
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


11 

A New Algorithm for Initialization and Training 
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1. Introduction   

The resolutions of neurons networks training problems by gradient are characterized by 
their noticed inability to escape of local optima [Mich93], [Fabr94] and in a least measure by 
their slowness [Wess92], [Zhan92]. The evolutionist algorithms bring in some domains a big 
number of solutions: practice of networks to variable architecture [With90], automatic 
generation of Booleans neurons networks for the resolution of a class of optimization 
problems [Grua93]. However the effort of research was especially carried on the generation 
and the discreet network training. 
In this chapter, we propose a new algorithm of wavelets networks training, based on 
gradient that requires: 

• A set of training examples: the wavelets networks are parametrables functions, used to 
achieve statistical models from examples (in the case of classification) or of measures (in 
the case of modeling); their parameters are calculated from these examples or couples 
{input, output}. 

• The definition of a cost function that measures the gap between the input of the 
wavelets network and the desired output (in the case of classification) or the measured 
values (in case of modeling) present on the set of training. 

• A minimization algorithm of the cost function. 

• An algorithm of selection of basic function to initialize the network parameters. 
We try then to show the importance of initialization of the network parameters. Since the 
output is non linear in relation to these parameters, the cost function can present local 
minima, and the training algorithms don't give any guarantee to find the global minimum.  
We note that if we have a good initialization, the local minimum problem can be avoided, it 
is sufficient to select the best regressions (the best based on the training data) from a finished 
set of regressors. If the number of regressors is insufficient, not only some local minima 
appear, but also, the global minimum of the cost function doesn't necessarily correspond to 
the values of the searched parameters, it is useless then in this case to put an expensive 
algorithm to look for the global minimum. 
With a good initialization of the network parameters the efficiency of training increases. A 
very important factor that it is necessary to underline is: whatever the chosen algorithm, the 
quality of training wavelets networks is as much better than we have an optimal 
initialization.  O

p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Advances in Robotics, Automation and Control, Book edited by: Jesús Arámburo and Antonio Ramírez Treviño,  
ISBN 78-953-7619-16-9, pp. 472, October 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

200 

2. New wavelets networks architecture 

2.1 Presentation 

From a given wavelets network architecture, it is possible to generate a family of 
parametrables functions by the values of the network coefficients (weight, translations, 
dilations).  
The objective of the wavelets networks training phase is to find, among all these functions, 
the one that approaches the most possible regression (Beta function for example). This one is 
unknown (otherwise it would not be necessary to use an approximation by wavelets 
networks); we only know the observed values (values of the regression to which are added 
noise) for several values valued by the input (points of the training set).  
We consider wavelets networks as follows [Belli07]: 

 
1 2

1 1 2 2

1 1 1 0

( ) ( ) .... ( )
iM NN N N

M M

i i i i i i k k

i i i k

x x x a xy ωψ ω ψ ω ψ
∧

= = = =

= + + + +∑ ∑ ∑ ∑  (1) 

 

1 1 0

( )
Mw iN NM

j j

i i k k

j i k

x a xω ψ
= = =

= +∑∑ ∑  (2) 

 

( , ) 1 0

( )
Mw iN N

l l k k

l i j k

x a xωψ
= =

= +∑ ∑  (3) 

 
0

1

, [1,...., ], [1,...., ] , 1
W

M

M l

l

with N N i N j M x
=

= = = =∑  (4) 

Where ŷ  is the network output and x = {x1,x2, ..., xNi } the input vector; it is often useful to 

consider, in addition to the wavelets decomposition, that the output can have a linear 
component in relation to the variables: the coefficients ak (k = 0, 1, ... , Ni). 

Nl is the number of selected wavelets for the mother wavelet family
l

Ψ . 

The index l depends on the wavelet family and the choice of the mother wavelet. 
The network can be considered as constituted of three layers: 

• A first layer with Ni input. 

• A hidden layer constituted by NMw wavelets of M mothers wavelets each to a wavelet 
family of size Nl. 

• A linear output neuron receiving the pondered wavelets outputs and the linear part. 
This network is illustrated by the figure 1. 

2.2 Description of the procedure of library construction 

The first stage of the training procedure consists in the construction of the Beta library. We 
intend to construct a several mother wavelets families library for the network construction. 
Every wavelet has different dilations following different inputs. 
This choice presents the advantage to enrich the library, and to get a better performance for 
a given wavelets number. The inconvenience introduces by this choice concerns the size of 
the library. A wavelet library having several wavelets families is more voluminous than the 
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one that possesses the same wavelet mother. It implies a more elevated calculation cost 
during the stage of selection. 
 

 

Fig. 1. Graphic representation of the new wavelets network architecture 

Nevertheless, using classic algorithms optimization, the selection of wavelets is often shorter 
than the training of the dilations and translations; the supplementary cost introduced by 
different dilations can be therefore acceptable. 
We have a sequence of training formed of N examples distributed in the interval [a, b]. Let 

jΨ a mother wavelet family, x the variable, ti the translation parameter and di the dilation 

parameter. The wavelet 
j

i
Ψ of the family 

jΨ having for parameters ti and di is defined as: 

 ( )( )( )j j

i i ix d x tΨ = Ψ −  (5) 

The wavelet library W, generated from the mother wavelet family, is defined as: 

 ( )( ) [ ]{ }*, , , 1....,j

i i i iW d x t d R t R j M+= Ψ − ∈ ∈ =  (6) 

 { }1,......, NW W=  (7) 

 ( )( ) ( )( ){ }1 ,......; M

i i i id x t d x tψ ψ= − −  (8) 
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3. New algorithm: MLWNN (Multi-Library Wavelet Neural Network) 

In this paragraph, we propose a new selection wavelets algorithm [Bellil07-a], based on the 

architecture given on the figure 1that permits to make: 

• The initialization of weights, translations and dilations of wavelets networks, 

• The optimization of the network parameters, 

• The construction of the optimal library, 

• The construction of the wavelets networks based on discreet transform. 
The new architecture of wavelets networks founded on several mother wavelets families 
having been defined. Consequently, we can ask the question of construction of a model, 
constituted of wavelets network for a given process. 
The parameters to determine for the construction of the network are: 

• The values to give to the different parameters of the network: structural parameters of 
wavelets, and direct terms. 

• The necessary number of wavelets to reach a wanted performance. 
The essential difficulty resides in the determination of the parameters of the network. 

Because the parameters take discreet values we can make profit to conceive methods of 

wavelets selection in a set (library) of discreet wavelets. The conceived performance 

depends on the initial choice of the wavelets library, as well as a discriminating selection in 

this library. 

3.1 Principle of the algorithm  

The idea is to initialize the network parameters (translations, dilations and weights) with 

values near to the optimal values. Such a task can be achieved by the algorithm "Orthogonal 

Forward Regression (OFR)" based on the algorithm of orthogonalization of Gram - Schmidt 

[Chen89], [Ouss98], [Chen06], [Ho01]. 

Contrary to the OFR algorithm in which the best regressors are first selected [Lin03], 

[Rao04], [Xiao04], [Angr01], then adjusted to the network, the algorithm presented here 

integrates in every stage the selection and the adjustment. Before every orthogonalization 

with a selected regressor, we apply a summary optimization of the parameters of this one in 

order to bring it closer to the signal. 

Once optimized, this new regressor replaces the old in the library and the orthogonalization 

will be done using the new regressor. 

We describe this principle below in detail. 

3.2 Description of the algorithm 

The proposed algorithm depends on three stages: 

3.2.1 Initialization 

Let’s note by Y the input signal; we have a library that contains NMw wavelets. To every 

wavelet 
j

i
Ψ we associate a vector whose components are the values of this wavelet 

according to the examples of the training sequence. We constitute a matrix thus constituted 

Vw of the blocks of the vectors representing the wavelets of every mother wavelet where the 

expression is: 
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 ( , ) { } [1.. ],  [1.. ]j

w iV t d V i N j M= = =  (10) 

We note by: 

• g(x) the constructed network, 

• Nw=1the number of wavelet, 

• T={ti } i=[1..N]  the translations, 

• D={di } i=[1..N] the dilations. 

3.2.2 Selection 
The library being constructed, a selection method is applied in order to determine the most 
meaningful wavelet for modeling the considered signal. Generally, the wavelets in W are 
not all meaningful to estimate the signal. Let's suppose that we want to construct a wavelets 
network g(x) with m wavelets, the problem is to select m wavelets from W.  
To the first iteration, the signal is Y = Y1, and the regressors vectors are the Vw(t,d) defined 
by (10). The selected regressor is the one for which the absolute value of the cosine with the 
signal Y1 is maximal. The most pertinent vector from the family V1 carries the index ipert1 
that can be written as the following manner: 

 
pert1

,
i (i,j) arg max with i=[1..N], j=[1..M]

.

j

i

ji j
i

Y V

Y V
=  (11) 

 

Fig. 2. Selection of the pertinent vector 

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

204 

Once the regressor 1
pert
i
V  is selected, it can be considered like a parametrable temporal 

function used for modeling Y. We calculate the weight Wi defined by: 

 
1

1
perti

Y
w

V
=  (12) 

We define the normalized mean square error of training (NMSET) as: 

 2

1

1
( , , ) ( ( ) * )

pert

N

i pert i pert i pert i pert i

k

NMSET t d Y k V
N

ω ω
=

= −∑  (13) 

 

With Y(k) is the desired output corresponding to the example k, and *
perti pert iVω  is the 

wavelets network output corresponding to the example k. 

3.2.3 Optimization of the regressor 

The optimization of the regressor is made by using the gradient method. Let’s note by: 

( ) ( ) ( )
d

e x Y x Y x= − , with Yd : desired output and Y : network output. 
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This optimization has the advantage to be fast because we only optimize here the three 

structural parameters of the network. 

After optimization, the parameters : 1
pert

opt

it , 1
pert

opt

id  , 1
pert

opt

iω of the regressor 1
pertiV  are adjusted, 

and are solutions of the optimization problem defined by: 

 ( , , )
pert pert pert pert pert

opt opt opt opt

i i i i iV V t dω=  (17) 

 

Considering the optimal regressor, we reset the network with this regressor that is going to 

replace the old in the library and the orthogonalization will be done using the new 

regressor. 

www.intechopen.com



A New Algorithm for Initialization and Training of Beta Multi-Library Wavelets Neural Network 

 

205 

 

( )
( )

( )
( )

( ) ( )

( )
( )

( )

( )
( )

( )
( )

( ) ( )

1 1

1 1 1 1 1 1

1 1

1 2 2 1 2 2

1 1

1

2

1 1

pert

pert

pert ii i i

opt

i

op

M M

N N

M M

N N

W

M M

N N N

t

i

opt

i N N N N

V x V x V x V x

V x V x V x V x

V

V x V x V x V

V x

V x

V x x

=

…… A A
…A A A

B B B B
B B B B
B B B B

A A…

B
B
B

 (18) 

After one iteration we will have: 

 { }j

w1 i i=[1..N], j=[1..M]V (t,d) ={V  }
pert

opt

iV∪  (19) 

 

 

Fig. 3. Regressor optimization  

3.2.4 Orthogonalization 

The vectors j

iV  are always linearly independent and non orthogonal (because N >> MW). 

The vectors j

iV generate a sub-vector-space of M*N dimensions. We orthogonalize the   M*N 

-1 remaining regressor, and the vector Y1 according to the adjusted regressor 1
pert

opt

iV : 

  1 1
pert pert

j j j opt opt

i i i i iV V V V V⊥ = −  (20) 

 1 1 1
pert pert

opt opt

i iY Y Y V V⊥ = −  (21) 

Therefore, we make the library updating: 
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We will have:  

 
pert

j

w i (i=[1..N], j=[1..M]) \ { i  }V (t,d) ={V  }⊥  (23) 

1Y
⊥

 and { }jiV ⊥
are respectively what remains from the signal and regressors in the 

orthogonal space to 1
pert

opt

i
V . 

The model being at this stage, ( ) 1* 1
pert

opt

i ig X Vω= , can be represented by the figure 4. 

 

 

Fig. 4. Orthogonal projection on the optimal regressor 

To the following iteration we increment the number of Nw=Nw+1 wavelet. We apply the 
same stages described above. Let's suppose achieved i-1 iterations: We did i-1 selections, 
optimizations, and orthogonalizations in order to get the i-1 adjusted regressors 

( 1 ,…..,  i-1) 
pert pert

opt opt

i iV V we reset i-1 parameters of the network. 

The network g(x) can be written at the end of the iteration i-1 as: 

 
1

1

( ) *
pert

i
opt opt

i i

i

g x Vω
−

=

=∑  (24) 

We have Nw-i+1 regressors to represent the signal Yi in a space of N*M-i+1 dimensions 

orthogonal to ( 1
pert

opt

iV ,..., 1
pert

opt

iV i − ) 

We apply the same principle of selection as previously. The index iperti of the selected 
regressor can be written as: 
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pert

,

i i(i,j)=arg max
i j

j

i

j
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VY
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 (25) 

with (i=[1..N], j=[1..M]) \ { 1
pert
i ,…, 1

pert
i i − } 

Since the regressor is orthogonal to ( 1
pert

opt

iV ,..., 1
pert

opt

iV i − ), we make the updating of the library, 

then we optimize the regressor and finally an orthogonalization. 

Finally, after N iteration, we construct a wavelets network of N wavelets in the hidden layer 

that approximates the signal Y. 

As a consequence, the parameters of the network are: 

 { }
[ ]1..pert

pert

opt opt

i
i Nopt

T t
=

=  (26) 

 { }
[ ]1..pert

pert

opt opt

i
i Nopt

d d
=

=  (27) 

 { }
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i
i Nopt

ω ω
=

=  (28) 

 

The obtained model g(x) can be written under the shape: 

 

1

( ) *
optN

opt opt

i i

i

g x Vω
=

=∑  (29) 

4. Interpolation of 1D data  

4.1 Mathematical formulation  

The mathematical formulation of the interpolation of 1D data can be presented in the 
following way: 

Let the set of the points ( ){ }, / 0,1,....,
k k

E x y k k= = . We want to recover N samples of 

f(x) as ( ) 0,1,...,
k

f x y for k k= = . 

The set E represents the constraints of the problem. With this formulation the function f(x) 

pass inevitably by the set points of E. In practice, the constraints can contain noise. In this 

case, the signal that we want to rebuild doesn't necessarily pass by the points of the set E, 

the interpolation becomes then a problem of approximation: 

Once we know the function f(x) on the set of the domain x ∈[0,…,N], the problem is to 

recover f(x) for x> N. This formulation will be called extrapolation of the signal f(x). 

Interpolation is a problem of signal reconstruction from samples is a badly posed problem 

by the fact that infinity of solutions passing by a set of points (Figure 5). For this reason 

supplementary constraints that we will see in the presentation of the different methods of 

interpolation, must be taken in consideration to get a unique solution. 
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Fig. 5. Infinity of curves passing by a set of points 

4.2 Interpolation of 1D data using wavelets networks 
4.2.1 Regularization 

The variationnel method is often used for the regularization [Buli80], [Boor63], [Terz86]. The 

principle of this method is to minimize the function ξ(f) defined as the following manner: 

 ξ(f) = αS(f) + γC(f) with α = 1 - γ  (30) 

The function ξ(f) is the sum of a stabilizing function S(f) and of a cost function C(f). The 

parameter γ ∈ [0, 1] is a constant of adjustment between these two functions. When γ goes 
toward zero, the problem of interpolation turns into a problem of approximation. The 
stabilizing function S(f) fixes the constraint of curve smoothing and it is defined as the 
following way: 

 dx
x

f
fS

D

2

²

²
)( ∫ ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂=  (31) 

Where, D represents the domain of interest. The cost function C(f) characterizes the anomalies 
between the rebuilt curve and the initial constraints, this function can be written by: 

 ∑
∈

−=
pk Ex

kk yxffC 2])([)(  (32) 

Where Ep = {(xk,yk) | k = 1,2,…,K} represents the set of the known points or the signal 
constraints. 

4.2.2 Discretization 

With the regularization, it is difficult to get an analytic solution. The discretization is useful 
and several methods can be used. Grimson [Grim83] uses the finished differences to 
approximate the differential operators; while Terzopoulos [Terz86] uses finished elements to 
get and solve an equation system (Grimson and Terzopouloses used the quoted methods 
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while treating the case 2D). In the approach that follows, the function f is written like a 
linear combination of basic functions: 

 ∑
−

=

∧

Ψ=
1

0

)()(
N

i

ii xWxf  (33) 

Where N is the domain dimension and Wi the coefficients. The basic functions Ψi(x) are 

localized to x = i∆, Ψi(x) = Ψ (x - iΔ) 

While substituting (33) in (32) and (31), the function ξ(f) can be rewritten as the following 
way: 
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Where tij is a function of basic functions: 
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t
D

ji
ij ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
Ψ∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
Ψ∂=

²

²

²
²  (35) 

 

Several wavelets functions can be used like activation function. The Figure 6 gives the curve 
of a new wavelets based on Beta function given by the following definition: 

4.2.3 Definition 

The 1D Beta function as presented in [Alim03] and in [Aoui02] is a parametrable function 

defined by ( ) ( )
0 1, , ,x x p q

x xβ β= with x0, x1, p and q as real parameters verifying: x0 <x1, and: 

 1 0

c

p x q x
x

p q

+
=

+
 (36) 

Only the case for p>0 and q>0 will be considered. In this case the Beta function is defined as: 

 ( ) [ ]0 1
0 1

0 1

,

0

p q

c c

x x x x
if x x x

x x x x x

else

β

⎧⎛ ⎞ ⎛ ⎞− −⎪ ∈⎜ ⎟ ⎜ ⎟= − −⎨⎝ ⎠ ⎝ ⎠
⎪
⎩

 (37) 

4.2.4 Axiom [Ben  Amar 2006] 
∀ n ∈ IN, 2( , )p q +∈ℜ , p = q, and n < p; the nth derivatives of 1D Beta function are wavelets 

[Amar06]. Let’s note by Betan the nth derivative of Beta function. 

 ( )
( )

n
n

n n

d x
x Beta

dx

β
Ψ = =  (38) 
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Fig. 6. Different shapes of Beta wavelets 

4.2.5 Example: Interpolation of 1D data using classical wavelets network CWNN 
In this example, we want to rebuild three signals F1(x), F2(x) and F3(x) defined by equations 
(39), (40) and (41). We have a uniform distribution with a step of 0.1 known samples. For the 
reconstruction, we used a CWNN composed of 12 wavelets in hidden layer and 300 
trainings iterations. We note that for Beta wavelets we fix the parameter p=q=30. 

 
1

2.186 12.864 [ 10, 2[

( ) 4.246 [ 2, 0[

10exp( 0.05 0.5)sin( (0.03 0.7)) [0,10[

x for x

F x x for x

x x x for x

− − ∈ − −⎧
⎪= ∈ − −⎨
⎪ − − + ∈⎩

 (39) 

 [ ]2

2 ( )  0.5 sin( ) cos ( )  2.5, 2.5F x x x x for x= + ∈ −  (40) 

 [ ]3( ) sin (1.5 )  2.5,2.5F x c x for x= ∈ −  (41) 

Table 1. gives the final normalized root mean square error (NRMSE) of test given by 
equation (42) after 300 trainings iterations for the F1, F2 and F3 signals. 
We define the NRMSE as: 

 ( )
( )

2

1

2

1

1

N

i i

i

N

i

i

y y

NRMSE
N

y

=

=

−
=

∑

∑

 (42) 
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Where N is the number of sample and iy  the real output. 
 

 M-hat Polywog1 Slog1 Beta1 Beta2 Beta3 

F1 7.2928e-2 4.118e-2 3.1613e-2 1.7441e-2 1.2119e-2 1.4645e-1 

F2 7.6748e-8 1.0343e-6 2.3954e-6 3.7043e-8 5.3452e-9 1.2576e-9 

F3 3.1165e-7 2.3252e-6 1.2524e-6 5.5152e-7 1.9468e-7 1.9674e-6 

Table 1. Normalized root mean square error of test for different activation wavelets function 

4.2.5 Example: interpolation of 1D data using MLWNN 

We intend to approximate the F1, F2, F3 using MLWNN, composed of a library of 6 mother 

wavelets (from Beta1 to Beta3, Mexican hat, polywog1 and Slog1), in the same condition as 

the example of approximation using CWNN. 
 

 M-hat Polywog1 Slog1 Beta1 Beta2 Beta3 NRMSE 

F1 4 0 3 3 0 2 3.79841e-3 

F2 1 3 3 1 1 3 4.66143e-11 

F3 1 3 1 1 1 5 3.84606e-8 

Table 2. Normalized root mean square error of test and selected mother wavelets  

To reconstruct the F1 signal with a NRMSE of 3.79841e-3 using 12 wavelets in hidden layer 

the best regressors for MLWNN are: 4 wavelets from the Mexican hat mother wavelet, 0 

wavelet from the polywog1, 3 wavelets from the Slog1, 3 wavelets from Beta1, 0 wavelet from 

Beta2 and 2 wavelets from the Beta3 mother wavelets. When using a CWNN the best 

NRMSE of reconstruction is obtained with Beta2 mother wavelet and it is equal to 1.2119e-2. 

For F2 signal the NRMSE is equal to 4.66143e-11 using MLWNN whereas it is of 1.2576e-9 

using CWNN with Beta3 mother wavelet. Finally for F3 signal we have a NRMSE of 

3.84606e-8 for a MLWNN over 1.9468e-7 as the best value for a CWNN. 

5. 2 Dimensional data interpolation 

Previously, for every described method in 1D, the case in two dimensions is analogous, 
while adding one variable in the equations.  

5.1 Mathematical formulation 

The mathematical formulation of 2D data interpolation can be presented in an analogous 
way to the one described in the 1D case [Yaou94] (we will suppose that we want to rebuild 
an equally-sided surface): 

Let E the set of the points ( ){ }, , / 0,1, ....,
k k k

E x y z k k= =  we wants to recover N×N 

samples of f(x, y) as f(xk , yk) = zk for k = 1,…, K. 

The set E represents the constraints of the problem. With this formulation the function f(x, y) 

passes inevitably by the points of the set E.  In practice, the constraints can be noisy. In this 
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case, the signal that we want to rebuild doesn't necessarily pass by the points of the set E. 

The interpolation becomes then a problem of approximation. 

5.2 Method using wavelets networks 

The formulations for the 2D case are given by: 

 
2 2 2

2 2 2

2 2
( ) 2

f f f
S f d

x x y yΩ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + + Ω⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫  (43) 
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1 1
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Since the interpolated basic functions (wavelets) are separable, this will always be the case 
in this survey: 

 ( , ) ( ) ( )i j i jx y x yΨ = Ψ Ψ  (46) 

 
2 2 22 2 2

2 2 2 2
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∫∫  (47) 

5.2.1 Example: approximation of 2D data using CWNN 

To compare the performances of the method using wavelets networks and classic wavelets 
networks, four surfaces have been chosen. These surfaces are used by Franke [Fran79] and 

are also described in [Renk88] for x and y∈ [0, 1]: 
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The Figure 7 represents these four surfaces of 21X21 samples. 
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S1                                                                            S2 

    
S3                                                                            S4 

Fig. 7. Surfaces S1(x, y), S2(x, y), S3(x, y) and S4(x, y) represented by their 21X21 samples 

The four following samplings are considered in order to rebuild these surfaces: 
 

    
Sampling 1                                         Sampling 2 

    
Sampling 3                                 Sampling4 

Fig. 8. Samplings considered for reconstruction of the surfaces S1(x, y), S2(x, y), S3(x, y) and S4(x, y) 
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Surfaces Sampling Beta1 Beta2 Beta3 M-hat Slog1 Polywog1 

S1 1 4.5472e-6 1.5881e-5 1.2783e-5 3.6561e-5 6.2610e-6 8.0144e-7 

S1 2 3.6612e-6 1.9917e-6 2.6849e-6 4.2004e-5 1.4369e-5 7.6421e-6 

S1 3 1.7730e-6 2.3737e-6 1.5610e-6 3.5810e-6 9.3080e-6 5.2441e-7 

S1 4 2.4055e-7 4.1873e-6 8.6403e-7 7.6317e-6 5.2528e-6 6.7456e-6 

Surfaces Sampling Beta1 Beta2 Beta3 M-hat Slog1 Polywog1 

S2 1 5.2167e-6 7.9647e-6 3.0107e-6 2.2445e-5 8.4106e-5 5.2539e-6 

S2 2 6.2544e-7 1.2262e-6 7.9519e-7 4.3444e-5 4.5899e-5 9.1619e-7 

S2 3 7.2351e-7 2.8619e-6 1.9735e-6 8.7916e-5 3.0003e-5 4.7101e-7 

S2 4 2.1238e-7 8.2108e-7 5.5915e-7 1.7681e-5 1.0731e-5 1.0287e-6 

Surfaces Sampling Beta1 Beta2 Beta3 M-hat Slog1 Polywog1 

S3 1 9.3210e-4 7.4748e-4 6.0998e-4 4.4958e-3 2.7186e-3 9.4392e-4 

S3 2 4.0176e-4 2.6073e-4 1.5930e-4 1.2234e-3 1.2249e-3 7.5690e-4 

S3 3 2.3361e-4 2.7506e-4 2.7690e-4 1.1170e-3 8.5758e-4 1.3850e-4 

S3 4 1.1620e-4 2.6754e-4 1.9940e-4 2.1405e-4 1.1916e-4 2.2120e-4 

Surfaces Sampling Beta1 Beta2 Beta3 M-hat Slog1 Polywog1 

S4 1 3.8187e-3 4.6391e-3 2.2186e-3 3.3708e-2 3.0934e-3 4.8993e-3 

S4 2 1.5365e-3 2.4675e-3 1.3099e-3 9.9976e-3 4.8904e-3 2.5167e-3 

S4 3 3.7501e-3 1.7048e-3 5.4345e-4 1.2712e-2 3.0359e-3 2.2196e-3 

S4 4 3.2641e-4 1.4836e-3 6.2990e-4 1.5668e-3 2.0464e-4 2.2768e-4 

Table 3. Normalized Root Mean square error of test for the surfaces S1(x, y), S2(x, y), S3(x, y) 
and S4(x, y) using CWNN 

Table 3 represents the NRMSE of reconstruction of the four considered surfaces, using 
classical wavelets network constructed with 12 wavelets in hidden layer and based on Beta, 
Mexican Hat, Slog1 and Polywog1 wavelets [Belli05]. This table informs that the number of 
samples to consider as well as their disposition for the reconstruction is important. 
For a same number of samples, it is preferable to use a uniform sampling than a non 
uniform one, the more the number of samples is important and the better is the quality of 
reconstruction. 

5.2.1 Example: approximation of 2D data using MLWNN [Bellill07-b] 

The same surfaces are used in the same conditions but using MLWNN with a library 
composed of two mother wavelets (Beta1 and Beta3). Experimental results are given in the 
following table. 
Table 3 and table 4 inform that the number of samples to consider as well as their 
disposition for the reconstruction is important: 
For a same number of samples, it is preferable to use a uniform sampling than a non 
uniform one, the more the number of samples is important and the better is the quality of 
reconstruction. 
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When comparing table 3 and table 4 we can say that the performances obtained in term of 
NRMSE using the MLWNN algorithm are often very better that the one obtained with the 
CWNN. This shows that the proposed procedure brings effectively a better capacity of 
approximation using the parametrable Beta wavelets [Belli07-b]. 
 

Beta1 + Beta3 
Surfaces Sampling 

NMSE P1 P2 

S1 1 6.0509e-7 5 7 

S1 2 3.4558e-7 5 7 

S1 3 5.7987e-7 4 8 

S1 4 4.0519e-7 5 7 

Beta1 + Beta3 
Surfaces Sampling 

NMSE P1 P2 

S2 1 6.1536e-6 3 9 

S2 2 1.1164e-6 2 10 

S2 3 7.0519e-7 1 11 

S2 4 1.1629e-6 4 8 

Beta1 + Beta3 
Surfaces Sampling 

MSET P1 P2 

S3 1 5.1778e-4 6 6 

S3 2 8.8298e-5 7 5 

S3 3 7.8227e-5 6 6 

S3 4 1.1098e-4 6 6 

Beta1 + Beta3 
Surfaces Sampling 

NMSE P1 P2 

S4 1 2.1e-3 8 4 

S4 2 1.4e-3 6 6 

S4 3 1.1e-3 10 2 

S4 4 1.1e-3 6 6 

Table 4. Normalized Root Mean square error of test for the surfaces S1(x, y), S2(x, y), S3(x, y) 
and S4(x, y) using MLWNN 

6. 3 Dimensional data interpolation 

The case of 3 dimensions is analogous to 1D or 2D case. The reconstruction of sampled data 
using wavelets networks is deduced from the 1D or 2D case. 

6.1 Mathematical formulation 

The mathematical formulation of 3D data interpolation can be presented in an analogous 
way to the one described for the 1D case (we will suppose that we want to rebuild an 
equally-sided volume): 

Let E the set of the points ( ){ }, , , / 0,1, ....,
k k k k

E x y z q k k= =  we wants to recover N×N×N 

samples of f(x, y, z) as f(xk , yk, zk) = qk for k = 1,…, K. 
The set E represents the constraints of the problem. With this formulation the function      
f(x, y, z) passes inevitably by the points of the set E.  In practice, the constraints can be noisy. 
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In this case, the signal that we want to rebuild doesn't necessarily pass by the points of the 
set E. The interpolation becomes then a problem of approximation: 
The problem of extrapolation is to recover the values of the function f(x, y, z) for x, y and z 
not belonging to the domain of interpolation. 
The problem of reconstruction of a volume from samples is a badly definite problem 
because an infinity volume passing by a set of points exists. For this reason, some 
supplementary constraints must be taken into consideration to get a unique solution. 

6.2 Method using wavelets networks 

Formulations for the 3D case are given by: 

 
2 2 2 2 222 2 2

2 2 2
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Since the interpolated basic functions (wavelets) are separable, this will always be the case 
in this survey: 

 ( , , ) ( ) ( ) ( )i jr i j rx y z x y zΨ = Ψ Ψ Ψ  (55) 
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6.3 Example: approximation of 3D data using MLWNN 

We used the GavabDB 3D face database for automatic facial recognition experiments and 
other possible facial applications like pose correction or register of 3D facial models. The 
database GavabDB contains 427 images of 3D meshes of the facial surface. These meshes 
correspond to 61 different individuals (45 male and 16 female), and 9 three dimensional 
images are provided for each person. The total of the database individuals are Caucasian 
and their age is between 18 and 40 years old. 
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Each image is a mesh of connected 3D points of the facial surface without the texture 

information for the points. The database provides systematic variations in the pose and the 

facial expressions of the individuals. In particular, there are 2 frontal views and 4 images 

with small rotations and without facial expressions and 3 frontal images that present 

different facial expressions. 

The following experiment is performed on the GavabDB 3D face database and its purpose is 
to evaluate the MLWNN that we employ against the CWNN in term of 3D face 
reconstruction. 
For faces reconstruction quality measurement we adopt the common use of NMSE given by: 
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Where ,i jZ  is the depth value of pixels in the reconstructed face; and Zi,j  is the depth value 

of pixels in the original face. To check the utility of the MLWNN, experimental studies are 

carried out on the GavabDB 3D face database. We used 61 frontal views with two different 

dimensions: 20*20 and 50*50. The results of comparison are presented in Table 5. 

 
MLWNN                                     CWNN 

Fig. 9. 3D face reconstruction using MLWNN and CWNN 

 

Face 20*20 Face 50*50  
 CWNN MLWNN CWNN MLWNN 

5 faces 3.52000*10-5 6.3500*10-6 0.90560*10-5 5.6960*10-6

20 faces 4.55375*10-5 9.0250*10-6 1.13640*10-5 6.8320*10-6

40 faces 4.94625*10-5 9.1562*10-6 1.25040*10-5 7.4600*10-6

61 faces 5.42500*10-5 9.1762*10-6 1.31970*10-5 7.9121*10-6

Table 5. Evaluation in term of NMSE of 3D face reconstruction using MLWNN and CWNN 
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7. Conclusion 

In this chapter, we described a new training algorithm for multi library wavelets network. 
We needed a selection procedure, a cost function and an algorithm of minimization for the 
evaluation. To succeed a good training, we showed that it was necessary to unite good 
ingredients. Indeed, a good algorithm of minimization finds a minimum quickly; but this 
one is not necessarily satisfactory. 
The use of a selection algorithm is fundamental. Indeed, the good choice of regressors 
guarantees a more regular shape of the cost function; the global minima correspond well to 
the "true" values of the parameters, and avoid the local minimum multiplication. So the cost 
function present less local minima and the algorithms of evaluation find the global 
minimum more easily. 
For the validation of this algorithm we have presented a comparison between the CWNN 
and MLWNN algorithm in the domain of 1D, 2D and 3D function approximation. 
Many examples permitted to compare the capacity of approximation of MLWNN and 
CWNN. We deduce from these examples that: 

• The choice of the reconstruction method essentially depends on the type of data that we 
treat, 

• The quality of reconstruction depends a lot on the number of samples used and on their 
localizations. 

Also we have define a new Beta wavelets family that some one can see that they are more 
superior then the classic one in term of approximation and we demonstrate in [BELLIL07] 
that they have the capacity of universal approximation. 
As future work we propose a hybrid algorithm, based on MLWNN and genetic algorithm 
and the GCV (Generalised Cross validation) procedure to fix the optimum number of 
wavelets in hidden layer of the network, in order to model and synthesis PID controller for 
non linear dynamic systems.   
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The book presents an excellent overview of the recent developments in the different areas of Robotics,

Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design;

it also introduces new mathematical tools and techniques devoted to improve the system modeling and

control. An important point is the use of rational agents and heuristic techniques to cope with the

computational complexity required for controlling complex systems. Through this book, we also find navigation

and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be

included in the next generation of productive systems developed by man.
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