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1. Introduction 

High rates of manufactured items have been machined by grinding at some stage of their 
production process, or have been processed by machines whose precision is a direct result of 
abrasive operations. However, even being the grinding process the most used in industry 
for obtaining high level of surface quality, it remains as one of the most difficult and least 
understood processes (Wang et al., 2005). That maybe has origin in the mistaken faith the 
process is extremely complex to be understood due to the large number of cutting edges and 
irregular geometry, high cutting speed, and very small depth of cut which varies from grain 
to grain. In addition, according to (Haussi & Diniz, 2003), grinding is the process indicated 
when the workpiece demands good surface, dimensional and geometrical quality. Thus, the 
grinding process is usually one of the last steps in the machining operations chain. When the 
workpiece reaches this point, it has high aggregated value, which makes a possible rejection 
very expensive.  
Monitoring of machining processes is mandatory for their optimization and control. 
Acoustic emission (AE) has become an increasingly popular monitoring technique. The 
sensors are inexpensive, easy to mount, and analog signal processing is comparatively 
simple, but good techniques for extracting reliable process information from the signals are 
still lacking (Hundt et al., 1997; Aguiar et al., 2002). 
Electrical power signals have also been largely used in grinding researches. The signal can 
be monitored either by the electric current of the electric motor or by the product between 
voltage and current signals, which gives the electrical power consumed by the electric 
motor. Thus, an estimate of the cutting force can be easily obtained if a model of the electric 
motor is available (Aguiar et al., 2002). 
Some researchers have shown the acoustic emission and the cutting power signals combined 
can provide significant results for monitoring the grinding process phenomena (Aguiar et 
al., 2002; Dotto et al., 2006; Kwak & Ha, 2004; Aguiar et al., 2006). 
Neural network has attracted a special interest in grinding research owing to its functions of 
learning, interpolation, pattern recognition, and pattern classification. Various examples of 
applications into the production engineering field have been reported (Wang et al., 2005; 
Dotto et al., 2006; Kwak & Ha, 2004; Aguiar et al., 2006; Wang et al., 2001). 
According to (Wang et al., 2005), surface roughness is one of the most important factors in 
assessing and determining the quality of a part. In practical, predicting and controlling the O
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roughness is difficult due to the fact that many variables are affecting the process and many 
of these variables are non-linear, interdependent, or difficult to quantify with crisp numeric 
precision. Still, taking into account that some grinding processes can only be represented by 
experimental data or linguistic descriptions, the usage of intelligent systems into the 
optimization of grinding processes appears to be inevitable. 
The objective of this work was to use neural networks to predict the surface roughness of 
ground workpieces based on the analysis of several process output variables, such as 
acoustic emission, cutting power, and other statistics generated from these signals. 

2. Literature review 

Machining with grinding wheels is a very complex process affected by so many factors that 
a reproducible result is rarely obtained. The most important one is that the cutting ability of 
the grinding wheel changes considerably during the grinding time. In practice, the grinding 
process is carried out with cutting parameters which are safe but not optimal. The work-
piece quality depends to a great extent on the experience of the operator (Lezanski & 
Rafalowicz, 1993). 
The result of a grinding process can be subdivided into characteristics concerning the 
geometry and surface integrity of a ground component. The geometrical quantities are 
dimension, shape and waviness, as essential macro-geometric quantities; whereas the 
roughness condition is the main micro-geometric quantity. The surface integrity state can be 
described by residual stresses, hardness and structure of the material (Brinksmeier et al., 
1998). 
According to (Bhushan, 2001), solid surfaces, irrespective of their method of formation, 
contain irregularities or deviations from the prescribed geometrical form. The surfaces 
contain irregularities of various orders ranging from shape deviations to irregularities of the 
order of interatomic distances. No machining method, however precise, can produce a 
molecularly flat surface on conventional materials. Even the smoothest surfaces, such as 
those obtained by cleavage of some crystals, contain irregularities, the heights of which 
exceed the interatomic distances. For technological applications, both macro and micro-
nanotopography of the surfaces (surface texture) are important.  
A very general topology of a solid surface is seen in Figure 1. Surface textures that are 
deterministic may be studied by relatively simple analytical and empirical methods; their 
detailed characterization is straightforward. However, the textures of most engineering 
surfaces are random, either isotropic or anisotropic, and either Gaussian or non-Gaussian. 
Whether the surface height distribution is isotropic or anisotropic and Gaussian or non-
Gaussian depends upon the nature of the processing method. Surfaces that are formed by 
cumulative processes (such as peening, electropolishing, and lapping), in which the final 
shape of each region is the cumulative result of a large number of random discrete local 
events and irrespective of the distribution governing each individual event, will produce a 
cumulative effect that is governed by the Gaussian form. It is a direct consequence of the 
central limit theorem of statistical theory. Single-point processes (such as turning and 
shaping) and extreme-value processes (such as grinding and milling) generally lead to 
anisotropic and non-Gaussian surfaces. The Gaussian (normal) distribution has become one 
of the mainstays of surface classification (Bhushan, 2001). 
A typical parameter that has been used to quantify the quality of a surface topography is the 
surface roughness, which is represented by the arithmetic mean value, Ra, the root-mean-
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square-average, Rq, and the maximum roughness height, Rt. In general, the longitudinal 
surface roughness has a lower value than the traverse surface roughness; therefore the latter 
is more frequently used in industry (Hecker & Liang, 2003). Still, according to (Kwak et al., 
2006) the surface roughness obtained in grinding depends in a complex way upon the 
roughness of the wheel surface, the grinding parameters, and tribological interactions 
between the abrasive cutting points and the workpiece. 
 

 

Fig. 1. General typology of surfaces (Bhushan, 2001) 

Several sensing schemes for monitoring tool condition and cutting status in normal 
machining have been proposed and evaluated in the last two decades. However, the 
technique which involves monitoring the acoustic emission generated during the machining 
operation has been found to be very sensitive to elements of metal removal, such as sliding 
contact, plastic deformation, phase transformation, micro-cracking, fracture, impacts and so 
on (Dornfeld, 1985). The acoustic emission sensing technique uses the information contained 
in the transient elastic stress wave, which is generated by rapid release of energy within a 
material, to provide knowledge about the state of the process. 
The application of signals from the cutting process became a more interesting tool when 
neural networks are used for their processing and interpretation. This tool has attracted 
interest of several researchers in the surface roughness prediction (Wang, 2005; Aguiar et al., 
2006; Kwak et al., 2006; Fredj et al., 2002). 
Artificial neural networks have been studied for many years in the hope of achieving the 
human-like performance in the field of the speech, image recognition and the pattern 
classification. These neural networks are composed of many non-linear computational 
elements operating in parallel. Neural Networks, because of their massive nature, can 
perform computations at a higher rate. Because of their adaptative nature using the learning 
process, neural networks can adapt to changes in the data and learn the characteristics of the 
input signals (Kwak & Ha, 2004). Still, according to the author, the ability to learn is a 
fundamental trait of the neural network. Although a precise definition of learning is difficult 
to formulate, the learning in a neural network means the finding an appropriate set of the 
weights that are connection strengths from the elements to the other layer elements. 
What makes this work distinguished from others is the use of grinding parameters as input 
to the neural network, which have not been tested yet in surface roughness prediction by 
neural networks. Besides, a high sampling rate data acquisition system was employed to 
acquire the acoustic emission and cutting power. 
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3. Methodology 

The materials, methods and equipments used for the development of the grinding tests, 

surface roughness measurements, training and validation of the neural networks will be 

presented in the next section. 

3.1 Experimental set-up and grinding parameters 
The workpieces for the grinding tests consisted of laminated bars of steel SAE 1020 ground 

in the shape of a prism with 150mm length, 12.7mm width and 43mm height. A surface 

grinding machine from Sulmecânica manufacturer, Brazil, model RAPH-1055 was used in 

the grinding tests. The grinder was equipped with an aluminium oxide grinding wheel, 

from Norton Manufacturer, Model ART-FE-38A80PVH.  
 

 

Figure 2. Schematic diagram of the grinding machine and instrumentation 

A fixed acoustic emission sensor from Sensis manufacturer, model DM-42, placed near the 

workpiece and an electrical power transducer for measuring the electrical power consumed 

from the three-phase induction motor that drives the wheel were employed. The power 

transducer consists of a Hall sensor to measure the electric current and a Hall voltage sensor 

to measure the voltage at the electric motor terminals. Both signals are processed internally 

in the power transducer module by an integrated circuit, which delivers a voltage signal 

proportional to the electrical power consumed by the electric motor. The acoustic emission 

as well as the power signal are further sent to the data acquisition board from National 

Instrument, model PCI-6011, which is installed into a personal computer.  
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The LabVIEW software was utilized for acquiring the signals and storing them into binary 

files for further processing and analysis. The acoustic emission sensor used has a broad-

band sensitivity of 1.0 MHz. Its amplifier also filtered the signal outside the range of 50 kHz 

to 1.0 MHz. Figure 2 shows the schematic diagram of the grinding machine and 

instrumentation used.  

The tests were carried out for 15 different grinding conditions, using 5µm as the lowest 

depth of cut and 50 µm as the largest one. Dressing parameters, lubrication and peripheral 

wheel speed were adequately controlled in order to ensure the same grinding condition for 

the three repetitions of each test. The workpiece speed was set up at 0.043 m/s and the 

wheel speed at 30 m/s. The latter was maintained constant by adjusting the frequency of the 

induction motor on the frequency inverter, as the grinding wheel had its diameter decreased 

along the tests.  

The dressing overlap ratio (Ud), which determines the wheel sharp level (Malkin, 1989), was 

set to 1 for all the tests. To control this parameter, the width of the dressing diamond tip was 

measured before each test. The measurements have been done using a profile projector 

which allows micrometer precision. Figure 3 shows the scheme used to measure the 

dressing diamond tip. 
 

 

Figure 3. Method used to measure dressing tip width (bd) on a profile projector. 

Using equation 1 is possible to determine the dressing speed 

 
60.

.

d

d

d

U

bn
V =   (1) 

Where: Vd is the dressing speed; Lr is the wheel width (31,75 mm); n the wheel rotation 

(1800rpm). For a better understanding, figure 4 was built to show some details on the 

dressing operation used in this work. It can be observed the single-point diamond moving 

across the wheel surface with direction given by the speed vector vd. 

A water-based fluid was used with 4% concentration. Each run consisted of a single 

grinding pass of the grinding wheel along the workpiece at a given grinding condition to be 

analyzed. The acoustic emission and cutting power signals were measured in real time at 2.5 

millions of samples per second rate, and then stored onto binary data files for further 

processing. It is important to mention that the raw acoustic emission signal was acquired 

instead of the root mean square generally used. 
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Figure 4. Dressing operation with single-point diamond. 

3.2 Surface roughness measurements 
Once all the grinding tests were done, surface roughness measurements were taken using a 
Surtronic 3+ tester and Taylor Hobson’s TalyProfile software, version Lite 3.1.4, adjusted to 
a length of 8 mm sampling rate. Figure 5 shows the regions along the workpiece where the 
surface roughnesses were taken which accounted for 15 measurements. The surface 
roughness Ra was defined as the measurement parameter. 

 

Figure 5. Lines showing the 15 regions along the workpiece where the surface roughness 
was measured 

These data on surface roughness were naturally used in the neural networks, and they allow 
to verifying the magnitudes and efficiency of the system for prediction. 

3.3 Statistical parameters used in the neural networks 
Many parameters for monitoring fault in the grinding process have been studied. Two 
important parameters investigated by (Aguiar et al., 2002) and (Dotto et al., 2006) are DPO 
and DPKS. The DPO is defined as the standard deviation of the root mean square of acoustic 
emission signal multiplied by the maximum value of electric power in the grinding cycle or 
pass. The DPKS is the sum of the difference to the fourth power between cutting power and 
standard deviation of the cutting power multiplied by the standard deviation of the root 
mean square acoustic emission in the grinding cycle or pass. The DPO and DPKS are shown 
by equations 2 and 3 respectively. 
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Where Max is the maximum value; Power the cutting power; AE the acoustic emission; std 
the standard deviation, m was set to 1024 in this work. 
Thus, DPO and DPKS parameters were obtained from the data files stored during the 
acquisition. As these parameters were efficient at detecting grinding burn, they were tested 
as being the inputs of the neural networks in this research. 

3.4 Neural network and input sets 
Among several well known techniques of artificial intelligence are artificial neural networks, 
which basically consist of computational models analogous to the human brain whose main 
characteristic is the capability of learning (Aguiar et al, 2006). They are composed of many 
non-linear computational elements operating in parallel fashion. Neural networks, because 
of their massive nature, can perform computations at a higher rate. Due to their adaptive 
nature in using the learning process, neural networks can adapt to changes in the data and 
learn the characteristics of input signals (Kwak & Ha, 2004). In this work, the back-
propagation algorithm of neural networks, which is one of the learning models, was used. 
Three hidden layers composed of 60, 40 and 20 neurons were found to be the best 
configuration for the neural networks studied. The following parameters were also found 
more suitable: sigmoid tangent activation function for the neurons of the hidden layers; 
linear activation function for the neurons of the last layer, downward gradient training 
algorithm; all data in the neural networks were normalized; training for 10000 epochs; 
square mean error value of 10-5; learning rate of 0.3; and momentum coefficient of 0.4. Table 
1 shows three different sets used for the neural networks.  
 

Set Neural Network Configuration 

1 AE, Cutting Power and Depth of Cut 

2 AE, Cutting Power, DPO, DPKS and Depth of Cut 

3 DPO and Depth of Cut 

Table 1. Neural Network Configurations 

4. Results and discussion 

The measurements of surface roughness have shown an increase in magnitude as the depth 
of cut was increasing, mainly after the test with 35 µm depth of cut where grinding burn on 
the workpiece surface took place. In order to illustrate that increase in surface roughness, 
Figure 6 shows the mean values of surface roughness (µm) calculated for each depth of cut 
used for 15 regions along the workpiece (Figure 5) and three repetitions for each grinding 
condition. It can be observed the high standard deviation values more easily visible to those 
conditions of greater depth of cut, due mostly to encompass the mean of surface roughness 
along the workpiece. This factor can be better explained by the difference of surface 
roughness along the workpiece length; mainly in the tests where in certain region of the 
workpiece burn occurred. Thus, there was a great difference between the surface roughness 
values for the region where burn took place and the region with no burn. 
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Figure 6. Average of Surface Roughness Ra (µm) along the workpiece in function of the 
depth of cut (µm) for 15 grinding runs. 

It is important to point out that Figure 6 was built just for easily visualization of the surface 
roughness behaviour in relation to the depth of cut, provided the training and validation 
tests in the neural networks the surface roughness for each measured region was used. 
From the grinding tests acoustic emission and cutting power vectors were extracted. 
Following each test, the root mean square of AE and filtering of both signals were obtained 
in order to check the success of the test as shown in Figure 7. 
 

 

Figure 7. Acoustic Emission (a) and Cutting Power (b). Horizontal axis in seconds; Vertical 
axis in Volts. 

These vectors were applied to the training of the neural networks, which provided surface 
roughness values and allowed the analysis of the system efficiency. The quantification of 
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errors was done point by point through the computation of the absolute value of the 
difference between the measured values of surface roughness and the values given by the 
neural network. That was done for each of the 15 regions along the workpiece and for each 
workpiece. 
Figure 8 shows the average values of square errors for all 15 regions along the workpiece 

length and 3 repetitions of each grinding condition as well as the variation of the error in 

each of those conditions. The lateral bar exhibits the three groups of errors found, that is, the 

lowest one the success, errors about 10-1 μm in the middle in green, and errors equal to or 

greater than 1 μm on the top in red. 

 

 

Figure 8. Average values of square errors, maximum and minimum errors values for each of 
15 workpiece regions and 3 repetitions of each grinding condition. 

It can be seen in Figure 8 the set number 1 presented error quite high to those greater depths 

of cut studied, overreaching the value of 1 µm for the last three grinding conditions. As 

mentioned previously, from the analysis of workpiece integrity it can be observed the 

grinding burn started at depth of cut of 35 µm. Thus, acoustic emission, cutting power and 

depth of cut have not responded very well as inputs to the neural network in the surface 

roughness prediction. However, the error observed does not necessarily mean that those 

parameters are not adequate to monitor other grinding control parameters, for instance, the 

grinding burn. The set number 2 has also presented greater errors in the last three grinding 

conditions but they have not overreached in average value of 1 µm. 

Based on this information, the difference between the real measurements and the output of 

the neural networks can be classified in three groups: The first group for errors not greater 

than 10-2 µm, the second group for errors of about 10-1 µm, and the third group for errors 

equal to or greater than 1 µm. 

As the surface roughness measurement device used in this work allows measurements with 

precision of two decimal digits, the last digit of this equipment is concerned with the 

uncertainty of the measurement. Thus, all the errors in the range of 10-2 µm or inferior were 

considered to be successful in the prediction of the surface roughness. This remark is 

reinforced by the tolerances applied to the grinding process in industry, which in general 

has tolerances in the range of 10-1 µm. 
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In the second group, errors of about 10-1 µm was thought as bad ones, but it would be 
mostly fine in industry depending on the type of part ground. Finally, the third group of 
errors is in the range of 1 µm or superior, which is classified as very bad ones. 
Based on these analyses, we can see in Figure 8 that for many conditions, neural network 
had a hundred percent of success or almost that, mainly in the region from 5 µm of depth of 
cut to 30 µm, proving a total efficiency of the system for certain processes. These conditions 
are, for example, 10 µm, 12.5 µm, 15 µm and 17.5 µm for Set 1 and Set 2, and from 10 µm to 
30 µm for Set 3. 
It is important to point out that the great efficiency of the process occurred in the area of 
industrial application, since the largest rate of success was obtained exactly when burn on 
the workpiece doesn't succeed. 
Comparing the values of surface roughness obtained in the tests and shown in Figure 6 it 

can be inferred that the studied process is optimized using 27.5µm depth of cut. This depth 

of cut represents the largest material removal rate employed before grinding burn takes 

place. Surface roughness values are similar to the grinding conditions before 27.5µm depth 

of cut.  

Figure 9 was built in order to facilitate the comparison among the 3 input Sets and to show 
the general result of the values in all tested conditions. 
 

 

Figure 9. Percentage of errors and success of the neural network prediction for each set 

Observing Figure 9 and other results from the neural network output as well as the 
comparison between the surface roughness values, the following remarks can be summarized. 
From the sets utilized in the neural network training, the set number 3 (DPO and depth of 

cut) has presented the best output values for almost every grinding condition tested. This 

set of inputs has provided about 70% of success in the prediction of surface roughness 

analyzed region by region. In addition, it has not presented any error classified as bad one 

for the grinding process control. 

The set number 1, composed by acoustic emission, cutting power and depth of cut, has 

presented satisfactory performance in the vast majority of the grinding condition tested, 

showing however pretty high errors mainly in the conditions of high depth of cut. Burning 

of the workpieces has occurred in these conditions, which can be understood as if this set is 

sensitive to others parameters besides surface roughness. 
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In the same way as occurred with set number 1, set number 2 (AE, cutting power, DPO, 
DPKS and depth of cut) also had good performance. The values of prediction for these two 
sets have alternated themselves, either for better or for worse when they are compared to 
each other. It is important to highlight that the set number 1 has showed higher errors than 
those seen in the set number 3 for some conditions. However, it has obtained good 
performance in the analysis of bad errors, showing only 3.1% for this kind of error. 

5. Conclusions 

The technique of surface roughness prediction has been developed using multi-sensor 
method with AE sensor and power meter for grinding process. Based on the results 
presented in this research, it can be concluded that acoustic emission and cutting power 
signals are very good input parameters to the neural network for surface roughness 
prediction of ground parts. Thus, the implementation of these signals is feasible in the 
control of grinding process in industry, provided that very low percentage of “bad” errors 
presented by the neural network was found. From the sets used in the training of the neural 
networks, and for the grinding conditions and methods employed, the set number 3 
composed only by the DPO parameter and depth of cut has presented the best results. This 
set has reached about 70% of success in the prediction and none “bad” error, and for the 
condition where workpiece burn didn’t occur success at prediction was almost 100%. In the 
comparison of errors generated by each set, set 3 was followed either by the set 1 or set 2. 
Because the level of errors found in the utilization of set number 3 as input to the neural 
network, the use of DPO parameter is highly attractive for predicting surface roughness in 
grinding. Therefore, an analog DPO output signal could be generated by an electronic 
circuitry with no need for further digital processing of AE and cutting power signals. 

6. Acknowledgements 

The authors want to express their gratitude to FAPESP -The State of Sao Paulo Research 
Foundation, and to IFM - The Institute Factory of Millennium for the financial support given 
to this research. Also, thanks go to the Grinding Laboratory – LUA and to Data Acquisition 
and Signal Processing Laboratory – LADAPS, both at FEB, Unesp, Bauru Campus, for their 
assets given to this work accomplishment.  

7. References 

Aguiar, P. R.; França T. V. & Bianchi E. C. (2006); Roughness and roundness prediction in 
grinding. Proceedings of the 5th CIRP International Seminar on Intelligent Computation 
in Manufacturing Engineering (CIRP ICME ´06), 25-28 July, 2006, 183-188, Italy. 

Aguiar, P.R.; Bianchi, E. C. & Oliveira, J. F. G. (2002); A method for burning detection in 
grinding process using acoustic emission and effective electrical power signal, CIRP 
Journal of Manufacturing Systems, 31, 2002, 253-257, Paris. 

Bhushan B. (2001), Modern tribology handbook, CRC Press LLC, 2001.  
Brinksmeier E., Tönshoff H. K., Czenkusch, C. & Heinzel, C.(1998), Modelling and 

optimization of grinding process, Journal of Intelligent Manufacturing, 9, 1998, 303-
314. 

www.intechopen.com



 Advances in Robotics, Automation and Control 

 

44 

Dornfeld, D. A. (1985), Manufacturing process monitoring and analysis using acoustic 
emission, Journal Acoustic Emission, 4, No. 2/3, 1985, S228-S231. 

Dotto, F. R. L; Aguiar, P. R.; Bianchi, E. C. ; Serni P. J. A. & Thomazella R. (2006); Automatic 
system for thermal damage detection in manufacturing process with internet 
monitoring, Journal of Brazilian Society of Mechanical Science & Engineering, XXVIII, 
No. 2,  2006, 153-160. 

Fredj, N. B.  R., Amamou & Rezgui, M. A. (2002), Surface roughness prediction based upon 
experimental design and neural network models, IEEE SMC, 2002. 

Hassui, A. & Diniz, A. E. (2003). Correlating surface roughness and vibration on plunge 
cylindrical grinding of steel, International Journal of Machine Tools & Manufacture, 43, 
2003, 855-862. 

Hundt, W.; Kuster F. & Rehsteiner, F. (1997); Model-based AE monitoring of the grinding 
process, Annals of the CIRP, 45, 1997, 243-247. 

Hecker, R. L. & Liang, S. Y. (2003), Predictive modeling of surface roughness in grinding, 
International Journal of Machine Tools & Manufacture, 43, 2003, 755-761. 

Kwak J. S., Sim S. B. & Jeong Y. D. (2006), An analysis of grinding power and surface 
roughness in external cylindrical grinding of hardened SCM440 steel using the 
response surface method, International Journal of Machine Tools & Manufacture, 46, 
2006, 304-312. 

Kwak J. S & Ha, M. K. (2004);  Neural network approach for diagnosis of grinding operation 
by acoustic emission and power signals, Journal of Materials Processing Technology, 
147, 2004, 65-71. 

Lezanski, P. & Rafalowicz J. (1993), An intelligent monitoring system for cylindrical 
grinding, CIRP Ann., 42, 1993, 393–396. 

Malkin S. (1989), Grinding technology – theory and applications of machining with 
abrasives, Ellis Horwood Limited, 1989, England. 

Wang, J. Z.; Wang, L. S.; Li, G. F. & Zhou G. H. (2005). Prediction of surface roughness in 
cylindrical traverse grinding based on ALS algorithm, Proceedings of the Fourth 
Internacional Conference on Machine Learning and Cybernetics, 18-21 August 2005, 549-
554, Guangzhou. 

Wang, Z.; Willet, P.; Aguiar P. R. & Webster J. (2001); Neural network detection of grinding 
burn from acoustic emission, International. Journal of Machine Tools & Manufacture, 
41, 2001, 283-309. 

www.intechopen.com



Advances in Robotics, Automation and Control

Edited by Jesus Aramburo and Antonio Ramirez Trevino

ISBN 978-953-7619-16-9

Hard cover, 472 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book presents an excellent overview of the recent developments in the different areas of Robotics,

Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design;

it also introduces new mathematical tools and techniques devoted to improve the system modeling and

control. An important point is the use of rational agents and heuristic techniques to cope with the

computational complexity required for controlling complex systems. Through this book, we also find navigation

and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be

included in the next generation of productive systems developed by man.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paulo R. Aguiar, Carlos E. D. Cruz, Wallace C. F. Paula and Eduardo C. Bianchi (2008). Predicting Surface

Roughness in Grinding Using Neural Networks, Advances in Robotics, Automation and Control, Jesus

Aramburo and Antonio Ramirez Trevino (Ed.), ISBN: 978-953-7619-16-9, InTech, Available from:

http://www.intechopen.com/books/advances_in_robotics_automation_and_control/predicting_surface_roughne

ss_in_grinding_using_neural_networks



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


