic approaches. All multi-model 
approaches presented better performance when compared to single-model approach. The 
next step of this research is to adjust these approaches to a robust and stable algorithm of 
multi-model. 
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