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Application of Recurrent Neural Networks  
to Rainfall-runoff Processes 

Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu 
National Taiwan University 

Taiwan 

 

1. Introduction 

Knowledge of the hydrological process is essential to the watershed and flood management. 

Due to the complexity of the interactions among the hydrological process, 

hydormeterological and geomorphological processes, a rigorous dynamic system model is 

required for the modelling purpose. Among them, the rainfall-runoff modelling is always 

considered as one of the most challenging part of hydrological process modelling.   It has 

been shown in a variety of research fields that the application of recurrent neural network 

(RNN) can perform superior in dynamic system modelling (Pan and Wang, 2005). However, 

Maier and Dandy (2000) reviewed 43 hydrology journal articles with modelling of artificial 

neural networks (ANNs) published before 1998, where only Chow and Cho (1997) applied 

RNNs to forecast rainfall.   

The application of RNNs to hydrological modelling is rapidly growing these years. 
Published between 2000 and 2008 spring, 14 papers in which RNNs have been used for 
simulation or forecasting of water resources variables are reviewed in terms of the 
modelling process. Due to the rapid increase in journals, it is unlikely that complete 
coverage has been achieved. Following the form of Maier and Dandy (2000), the major 
features of the models investigated are summarised in Tables 1 and 2, including background 
information (variable modelled, location of application, model time step, and forecast 
length), information about the data used (data type, normalization range, number of 
training samples, and number of testing samples), information about network architecture 
(connection type, method used to obtain optimal network geometry, and number of nodes 
per layer), information about the optimization algorithm used (optimization method, 
internal network parameters (hidden layer transfer function, learning rate, momentum 
value, epoch size, and initial weight distribution range)) and the stopping criterion adopted. 
While hydrologists have not made an effort to construe the knowledge embedded in the 

trained RNN models, the recent studies strive to interpret physical significance from the 

internal architecture of RNN hydrological models, like Pan et al. (2004, 2005, and 2007). 

Therefore, this chapter will introduce the deterministic linearized recurrent neural network 

(denoted as DLRNN) and its application to rainfall-runoff processes. 
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Table 2. Details of papers reviewed (RNN architecture and optimization). 

2. Deterministic linearized recurrent neural network 

The RNN introduced in this chapter is to integrate a state space form into the neural 
network framework. The integration can provide not only the flexibility to represent any 
nonlinear functions but also the parallel inputs/outputs (causes/effects) relationships 
established between the neural model and the physical system (Pan & Wang, 2004).  The 
presented RNN has five layers: input layer, hidden layer S, state layer, hidden layer O, and 
output layer. The input layer takes the input signals and delivers these inputs to every 
neuron in the next layer, hidden layer S, which represents any function that specifies the 
behaviour of states. State layer receives the signals from hidden layer S, and each neuron in 
this layer represents one state whose output value is the value of the state. After hidden 
layer O, which represents the features that relates the outputs of the neural network to the 
states, gets the signals from state layer, output layer takes the hidden layer O signals adds 
them to each output neuron. These outputs are, finally, the outputs of the RNN embedded 
in a state space form as Fig. 1. 
The mathematical representation of a deterministic non-linear system in state space form is: 

 ( )
kkk

uxFx ,
1
=+  (1) 
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 ( )
kk

xGy =  (2) 

where k
u , k

y , and k
x  with m , l , and n  ranks denote, respectively, the input, output, and 

state vectors at time k . nmnF →×:  and lnG →:  are two static linear/nonlinear 

mappings. 
 

 

Fig. 1. The RNN embedded in a state space form. 

A neural network containing a single hidden layer with bounded transfer functions in its 
neurons can be used for the representation of a variety of linear/nonlinear functions 
(Zarmarreño et al., 2000).  Therefore, to apply the neural network for the linear/nonlinear 
mappings in Eqs. (1) and (2), the mathematical form of this special RNN can be written as: 

 ( )h

k

i

k

rh

k
BuWxWfWx +⋅+⋅⋅=+ 11

ˆ  (3) 

 ( )22

2
ˆ h

k

ho

k
BxWfWy +⋅⋅=  (4) 

where hW , rW , iW , oW , and 2hW  are matrices with dimensions hn× , nh× , mh × , 

2hm× , and nh ×2  as the weights of the RNN, respectively. hB  and 2hB  are two vectors 

with h  and 2h  elements as biases. 1
f  and 2

f  are linear/nonlinear functions depending on 

the behaviour of the system. 
Previous works have established that linearized neural networks suffice to capture 
nonlinear systems. Botto and Costa (1998) designed a linear predictive control using a 
linearized neural network model. Henriques and Kuanyi (1998) stated that control design 
for linear systems has been well developed, and it is natural to make use of it in nonlinear 
plants. Hence, they applied as a linearized neural model. Furthermore, Rahman and Kuanyi 
(2000) studied a neural network method to linearizing control of nonlinear process plants, 
and used neural networks to model the process plant and to linearize the neural network 
model in a novel way. Additionally, the difference between a RNN and a linearized one is 
the linearity of the active function of each neuron in the hidden layer. In fact, however, it is 
not strictly necessary that a neural interpretation of the neuron contains a non-linear 
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function because the reduction of the diversity of activation functions, such as the sigmoid 
function, is beneficial (Ptitchkin, 2001). Although neural networks are known to be universal 
function approximators, except for unchanged the active functions, the weights and 
structure of the neural network are updated or modified during the entire approximating 
process. Moreover, a high-dimensional space nonlinearity problem can be suitably 
approximated by modifying the weights in the linear combinations of state variables with 
time. Consequently, the linear transfer function of the RNN applied herein is capable of 
simulating nonlinear rainfall-runoff process. 
Considering the transfer functions of the RNN applied herein are set as linear functions and 
the biases are set at zero. Consequently, the Eqs. (3) and (4) are rewritten as: 

              ( )                                                   
k

i

k

rh

k
uWxWWx ⋅+⋅⋅=+1

ˆ  

              ( ) ( )
kkk

ih

k

rh uWxWuWWxWW ⋅+⋅=⋅⋅+⋅⋅=
21

        (5) 

 ( ) ( )
kk

ho

k

ho

k
xWxWWxWWy ⋅=⋅⋅=⋅⋅=

3

22ˆ  (6) 

In the recursive equation (5), W1, W2, and W3 are unknown weights to be identified by 
observed input/output sequences { }

110
,,, −N
uuu A  and { }

110
,,, −N
yyy A . By replacing the 

k
x  

term in the observed equation (6) with the solved recursive equation (5), the output 
response of the system is given as: 

 ∑
=

−

−+=
k

p

pk

pk

k
uWWWxWWy

2

2

1

13113
 (7) 

For a system initially at rest, i.e., 0
1
=x , Equation (7) is rewritten as: 

 ∑
=

−=
k

p

pkpk
uhy

1

 (8) 

where the unit hydrograph (UH) of the rainfall-runoff processes can be summarized as: 

2
1

13
≥= −

pWWWh
p

p
  if     

2
 

 10 == ph
p

  if              (9) 

The impulse response terms 
2

WWW
p 1

13

−
 for 2≥p  are known as the Markov parameters. 

3. Calibration algorithm for DLRNN 

3.1 Indirect system identification 
The concept of indirect system identification algorithms is to obtain the UH ordinates first, 
called the constrained deconvolution step. The linear programming is selected herein to 
carry out the UH from the rainfall and runoff data. Then, the system matrices [ ]

31
,, WWW

2
 

are identified from the UH ordinates via singular value decomposition (SVD), entitled the 
realization step. 
In the realization step, the state space model can be represented as follows if 

kk
Txx =  for 

some nonsingular transformation matrix T (Romos et al., 1995): 
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kkk

uTWTxTTWTx ][][
2

1

11
+= −

+  (10) 

 
kk

TxTWy ][ 1

3

−=  (11) 

By considering ][ 1

1

−TTW  as 
1

W , ][
2

TW  as 
2

W , and ][ 1

3

−TW  as 
3

W , the system matrices of 

the transformed system are now [ ]
31

,, WWW
2

, and these parameter matrices [ ]
31

,, WWW
2

 

are identified based on the deconvoluted impulse response sequence }ˆ{
p

h . Specifically, SVD 

is performed on the following Hankel matrix: 

 ( ) ( )
kk

TT

kkkk
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tt
VSSUVSU

hhhh

hhhh

hhhh

hhhh

H co ⋅=⋅⋅⋅=⋅⋅=
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⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎣

⎡

=

−++

+

+
2121

1221

2543

1432

321

,

ˆˆˆˆ
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ˆˆˆˆ

ˆˆˆˆ

A
BDBBB

A
A
A

 (12) 

where Mk ≤−12 . M is the memory of system. The transformed parameter matrices are 

identified from: 

∗− ==
1,2,

1

11 kk
TTWW cc ; 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

0

1

22 Bk
cTWW ; [ ]

k
TWW o0,,0,11

33
A== −  

where 
1,k

c  and 
2,k

c  denote the first and last ( )1−k  columns of c , and the star denotes a 

pseudoinverse. 

3.2 Subspace algorithm 
Above indirect system identification algorithm computes the weights of a RNN from a 
Hankel matrix constructed using Markov parameters. However, using the Markov 
parameters as a starting point would be rather difficult to measure in some fields 
(Abdelghani & Verhaegen, 1998). The subspace algorithms are the automatic structure 
identification, and derive the model directly from the input-output data without estimating 
the Markov parameters as an intermediate step (Gustafsson, 2001; Ramos et al., 1995). 
Before description of subspace algorithm, the past and future highly rectangular 
input/output Hankel matrices, H1 and H2 respectively, are defined by input-output data: 
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 for j>>i>n (13) 
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Two state vector sequences X1 and X2 are defined as ]|||[
211 j

xxxX A=  and 

]|||[
212 jiii

xxxX +++= A . The subspace algorithm is presented as follows: 

a) Compute the SVD of the concatenation of H1 and H2: 

 T

H

jnlinminli

jnmiT

HHH
V

uu

uu
VU

H

H
⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅⎥
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⎤
⎢
⎣

⎡
=Σ=⎥

⎦

⎤
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⎡

×−+×−

×+

)2()2()2(

)2(11

2221
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2

1

00

0
 (15) 

where 11
u , 12

u , 21
u , 22

u , 11
Σ , and H

V  are the matrices with dimensions 

)2()( nmilimi +×+ , )2()( nlilimi −×+ , )2()( nmilimi +×+ , )2()( nlilimi −×+ , 

)2()2( nminmi +×+ , and jj ×  respectively. 

b) Compute the SVD of 
111112

ΣuuT  in order to determine the system order, n: 

 [ ] T

q

minlinnli

minq

qq

T VUUuu ⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅=Σ

×−×−

×⊥

)2()(2)(2

)2(

111112 00

0
|  (16) 

where 
q

U , ⊥

q
U , 

q
Σ , and 

q
V  are the matrices with dimensions nnli ×− )2( , 

)(2)2( nlinli −×− , nn× , and )2()2( nminmi +×+  respectively. 

c) Compute the transformed state vector sequence: 

 ]|||[
211122 jiii

TT

q
xxxHuUX +++== A  (17) 

where 
2

X  is the matrix with dimensions jn× . 

d) Compute the weights of the RNN by solving the overdetermined system of equations: 
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yyy
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 (18) 

In the past few years, much attention has been paid recently to subspace algorithms when 
various time domain methods for identifying dynamic models of systems from modal 
experimental data appeared. However, this algorithm was seldom applied in the scope of 
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30 
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data, 
hourly data used herein have more uncertainty and noisy. The suitability of subspace 
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real 
typhoon event of the Keelung River in Taiwan as follows: 
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Firstly, a sequence of 100 data is generated from a state space model that was identified 
from rainfall-runoff data observed on Sep. 27, 1996.  Indirect system identification algorithm 
was used to check if the subspace algorithm could identify the original system. The state 
space model is a 3-order system as following equations: 

 
kkk

UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.1485-

0.2144

-0.2274

0.67720.33160.0383-

0.3317-0.83330.1087

-0.0383-0.10870.9600

1
 (19) 

 [ ]
kk

XY ⋅= -0.1485-0.2144-0.2274  (20) 

The generated sequence was identified as Equations (21) and (22). The results show that the 
system order determination in the step 2 of subspace algorithm is correct so that the impulse 
response can be simulated accurately. 
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⎢
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0.57040.85170.0693

-0.0944-0.18570.9559

1
 (21) 

 [ ]
kk

XY ⋅= 0.6034-0.6683-0.4403  (22) 

The second test used the original observed data to identify a rainfall-runoff system. 
However, according to the identified UHs shown in Fig. 2, the subspace algorithm 
performed poorly because it was very sensitive to the noise in observed data. Therefore, the 
modified system identification combined with indirect system identification and subspace 
algorithm is introduced. 
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Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace 
algorithm. 
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3.3 Modified system identification for hydrology 
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification 
algorithm and subspace algorithm respectively. To compare with these two flowcharts, 
indirect system identification algorithm needs to subjectively decide the system order from a 
sequence of singular values in Equation (16). In practice, the singular values are not easily 
classified into significant and insignificant groups when the singular values descend slowly. 
Additionally, subspace algorithm can determine the system order objectively, but it is 
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a 
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized 
data are without noise that helps subspace algorithm to get the system order. The right part 
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology. 
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Fig. 3. Flowchart of indirect system identification. 

4. On-line learning algorithm for DLRNN 

Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al., 

2000), such as (1) the real time recurrent learning; (2) the backpropagation through time 

(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method; 

and (5) the block update method. All training algorithms above are gradient-based by which 

the learning trajectory is represented into the changes of weights of neurons. 

The weights updated via gradient-based learning algorithms can be written as: 

 
dW

dE
WW

oldnew
η−=   (23) 

where η denotes the learning rate, and E is the sum of square errors. 

 ( ) ( )∑
=

−−=
K
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where yk is the output of the model, and dk represents the desired output at time index k. The 
algorithm introduced herein is based on the gradient-based learning method developed by 
Atiya and Parlos (2000). 
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Fig. 4. Flowchart of modified system identification. 

4.1 DLRNN learning algorithm 
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that 
can be efficiently computed via the interchange of the roles of the network states xk and the 
weight matrix W. Let the states be considered as the control variables, and the change in the 
weights is determined upon the changes in xk. The details of the algorithm are as follows: 
First, the network learning is formulated as constrained minimization problem, with the 
objective to minimize the sum of square error, E, given by Equation (24), and the constraints. 

 1,,0ˆ
1211

−==⋅+⋅≡ ++ KkxuWxWg
kkkk

A    0,-  (25) 

According to the Equations (10) and (11), the error gradient can be written as follows: 
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where 
n

dw

dE
 for n = 1, 2, 3 equals 0 since E is the function of y. Consequently, the updated 

weights of W2 and W3 for time K can be derived ffom Equation (23), (24), (26b), and (26c) as 

follows: 
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By taking the derivative of the Equation (25), one can get: 
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Solving Equations (26a) and (29), one can get: 
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According to the convention that  ( )vu ∂∂ for two vectors u and v is the matrix whose (i, j)th 

element is ( )
ji

vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as 

follows: 
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where 
k
e is the error at time k: 

kkk
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and 
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where 
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I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros. 
After calculating the gradient of E with respect to the states xk, a small change at the states xk 
in the negative direction of that gradient can be written as: 
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Replace 
x

E

∂
∂

 by Equation (29), and Equation (33) can be rewritten as: 
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Since g, given by Equation (25), equals zero, one can get: 
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After applying the transposition and the pseudoinverse in Equation (37), the change in 
weights can be determined as: 
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where 
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From Equation (36), let  

www.intechopen.com



Application of Recurrent Neural Networks to Rainfall-runoff Processes 

 

215 

 x
x

g
e

x

g
T Δ

∂
∂−

=
∂
∂

=
η

γ 1
  (40) 

and partition the vector γ  into the K vectors as follows: 
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Using Eqs. (32) and (40), γ  can be evaluated by following recursions: 
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Substituting Equations (33), (39), (40), and (43) into (38), one can get after some 
manipulation. 
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In order to alleviate the effect of most likelihood ill-conditioning problems caused by the 

matrix inversion in Equation (44), a small matrix Iε  is added to the outer product matrix  

K
V ′ as follows: 
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where ε  is a small positive constant. Then Equation (44) is rewritten as follows: 
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Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1) 

are already available to get 
1,1 −Δ

K
W , the on-line updated change in weights 

K
W

,1
Δ  based on a 

new data point (uK, xK, dK) can be written as follows: 
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Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of 
K

V  

can be obtained recursively in terms of the inverse of 
1−K

V  as follows: 
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and let  
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Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated 
formula of W1 as follows: 
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5. Application 

5.1 Study area and data pre-processing 
With a length of 86 km and an area of 501 km2, the Keelung River has a U-turn in the 
northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and 
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2 
surrounding the city of Taipei in northern Taiwan was chosen for evaluating the simulation 
ability of the DLRNN for recognizing the transition of rainfall-runoff processes. Due to the 
northeast monsoon in winter and the typhoons in summer, the mean annual precipitation, 
runoff depth, and runoff coefficient are 2865 mm, 2177 mm, and 0.76, respectively. Owing to 
the rugged topography of the watershed, large floods caused by the short and steep runoff 
path-line arrive rapidly in the middle-to-downstream reaches of the watershed, and cause 
serious damage. 
According to the records of three rain gauges (Wu-tu, Jui-fang, and Huo-shao-liao) and on 
discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from 
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events 
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972, 
were used for calibration while the remainder events were used for validation. Through the 
Kriging method to calculate the average effective rainfall based on effective rainfall 
measurements from three rain gauges, current average effective rainfall (mm) and direct 
hourly runoff (m3/s) are the input and output with no lead-time considered after be 
normalized between 0 and 0.9. 

5.2 Criteria 
The performances of rainfall-runoff simulations were evaluated by four criteria as follows: 
(1) Coefficient of efficiency, CE, is defined as follows: 
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where 
kest

Q
,

 denotes the discharge of the simulated hydrograph for time index k (m3/s), 
kobs

Q
,

 

is the discharge of the observed hydrograph for time index k (m3/s), and 
obs

Q  is the mean of 

the discharge of the observed hydrograph during whole event period K. The better the fit, 

the closer CE is to 1. 
 

 

Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the 
coordinates are TWD67 2-degree wide Transverse Mercator projection). 
 

Typhoon

name

Time

(y/m/d)

Rainfall

duration

(h)

Rainfall

depth

(mm)

Max rainfall

intensity

(mm/h)

Max

discharge

(m
3
/s)

Typhoon

name

Time

(y/m/d)

Rainfall

duration

(h)

Rainfall

depth

(mm)

Max rainfall

intensity

(mm/h)

Max

discharge

(m
3
/s)

Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0

*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7

Nadine 1968/07/26 61 252.1 15.1 219.7 *Abby 1986/09/17 91 521.3 28.8 579.0

Elaine 1968/09/29 72 686.6 44.5 1037.7 Alex 1987/07/27 30 187.0 40.7 519.8

*Storm 1969/09/09 89 678.5 24.1 848.4 *Gerald 1987/09/09 33 321.2 47.2 553.9

Elsie 1969/09/26 38 288.5 38.0 662.5 *Storm 1988/09/29 101 627.3 22.7 670.2

Agnes 1971/09/18 69 411.3 31.5 466.3 *Sarah 1989/09/10 61 322.5 27.7 401.2

Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0

Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5

Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4

Wendy 1974/09/28 57 321.2 16.7 822.0 Storm 1990/09/02 26 192.8 32.2 842.5

Vera 1977/07/31 46 264.7 16.9 735.7 *Polly 1992/08/29 98 500.6 17.8 278.9

Storm 1977/11/15 72 292.2 15.2 538.4 Gladys 1994/09/01 18 184.1 31.3 434.2

Irving 1979/08/14 56 340.3 24.4 974.1 *Seth 1994/10/09 48 300.7 12.2 451.3

Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9

*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0

Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8

Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event  

Table 3. Information about the 38 events selected from Wu-tu watershed. 

(2) The error of peak discharge, EQp (%), is defined as follows: 
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where 
estp

Q
,

 denotes the peak discharge of the simulated hydrograph (m3/s) and 
obsp

Q
,

 is the 

peak discharge of the observed hydrograph (m3/s). 
(3) The error of the time for peak to arrive, ETp, is defined as follows: 

 
obspestpp

TTET
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where 
estp

T
,

 denotes the time for the simulated hydrograph peak to arrive (hours) and 
obsp

T
,

 

represents the time required for the observed hydrograph peak to arrive (hours). 
(4) The error of total discharge volume, VER(%), is defined as follows: 
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where 
kest

Q
,

 denotes the discharge of the simulated hydrograph for time index k (m3/s) and 

kobs
Q

,
 is the discharge of the observed hydrograph for time index k (m3/s). The better the fit, 

the closer EQp, ETp and VER are to 0. 

6. Result and discussion 

A developed DLRNN is applied to perform rainfall-runoff simulation and recognize the 
transition of rainfall-runoff processes using UHs realized from the DLRNN weights. First, 
the DLRNN is compared with a forward neural network to demonstrate the advantage of 
RNNs. DLRNNs identified using indirect system identification and modified system 
identification then are compared. Furthermore, control system theory is employed to 
consider a DLRNN in canonical form and compare it with that identified using modified 
system identification. Finally, rainfall-runoff processes recognition using DLRNN is 
described. 

6.1 Comparison between DLRNN and FNN (Pan et al., 2007) 
Through the modified system identification based on the earliest 10 events, a DLRNN with 4 
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection 
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information. 
Therefore, it is fair to have the same control on the quantity of weights for comparing the 
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs 
with inputting information as a time delay pattern that constitutes the tapped delay line 
information are classified as local or global RNNs according to the definition by Tsoi and 
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data 
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated 
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a 
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained 
using the same calibrated data via the back-propagation learning algorithm, the most 
common learning algorithm for FNNs. 

 ( )( )( )( )1rainfallneuron  input ++−= 2/1int nk , if n is odd; (55) 
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 ( )( )( )2/int nk −= runoffneuron  input , if n is even (56) 
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Fig. 6. Architecture of DLRNN identified via modified system identification. 
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Fig. 7. The structure of FNNs with the tapped delay line inputs. 
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Model Form DLRNN

Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4

Number of neuraons in input layer 22 10 6 4 3 2 2 1 1

Number of neural network's weights 24 24 24 24 25 24 28 24 24

CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926

EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438

ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036

VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

 

Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28 
events (Pan et al., 2007). 

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which 
FNN(1-8-1) is the only neural network without any feedback connection. According to the 
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static 
system without memory and only executes mapping from rainfall to runoff. However, the 
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform 
superiorly. The result shows the importance of a feedback connection and using tapped 
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback 
connections is especially important and useful for grasping the extraordinary time-varying 
characteristics of the rainfall-runoff processes. The neural network with only one rainfall 
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1), 
gives the feed-forward neural network the last-time-step status of the runoff, and raises the 
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a 
satisfactory simulation because the feedback connections in hidden layer give the DLRNN 
the function to calculate the state of the rainfall-runoff process recurrently. 

6.2 Comparison between DLRNNs based on two identification methods 
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the 
optimal form or value of most network design parameters differ for each application and 
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a 
deterministic solution. This chapter considers the indirect and modified system 
identification for identifying DLRNNs. In the realization step of the indirect system 
identification, a series of singular values is carried out through the singular value 
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated 
distinctly into two groups, namely the significant and the neglected groups, the number of 
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig. 
8, the first two singular values are relatively significant and the number of neurons in the 
hidden layers are at least 2. However, the other singular values do not decrease noticeably, 
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the 
relation between the coefficient of efficiency and the number of neurons in the hidden layers 
of the DLRNN determined using trial-and-error method is illustrated as the open dots in 
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers 
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN 
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best 
coefficient of efficiency (CE=0.87043). 
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Fig. 8. The singular value plot from the realization step of indirect system identification. 
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Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers 
of the DLRNN. 

Another DLRNN (denoted as DLRNN(2)) has four neurons in the hidden layer, as 
determined using modified system identification (solid dot at the left side of Fig. 9). Owing 
to part of the subspace algorithm being included in modified system identification, the four 
neurons in the hidden layer are chosen without any referable plot, such as singular value 
plot. From Fig. 9, the CE of DLRNN(2) is just 0.00028 less than that of DLRNN(1). However, 
DLRNN(2) reduces 48 weights of DLRNN(1), to 24 weights. The 50% reduction in weights 
from DLRNN(2) demonstrates that the combination of modified system identification and 
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the advantages of indirect system identification and subspace algorithm provide an efficient 
algorithm for applying DLRNN in hydrology. 

6.3 Comparison between DLRNNs in different forms 
The DLRNN adopted herein is a fully RNN and has full connections between neurons in 

different layers. However, using a state space model is well known to over parameterize the 

estimation problem, while using canonical forms, as illustrated in Fig. 10, is far more 

economical for estimating the linear model. Figures 6 and 10 show that the DLRNNs have 

the feed-back connections in the hidden layers that belong to the local recurrent structures. 

The DLRNN in a canonical form has the same number of neurons as the original DLRNN, 

but the DLRNN in a canonical form has the minimum connections and weights to achieve 

the same performance. Hence, the comparison between the two DLRNNs in canonical form 

is of interest in this investigation. Some experiments are designed to clarify this issue. First, 

in the flowchart illustrated in Fig. 4, the original DLRNN(1) is transformed into a DLRNN in 

the canonical form after identifying the quantity of neurons in hidden layer and the weights 

of the DLRNN. Figure 10 shows that the DLRNN in the canonical form is clearly not a fully 

RNN. 28 validated events are fed to the model, and a new on-line learning method 

developed by Pan and Wang (2004), is applied to develop the DLRNN into a fully RNN via 

on-line learning. Table 5 lists the average absolute criteria. The table reveals that the 

canonical and non-canonical form DLRNNs do not differ significantly, and the on-line 

learning algorithm always derives a fully RNN from a DLRNN in the canonical form. 
 

Input layer Hidden layer Output layerInput layer Hidden layer Output layer  

Fig. 10. The DLRNN in canonical form. 

model type CE EQp  (%) ETp  (hour) VER  (%)

original model 0.926 12.438 1.036 4.769

canonical form 0.925 12.704 1.071 4.845

original model: a DLRNN identified via modified system identification.

canonical form: a DLRNN in canonical form.  

Table 5. The averages of absolute criteria of the DLRNNs in two forms. 

6.4 Recognition of the transition of rainfall-runoff processes (Pan et al., 2007) 
A streamflow or discharge hydrograph is a graph showing the flow rate as a function of 

time at a given location on the stream. In effect, the hydrograph is “an integral expression of 

the physiographic and climatic characteristics that govern the relations between rainfall and 
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runoff of a particular drainage basin” (Chow, 1959). UH is a hypothetical unit response of 

the watershed to a unit input of rainfall that has been widely adopted by hydrologists to 

represent the mechanism of rainfall-runoff processes. Through the visualization of the 

transition of rainfall-runoff processes by UHs, the duration of a storm event, the time to 

peak flow, and the peak flow can be detected from the UHs. Therefore, the DLRNN learning 

algorithm is applied to modify the weights of the DLRNN on-line for detecting the 

transition of UHs based on the connection between the DLRNN and UH representation by 

treating the weights as Markov parameters. The structure of DLRNN can analogize the 

rainfall-runoff processes in a simple manner. The number of neurons in the hidden layer 

calibration by modified system identification describes the dimensions of the state space for 

the rainfall-runoff processes. Each neuron in the hidden layer represents a state variable that 

is controlled by rainfall and interacts with all state variables recurrently. Although the state 

variables can not be measured directly, UH can be represented based on their weights to 

describe the transition of rainfall-runoff processes. 

Equations (8) and (9) reveal the relationship between the UH and the weights of DLRNN. 

Equation (9) also illustrates the relationship between the system responses to a unit impulse 

and the weights of DLRNN used herein. The time variance of the weights of a DLRNN can 

be used to recognize the transition of rainfall-runoff processes. Figure 11 illustrates the 

transition of UHs of the single-peak typhoon in Aug. 17, 1997, while Fig. 12 shows the 

simulation of this typhoon through DLRNN with on-line learning. At the beginning of the 

simulation, the weights of the DLRNN are identified from the earliest 10 events to form a 

generalized model. When comparing these two figures, the change of the UHs reveals the 

peak arrival is between the 15th and 30th hours. The time to peak of this typhoon is 

approximately 8 hours, shown in Fig. 11. The 8-hour duration is significantly increased after 

the time to peak of UH is calibrated as 3 hours. The rainfall process is fed to DLRNN to 

simulate runoff, as illustrated in Fig. 12, and the simulated runoff should follow the trends 

of the rainfall process. The rainfall-runoff simulations are evaluated as effective if the trends 

of rainfall and runoff are identical. 

Another study case, Zane typhoon, is a multi-peak rainfall-runoff process out of the 38 

selected events (Table 5). Figure 14 illustrates the variation between observed rainfall and 

runoff, and shows the excellent simulation performance from DLRNN. Figure 13 

characterizes the transition of the rainfall-runoff process as the changes of UHs. During the 

first 20 hours of Zane typhoon, the simulated runoff is slightly higher than observed runoff 

(Figure 14), and this phenomenon demonstrates that the peak of the actual UH is lower than 

the UH realized from DLRNN. Through the on-line learning, the peak of the UH realized 

from DLRNN decays during first 20 hours. However, the largest peak of observed runoff is 

higher than the simulated runoff, and this shows that the actual UH of the rainfall-runoff 

process changes with time. Therefore, the peak of the UH realized from DLRNN increases 

after on-line learning. Furthermore, the difference between observed and simulated runoffs 

around the 60th hour demonstrates again the property of DLRNN that simulated runoff 

goes with the trends of the rainfall process. Additionally, a common conceptual model, 

called linear reservoir model, is introduced to compare with the DLRNN. It is an objective 

comparison in which both two models consider rainfalls as inputs. Results show that 

DLRNN performs better than the linear reservoir model. 

www.intechopen.com



 Recurrent Neural Networks 

 

224 

 

Fig. 11. The transition of UHs of the single-peak typhoon in Aug. 17, 1997. 
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Fig. 12. Simulation of Winnie typhoon in Aug. 17, 1997 via DLRNN with on-line learning 
and a linear reservoir model. 
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Fig. 13. The transition of UHs of the multi-peak typhoon in Sep. 27, 1996. 
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Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a 
linear reservoir model. 
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A generalized UH identified from multi-event rainfall-runoff records can represent the 
hydrological feature of the watershed. However, due to the complex interaction with other 
hydrometeorological and geomorphological processes within the hydrological cycle, the 
true UH of a rainfall-runoff process can not be predetermined before the event happens. 
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the 
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The 
transition of the rainfall-runoff processes is visualized by the representation of UHs that 
furthers the interpretation of DLRNN weights. 

7. Conclusion 

In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff 
processes and recognize the transition of UHs in hydrology. Although most neural networks 
are black-box models that lack physical meanings of weights, the DLRNN developed in this 
chapter connects its weights with UHs that reveal the physical concepts from the network 
based on the special structure of RNNs. Without trial and error method, the structure and 
the weights of DLRNN can be quickly determined through a modified form of system 
identification that combines indirect system identification with the subspace algorithm. 
Then, the DLRNN learning algorithm based on the interchange of the roles of the network 
state variables and the weight matrix is derived for on-line training. 
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but 
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs 
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic 
feature has been proven after the comparison between DLRNN and FNN. The investigation 
of the connections between weights and physical meanings is an extension of neural 
networks applied in hydrological field due to the linearization of the RNN. Based on the 
linearization, weights of DLRNN are treated as Markov parameters to realize the transition 
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation 
between rainfall and runoff every time step, and the transition of rainfall-runoff processes 
can be emerged based on the changes of UHs. 
Furthermore, a modified system identification that combines indirect system identification 
with subspace algorithm is described to calibrate the DLRNN. This method determines the 
quantity of neurons in hidden layer and the weights of the network. It overcomes the 
drawback of costing time by traditional trial and error search for optimum structure of 
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The 
results show that the performances of DLRNNs in different forms are close. Hence, the 
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN. 
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff 
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN 
is competent to simulate dynamic systems, like rainfall-runoff processes. 

8. Future research 

Although feed-forward neural networks are commonly adopted to solve hydrological 
problems, applying RNNs to deal with the issues of hydrology is still a novel technique 
because the structure and the learning algorithm of RNN are more complex than those of 
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological 
problems. However, further research is necessary. As Sudheer mentioned (2005), 
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hydrologists have not endeavored to construe the knowledge embedded in the trained 
ANN models, other than the recent research attempts to assign physical significance to the 
internal architecture of ANN hydrological models. Therefore, how to abstract more physical 
interpretations from the weights or the architectures of RNN, like the connection between 
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify 
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output 
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge 
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed. 
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