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1. Introduction 

The Recent advances in understanding of the working principles of artificial neural 
networks  has given a tremendous boost to identification, prediction and control tools of 
nonlinear systems, (Narendra & Parthasarathy, 1990; Chen & Billings, 1992; Hunt et al., 
1992; Miller III et al., 1992; Pao et al., 1992; Su et al., 1992; Narendra & Mukhopadhyay, 1994; 
Boskovic & Narendra, 1995; Ku & Lee, 1995; Baruch et al., 1996; Jin & Gupta, 1999, Haykin, 
1999; Mastorocostas & Theocharis, 2006; Kazemy et all., 2007). The main network property 
namely the ability to approximate complex non-linear relationships without prior 
knowledge of the model structure makes them a very attractive alternative to the classical 
modeling and control techniques. This property has been proved by the universal 
approximation theorem, (Haykin, 1999). Among several possible network architectures the 
ones most widely used are the feedforward and the recurrent neural networks. In a feed-
forward neural network the signals are transmitted only in one direction, starting from the 
input layer, subsequently through the hidden layers to the output layer, which requires 
applying a tap delayed global feedbacks and a tap delayed inputs to achieve a nonlinear 
autoregressive moving average neural dynamic plant model. A recurrent neural network 
has local feedback connections to some of the previous layers. Such a structure is suitable 
alternative to the first one when the task is to model dynamic systems, and the universal 
approximation theorem has been proved for the recurrent neural networks too. The 
preferences given to recurrent neural network identification with respect to the classical 
methods of process identification are clearly demonstrated in the solution of the “bias-
variance dilemma”, (Haykin, 1999). Furthermore, the derivation of an analytical plant 
model, the parameterization of that model and the Least Square solution for the unknown 
parameters have the following disadvantages: (a) the analytical model did not include all 
factors having influence to the process behavior; (b)  the analytical model is derived taking  
into account some simplifying suppositions which not  ever match; (c) the analytical model 
did not described all plant nonlinearities, time lags and time delays belonging to the process 
in hand; (d) the analytical model did not include all process and measurement noises which 
are sensor and actuator dependent. In (Sage, 1968) the method of invariant imbedding has 
been described. This method seemed to be a universal tool for simultaneous state and O
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parameter estimation of nonlinear plants but it suffer for the same drawbacks because a 
complete nonlinear plant model description is needed.  
So, the unknown nonlinear technological processes needed a new tool for modeling and 
identification capable to correlate experimental data and to estimate parameters and states 
in the same time, processing noisy measurements. Such efficient tool is the recurrent neural 
Kalman filter, where the estimated parameters and states could be used directly for control.  

2. Description of the recurrent neural Kalman filter 

2.1 Topology and learning of the recurrent trainable neural network 

The Recurrent Trainable Neural Network (RTNN) topology, given on Fig. 1, is a hybrid one. 
It has one recurrent hidden layer and one feedforward output layer. This topology is 
inspired from the Jordan canonical form of the state-space representation of linear dynamic 
systems (Baruch et al., 1996) adding activation functions to the state and the output 
equations so to convert it to recurrent neural network named Recurrent Trainable Neural 
Network described by the equations: 

 X(k+1) = AX(k) + BU(k) (1) 

 B = [B1 ; B0]; UT = [U1T ; U2T] (2) 

 A = block-diag (Ai), |Ai | < 1 (3) 

 Z1(k) = G[X(k)] (4) 

 C = [C1 ; C0]; ZT = [Z1T ; Z2T] (5) 

 V(k) = CZ(k) (6) 

 Y(k) = F[V(k)] (7) 

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L, 
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer, 
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant 
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of 
the output layer; the super-index T means vector transpose; A is (NxN) block-diagonal 
weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight matrices; B0 and 
C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; F[.], G[.] are 
vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding dimensions. 
The RTNN topology has been derived independently of the hybrid Diagonal Recurrent 
Neural Network (DRNN) (see Ku & Lee, 1995) with which it have the following differences: 
(a) the state equation (1) of the RTNN is linear and the state equation of the DRNN is 
nonlinear (the activation functions are in the closed loop). This made the RTNN completely 
controllable and the state, and parameter information X, A, B of RTNN directly applicable 
for state-space control purposes. On the other side, the controllability of the DRNN depends 
on the type of the activation functions (see Sontag & Sussmann, 1997); (b) the state weight 
matrix A of the RTNN is defined as block- diagonal (3) and some stability bounds have been 
imposed to it which preserved the RTNN stability during the learning. The DRNN was 
defined as block-diagonal later (Mastorocostas & Theocharis, 2006; Kazemy et al., 2007) and 
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some algorithmic measures have been taken to maintained the stability of DRNN during the 
learning. For the RTNN the learning of the Jordan blocks is resolved in universal manner, 
defining diagonal and full-matrix Backpropagation (BP) learning options; (c) the RTNN 
include thresholds in the inputs of both layers which facilitated the nonlinear systems 
identification, especially in lack of a-priory information about the approximated nonlinear 
plant. The DRNN did not apply thresholds; (d) the output layer of the DRNN is linear, and 
that of the RTNN is nonlinear, which permitted it to perform better approximation of 
nonlinear plants. Furthermore, depending on the plant structure, the topology of the RTNN 
could be extended with additional feedforward output or input layers which augmented the 
approximation ability of the RTNN. The observability of the DRNN has been proved by 
(Albertini & Sontag, 1994). The observability of the RTNN is assumed and it is fulfilled 
when the reference signal entered in the limits of the activation functions. The dynamic BP 
algorithm of RTNN learning is derived using the adjoint RTNN topology, predicting the 
output error (see Fig. 2). The adjoint RTNN is built applying the Separation theorem (Sage, 
1968) and the diagrammatic method of (Wan & Beaufays, 1996). The BP algorithm is:  

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0  (8) 

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (9) 

 F’[Y(k)] = [1-Y2(k)] (10) 

 ΔC(k) = E1(k) ZT(k) (11) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (12) 

 G’[Z(k)] = [1-Z2(k)] (13) 

 ΔB(k) = E3(k) UT(k) (14) 

 ΔA(k) = E3(k) XT(k) (15) 

 Vec(ΔA(k)) = E3(k)▫X(k) (16) 

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting 
each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), is the 
weight correction of W; Yd is an L-dimensional output of the approximated plant taken as a 
reference for RTNN learning; η, α are learning rate parameters; ΔC is a weight correction of 
C; ΔB is a weight correction of B; ΔA is a weight correction of A; the diagonal of the matrix A 
is denoted by Vec (A(k)) where (16) represents its learning as an element-by-element vector 
product; E, E1, E2, E3, are error vectors (see Fig. 2).  
 

 

Fig. 1. Block diagram of the RTNN model 
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Fig. 2. Block diagram of the adjoint RTNN model 

The dimension of the state vector X of the RTNN is chosen using the simple rule of thumb 
which is: N=L+M. The initial values of the weight matrices during the learning are chosen as 
arbitrary numbers inside a small range. The stability of the RTNN model is assured by the 
activation functions [-1, 1] bounds and by the local stability weight bound conditions given 
by (3), (8). The stability of the RTNN movement around the optimal weight point will be 
proven extending the proof of (Nava et al., 2004), as it is stated below. 
Theorem of stability of the RTNN. Let the RTNN with Jordan Canonical Structure is given 
by equations (1)-(7) (see Fig.1) and the nonlinear plant model, is as follows: 

 Xd.(k+1) = G[ Xd (k), U(k) ] (17) 

 Yd (k) = F[ Xd (k) ] (18) 

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with dimensions L, Nd, M, 
respectively; F(.), G(.) are vector valued nonlinear functions with respective dimensions. 
Under the assumption of RTNN identifiability made, the application of the BP learning 
algorithm for A(.), B(.), C(.), in general matricial form, described by equation (8)-(16), and 
the learning rates ǈ (k), α (k) (here they are considered as time-dependent and normalized 
with respect to the error) are derived using the following Lyapunov function: 

 ( ) ( ) ( )1 2L k  = L k +L k  (19) 

Where: 1L (k)   and  2L (k)  are given by: 

 ( ) ( )21
1

2
L k  = e k  

 ( ) ( ) ( ) ( )# # # # # #T T T
2 A B CBA CL k  = tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  

Where: 

 − − −# # #* * *
A B C

ˆ ˆˆW (k) = A(k) A ,W (k) = B(k) B ,W (k) = C(k) C  

are vectors of the parameter estimation error and * * *(A ,B ,C )  and ˆ ˆˆ(A(k),B(k),C(k))  denote 

the ideal neural weight and the estimate of the neural weight at the k-th step, respectively, 
for each case. 
Then the identification error is bounded, i.e.: 

 
( ) ( ) ( )
( ) ( ) ( )

<
Δ + = +

1 2L k+1  = L k+1 +L k+1 0

L k 1   L k 1  –  L k
 (20) 
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Where the condition for 1L (k+1)<0  is that: 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠< <max

max max

1 1
1- 1+

2 2ǈ
ψ ψ

 

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )< − −2 2
2 max maxΔL k+1 ǈ e k+1 α e k +d k+1  

Note that maxǈ  changes adaptively during the RTNN learnig and:  

{ }
3

max i
i=1

ǈ =max ǈ  

Where all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the d-term, and the complete proof of that theorem, is given in Apendix A. 
The Rate of Convergence Lemma, used, is given in (Nava et al., 2004). 

2.2 Topology and learning of the Kalman filter recurrent neural network 

Let us consider the linearized plant model (17), (18), represented in a state-space form: 

 Xd.(k+1) = Ad (k) Xd (k) + Bd (k) U(k) + Θ1(k) (21) 

 Yd (k) = Cd (k) Xd (k) + Θ2 (k) (22) 

Where: E [.] means mathematical expectation; the process  and measurement noises Θ1 (.),  
Θ2 (.) are white, with Θ1(k), Θ2 (s) and the initial state Xd (k0) independent and zero mean for 
all k, s, with known variances E [Xd (k) XdT (k)] = P0 , E[Θ1(k) Θ1T (k)] = Q(k) ǅ (k-Ǖ), E[Θ2(k) 
Θ2T (k)] = R(k) ǅ (k-Ǖ),  where ǅ (k-Ǖ)=1 if k= Ǖ, and 0 otherwize. The optimal Kalman filter 
theory is completely described in (Sage, 1968) and we would not repeated it here.  
For us the Kalman Filter (KF) is a full rank optimal state estimator capable to estimate the 
systems state, to filter the process and measurement noises taking in hand all plant 
information available like: input/output plant data, all parameters of the plant model (21), 
(22), and the given up noise and initial state statistics (mean and variance). The basic 
Kalman filter equations for the estimated state and output variables are given by: 

 Xe.(k+1) = Ae (k) Xe (k)  + Ke (k) Yd (k) + Bd (k) U(k) (23) 

 Ae (k) = Ad (k) - Ke (k) Cd (k) (24) 

 Ye (k) = Cd (k) Xe (k) (25) 

Where: Xe (k) is the estimated state vector with dimension Ne; Ae (k) is a (Ne x Ne) closed-
loop KF state matrix; Ye (k) is the estimated plant output vector variable with dimension L; 
Ke(k) is the optimal Kalman filter gain matrix with dimension (Ne x L). This gain matrix is 
computed applying the optimal Kalman filtering methodology given in (Sage, 1968). So, the 
KF performed noise filtration by means of an optimal closed-loop feedback which has the 
drawback that the feedback amplified the noise components of the error, especialy when the 
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feedback gain is high. The second draback is that the KF design needs a complete plant 
parameter and noise information, which means that if the plant data are incomplete the 
process noise level is augmented. To overcome this we need to take special measures like to 
augment the filtering capabilities of the KF.  
So, the Kalman filter could not estimate parameters and states in the same time processing 
noisy measuremets with unknown noise statistics, and it will be our task. To resolve this 
task we need to derive the topology and the BP learning algorithm of a new recurrent 
Kalman filter neural network. First of all we could rewrite the equation (23) defining a new 
extended input vector, containing all available input/output information issued by the 
plant, and second – we could modify the output equation (25) so to convert it to an output 
noise filter. After that we obtain: 

 Xe.(k+1) = Ad (k) Xe (k) - Ke (k) Ye (k) + B2 (k) Ue(k) (26) 

 B2 = [Bd ; Ke]; UeT = [U ; Yd] (27) 

 Z(k) = Cd (k) Xe (k) (28) 

 Ye (k+1) = A2 Ye (k) + Z(k) (29) 

Now comparing the equations (26)-(29) with the RTNN topology (1)-(7) we decided to 
extend the RTNN topology adding local and global feedbacks so that to fulfil KF 
requirements. The obtained new Kalman Filter Recurrent Neural Network (KF RNN) 
topology is given on Fig. 3, where the first layer represented the plant model, the second 
layer represented the output noise filtering model, and it has also a global output feedback. 
The KF RNN topology is described by the equations:  

 X(k+1) = A1X(k) + BU(k) - DY(k) (30) 

 B = [B1 ; B0]; UT = [U1 ; U2] (31) 

 A1= block-diag (A1,i), | A1,i | < 1 (32) 

 Z1(k) = G[X(k)] (33) 

 C = [C1 ; C0]; ZT = [Z1 ; Z2] (34) 

 V1(k) = CZ(k) (35) 

 V(k+1) = V1(k) + A2V(k) (36) 

 A2 = block-diag (A2,i), |A2,i | < 1 (37) 

 Y(k) = F[V(k)] (38) 

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L, 
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer, 
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant 
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of 
the output layer; the super-index T means vector transpose; A1, A2 are (NxN) and (LxL) 
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block-diagonal weight matrices; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight 
matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; 
F[.], G[.] are vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding 
dimensions. Here the input vector U and the input matrix B of the KF RNN are augmented 
so to fulfill the specifications (27) and the matrix D corresponded to the feedback gain 
matrix of the KF. So the KF RNN topology corresponded functionally to the KF definition 
(26)-(29) and ought to be learnt applying the BP learning algorithm which is in fact an 
unrestricted optimization procedure, derived using the adjoint KF RNN (see Fig.4) for KF 
RNN topology, applying the Separation theorem (Sage, 1968) and the diagrammatic method 
(Wan & Beaufays, 1996). The BP learning algorithm, expressed in vector-matricial form is:   

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (39) 

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (40) 

 F’[Y(k)] = [1-Y2(k)] (41) 

 ΔC(k) = E1(k) ZT(k) (42) 

 ΔA2(k) = E1(k) VT(k) (43) 

 Vec(ΔA2(k)) = E1(k)▫X(k) (44) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (45) 

 

 

Fig. 3. Block diagram of the KF RNN model 
 

 

Fig. 4. Block diagram of the adjoint KF RNN model 
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 G’[Z(k)] = [1-Z2(k)] (46) 

 ΔB(k) = E3(k) UT(k) (47) 

 ΔD(k) = E3(k) YT(k) (48) 

 ΔA1(k) = E3(k) XT(k) (49) 

 Vec(ΔA1(k)) = E3(k)▫X(k) (50) 

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting 

each weight matrix (C, A1, A2, B, D) in the KF RNN model, to be updated; ΔW (ΔC, ΔA1, 

ΔA2, ΔB, ΔD), is a weight correction of W; Yd is an L-dimensional output of the 

approximated plant taken as a reference for KF RNN learning; η, α are learning rate 

parameters; ΔC is a weight correction of C; ΔB is a weight correction of B; ΔD is a weight 

correction of D, ΔA1 is a weight correction of A1 , ΔA2 is a weight correction of A2; the 
diagonals of the matrices A1, A2  are denoted by Vec (A1(k)), Vec (A2(k)), respectively, where 
(44), (50) represented their learning as an element-by-element vector products; E, E1, E2, E3, 
are error vectors (see Fig. 4), predicted by the adjoint KF RNN model.  
So, the KF RNN is capable to issue parameter and state estimations for control purposes, 
thanks to the optimization capabilities of the BP learning algorithm, applying the 
“correction for error” delta rule of learning (see Haykin, 1999). The stability of the KF RNN 
model is assured by the activation functions [-1, 1] bounds and by the local stability weight 
bound conditions given by (32), (37). The stability of the KF RNN movement around the 
optimal weight point has been proved by one theorem and the Rate of Convergence Lemma 
(see Nava et al., 2004), following the same way as for the RTNN. It is stated below. 
Theorem of stability of the KF RNN. Let the KF RNN is given by equations (30)-(38) (see 
Fig.3) and the nonlinear plant model, is given by equations (17), (18). Under the assumption 
of KF RNN identifiability made, the application of the BP learning algorithm for C, A1, A2, B, 
D, in general matricial form, described by equation (39)-(50), and the learning rates ǈ (k), α 
(k) (here they are considered as time-dependent and normalized with respect to the error) 
are derived using the following Lyapunov function: 

 ( ) ( ) ( )1 2L k  = L k +L k  (51) 

Where: 1L (k)   and  2L (k)  are given by: 

( ) ( )21
1

2
L k  = e k ;  

( ) ( ) ( ) ( ) ( )
( )

# # # # # # # #

# #
1 21 2

T T T T
2 A A B CB CA A

T
D D

L k  = tr W (k)W (k) + tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

           +tr W (k)W (k)
 

Where: 
# # # # #* * * * *

A1 1 1 A2 2 B C D2
ˆ ˆ ˆˆ ˆW (k) = A (k)-A ,W (k) = A (k)-A ,W (k) = B(k)-B ,W (k) = C(k)-C ,W (k) = D(k)-D

 
are vectors of the estimation error and * * * * *

1 2(A ,A ,B ,C ,D )  and 1 2
ˆ ˆ ˆˆ ˆ(A (k),A (k),B(k),C(k),D(k))  

denote the ideal optimal neural weight and the estimate of the neural weight at the k-th 
step, respectively, for each case. 
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Then the identification error is bounded, i.e.: 

 
( ) ( ) ( )
( ) ( ) ( )

1 2L k+1  = L k+1 +L k+1 <0

ΔL k+1  = L k+1  – L k
 (52) 

Where the condition for 1L (k+1)<0  is that 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max

max max

1 1
1- 1+

2 2<ǈ <
ψ ψ

 

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )− −2 2
2 max maxΔL k+1 < ǈ e k+1 α e k +d k+1  

Note that maxǈ  changes adaptively during learnig process of the network and  

{ }
5

max i
i=1

ǈ =max ǈ  

Where all: the unmodeled dynamics, the approximation errors and the perturbations, are 
represented by the d-term, and the complete proof of that theorem can be easily obtained 
following the same procedure detailed in Appendix A derived for the RTNN. 

3. Description of the adaptive control schemes 

3.1 Indirect adaptive control scheme (sliding mode control) 
The indirect adaptive control using the RTNN as plant identifier has been described in 
(Baruch et al., 2001a; Baruch et al., 2001b; Baruch et al., 2005). Later the proposed indirect 
control has been derived as a Sliding Mode Control (SMC) and some preliminary results of 
SMC of unknown hydrocarbon biodegradation processes have been reported (see Baruch et 
al., 2007a; Baruch et al., 2007b). The block diagram of the indirect adaptive control scheme is 
shown on Fig. 5. It contained identification and state estimation KF RNN and a sliding mode 
controller. The stable nonlinear plant is identified by a KF RNN model with topology, given 
by equations (30)-(38) learned by the stable BP-learning algorithm, given by equations (39)-
(50), where the identification error tends to zero. The simplification and linearization of the 
neural identifier equations (30)-(33), omitting the DY(.) and KeYd(.), (27) parts, leads to the 
next local linear plant model, extracted from the complete KF RNN model: 

 X(k+1) = A1X(k) + BU(k) (53) 

 Z(k) = H X(k); H = C G’(Z) (54) 

Where G’(.) is the derivative of the activation function and L = M, is supposed.  
In (Young et al., 1999), the sliding surface is defind with respect to the state variables  and 
the SMC objective is to move the states form an arbitrary space position to the sliding 
surface in finite time. In (Levent, 2003), the sliding surface is also defined with respect to the 
states but the states of a SISO systems are obtained from the plant outputs by differentiation. 
In (Eduards et al., 2003), the sliding surface definition and the control objectives are the 
same. The equivalent control systems design is done with respect to the plant output, but 
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Fig. 5. Block diagram of the closed-loop system containing KF RNN identifier and a SMC 

the reachability of the stable output control depended on the plant structure. In (Baruch et 
al., 2007a; Baruch et al., 2007b), the sliding surface is derived directly with respect to the 
plant outputs which facilitated the equivalent SMC systems design. 
Let us define the following Sliding Surface (SS) as an output tracking error function: 

 S(k+1)=E(k+1)+
1

P

i
i=

γ∑ E(k-i+1);  |γi | < 1 (55) 

Where: S(.) is the Sliding Surface Error Function (SSEF) defined with respect to the plant 

output; E(.) is the systems output tracking error; γi are parameters of the desired stable SSEF; 
P is the order of the SSEF. The tracking error and its iterate are defined as: 

 E(k) = R(k) − Z(k); E(k+1) = R(k+1) − Z(k+1) (56) 

Where R(k), Z(k) are L-dimensional reference and output vectors of the local linear plant 
model. The objective of the sliding mode control systems design is to find a control action 
which maintains the systems error on the sliding surface which assure that the output 
tracking error reaches zero in P steps, where P < N. So, the control objective is fulfilled if: 

 S(k+1) = 0 (57) 

Now, let us to iterate (54) and to substitute (53) in it so to obtain the input/output local plant 
model, which yields: 

 Z(k+1) = H X(k+1) = H [AX(k) + BU(k)] (58) 

From (55), (56), and (57) it is easy to obtain: 

 R(k+1) – Z(k+1) + 
1

P

i
i=

γ∑ E(k-i+1) = 0 (59) 

The substitution of (58) in (59) gives: 

 R(k+1) – HAX(k) – HBU(k) + 
1

P

i
i=

γ∑ E(k-i+1) = 0 (60) 

As the local approximation plant model (53), (54), is controllable, observable and stable, (see 
the proofs of the preceeding paragraph), the matrix A1 is diagonal, and L = M, then the 
matrix product (HB), representing the plant model static gain, is nonsingular, and the plant 
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states X(k) are smooth non-increasing functions. Now, from (60) it is easy to obtain the 
equivalent control capable to lead the system to the sliding surface which yields: 

 Ueq(k) = (HB)-1 [ – HAX(k) + R(k+1) + 
1

P

i
i=

γ∑ E(k-i+1)] (61) 

Following (Young et al., 1999), the SMC avoiding chattering is taken using a saturation 

function instead of sign one. Here the saturation level Uo is chosen with respect to the load 

level perturbation. So the SMC takes the form: 

 

0

*

0 0

U ( ), if U ( ) U

U ( )

U U ( ) / U ( ) , if U ( ) U

eq eq

eq eq eq

k k

k

k k k

⎧ <
⎪⎪= ⎨
⎪− ≥⎪⎩

 (62) 

It is easy to see that the substitution of the equivalent control (61) in the linear plant model 

(53), (54) show an exact complete plant dynamics compensation which avoided oscillations, 

so that the chattaring effect is not observed. Furthermore, the designed plant output sliding 

mode equivalent control substituted the multi-input multi-output coupled high order 

dynamics of the linearized plant with desired decoupled low order one. 

3.2 Direct adaptive neural control scheme 

The Direct Adaptive Neural Control (DANC) using the RTNN as plant identifier and plant 

controller has been described in (Baruch et al., 2001b; Flores et al., 2001; Baruch et al., 2004; 

Baruch et al., 2005). The block-diagram of the control system is given on Fig. 6. It contains a 

recurrent neural identifier, and two recurrent neural controllers (feedback and feedforward). 

Let us to write the following z-transfer- function representations of the plant, the state 

estimation part of the KF RNN, the feedback and the feedforward controllers: 

 Wp(z) = Cp (zI – Ap)-1 Bp  (63) 

 Pi(z) = (zI – Ai)-1 Bi  (64) 

 Q1(z) = Ccfb (zI – Acfb)-1 Bcfb  (65) 

 Q2(z) = Ccff (zI – Acff)-1 Bcff  (66) 

The control systems z-transfer functions (63)-(66) are connected by the following equation, 
derived from the Fig. 6, and given in z-operational form: 

 Y p(z) = Wp(z) [I + Q1(z) Pi(z)] -1 Q2(z) R(z) + ǉ(z) (67) 

 ǉ(z) = Wp(z) ǉ1(z) + ǉ2(z) (68) 

Where ǉ(z) is a noise term. The RTNN and the KF RNN topologies are controllable and 

observable. The BP algorithm of learning is convergent (Baruch et al., 2002; Nava et al., 

2004). Then the identification and control errors tend to zero. 
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Fig. 6. Block - diagram of the control system containing neural identifier and two adaptive 
neural controllers. 

 Ei(k) = Y p(k) – Y(k) → 0; k → ∞ (69) 

 Ec(k) = R(k) - Y p(k) → 0; k → ∞ (70) 

This means that each transfer function given by equations (63)-(66) is stable with minimum 
phase. The closed-loop system is stable and the RTNN-1 feedback controller compensates 
the plant dynamics. The RTNN-2 feedforward controller dynamics is an inverse dynamics 
of the closed-loop system one, which assure a precise reference tracking in spite of the 
presence of process and measurement noises. 

4. Experimental and simulation results 

A time ago the KF RNN has been applied for prediction of various bioprocesses like the 
Fed-Batch fermentation kinetics of Bacillus Thuringiensis (Valdes-Castro et al., 2003), the 
osmotic dehydration process (Baruch et al., 2005), and the hydrocarbon degradation profiles 
in a biopile system (De la Torre-Sanchez et al., 2006). Some preliminary results of application 
of the KF RNN used as systems identifier in a sliding mode controlled bioremediation 
processes have been presented in various scientific conferences like (Baruch et al., 2007 a; 
Baruch et al., 2007b). In this part those results would be described with more details. The 
bioremediation process at hand is considered as completely unknown and represented by 
input/output records of normalized noisy data. 

4.1 Experimental and simulation results obtained for the biopile system 

Description of the Process and the Experiment. Biological treatment is attractive as a 
potentially low-cost technology, which converts toxic organic contaminants into CO2 and 
biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation, 
and today, it is considered as the best alternative to cleanup polluted soils. Bioremediation 
in biopile system is an ex-situ Solid Substrate Fermentation (SSF) technology, based on the 
ability of micro-organisms to degrade pollutant hydrocarbon compounds (Alexander, 1994). 
The often used bio-stimulation technique consists on the activation of the native soil micro-
organisms by addition of nutrients, water, oxygen (for aerobic process) and a bulking agent 
that let it to improve the oxygen supplied to the microorganisms. The Solid Substrate 
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Fermentation takes place in the absence of free water, so it offers the advantage of reducing 
the place and cost requirements. The SSF disadvantage consists of the complexity and 
heterogeneity of the solid matrix, which makes quite difficult the measurement and control 
of process variables. The interest of the biopile technology is an inherent temperature 
increase inside the biopile - from the centre to the surface, which favors the sequential 
development of a microbial population growth associated to the temperature profile and 
residual pollution. Temperature increase can reach 60ºC, so it is frequently controlled by an 
air flux supplied to the biopile columns. Besides, controlling the temperature, the air flux is 
a source of fresh oxygen to the microorganisms. The next environmental conditions are 

recommended for an adequate hydrocarbon biodegradation in biopile system: pH ≈ 7; 
humidity at 50-60% of the water holding capacity of soil; average temperature of 30ºC. It is 
important to supply an adequate air flux, since a low one could not be enough for satisfying 
the microbial requirements, but a high air one could dry the solid matrix. In this study, it is 
used a crumb-limose soil from a site polluted near a refinery in México. The pollution of 
165000 ppm, consist on different residues of crude oil process and refining. The soil was 
dried and blended with ocorn used as a bulking agent 10:1 (% v/v), which was milled and 
sterilized. The moisture was adjusted at 60% of water retention capacity, and C:N:P ratio at 
100:10:1 according to analyses done. Tergitol 1% (p/p) was used as surfactant to enhance 
contaminant desorption from soil. The equipment used is shown on Fig. 7a, and the 
Input/Output full KF RNN learning pattern in shown on Fig. 7b. The biopile system 
consists of twenty one columns (1.0 m height x 3.81 cm i.d.), constructed to allow the 
monitoring through 28 days, almost each other day. Each column has sample ports located 
at the sites every 25 cm, and was fitted with water vessels to humidify the air entering the 
columns. The columns were housed in a chamber provided with temperature control, and 
the air was supplied at a constant pressure via a manifold. The experiment consists of seven 
sets of fermentation data taken for different air flux (180, 360, 450 and 540 ml/min) and 
different temperature (20 and 40oC). The duration of the bioremediation process depends on 
the volume of the soil under treatment and the type and concentration of the contaminants 
in it. In our case 28 days are sufficient to degrade 60% of the contaminants which is 
considered sufficient for our experiment. The evolution of the hydrocarbon removal was 
evaluated from solid samples periodically extracted from the biopile for analysis of pH 
(potentiometer), humidity (gravimetric method), oxygen consumption and carbon dioxide 
production - by gas chromatography, Total Petroeum Hydrocarbons (TPH) - by infrared 
spectroscopy, following soxhlet extraction with dichloromethane (EPA Method 3540C). 
Process Identification. The graphical results of the experimental neural biodegradation 
process identification are given on Fig. 8 a – for KF RNN learning, and on Fig. 8 b – for KF 
RNN generalization. The Input Learning Pattern (ILP) proposed is conformed by the: 
ILP(AF, TEMP, pH, HU, O2, CO2, TPH). The Output Learning Pattern (OLP) includes: 
OLP(pH, HU, O2, CO2, TPH). The KF RNN used for modeling and identification of the 
hydrocarbon degradation process in biopile system has seven inputs, twelve neurons in the 
hidden layer and five outputs. The number of neurons (twelve) in the hidden layer was 
determined in an experimental way, applying the rule of thumb and according to the Mean 
Square Error (MSE%) of learning. The learning algorithm is a version of the dynamic BP 
one, specially designed for this KF RNN topology. The described above learning algorithm 
is applied simultaneously to 7 degradation kinetic data sets (patterns), realized below 
different conditions of air flow and temperature in the ranges 180-540 mi/min and 25-50oC, 
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a) b) 

Fig. 7. a) Sketch of the biopile system; b) Learning pattern of the full KF RNN model 

  
a) b) 

Fig. 8. Graphical results of experimental biodegradation process identification; a) graphical 
results of KF RNN learning (%TPH, pH, CO2, O2, HU, and MSE%); b) graphical results of 
KF RNN generalization (%TPH, pH, CO2, O2, HU, and MSE%) 
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and containing 8 points each one. The experimental data were normalized in the range 0-1 
due to the great difference in magnitude between them. The 7 data sets are considered as an 
epoch of learning, containing 56 points. After each epoch of learning, the 7 pattern sets are 
interchanged in an arbitrary manner from one epoch to another. An unknown kinetic data 
set, repeated 7 times, is used as a generalization data set. The learning is stopped when the 
MSE% of learning and generalization reached values below 2%, and the relationship 

|ΔWij(k)|/|Wij(k)|*100% reached values below or equal of 2% for all updated parameters. 
This error was attained after 131 epochs of learning. The graphical results shown on Fig. 8 a. 
compared the experimental data for the 7 degradation kinetics with the outputs of the KF 
RNN during the last epoch of learning. The variables compared and plotted subsequently 
for the last epoch of learning are % degradation in TPH, pH, carbon dioxide (CO2), oxygen 
available (O2), % of humidity (HU) and the mean square error (MSE%) given for 131 epochs 
of learning. The learning rate is 0.9, the momentum rate is 0.8, the epoch size contains 56 
points, the convergence is obtained after 131 epochs of learning. The final MSE% of learning 
is below 2%. The generalization of the KF RNN was carried out reproducing a degradation 
kinetics which is not included in the training process. This degradation process was carried 
out at AF = 360 ml/min and temperature of 20ºC. The operational conditions of this 
degradation process are in the range of operational conditions studied. The generalization 
results shown on Fig. 8 b. compare the experimental data for the one unknown degradation 
kinetics (repeated 7 times so to maintain the epoch size) with the output of the KF RNN. The 
same experimental data %TPH, pH, CO2, O2, HU, MSE% (continuous line) are compared  
with the KF RNN outputs (pointed line) and are plotted subsequently for the last epoch of 
generalization. The final MSE% of KF RNN generalization is below 2%. 
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. The graphical simulation results of the controlled system with both controls 
are given on Fig. 9a,b and the MSE% of control is given in Table 1, Table 2 for 20 runs of the 
control program (SMC and DANC) with data mixed with 10% measurement Gaussian noise 
with different variance for each run. A simplified RTNN process model, extracted from the 
complete KF RNN model has been used to design both control systems and to issue the state 
vector. The RTNN particular model used as a feedforward controller has 2 inputs or 
references (%TPH, CO2), two outputs as control signals (AF, HU) and 9 states. The RTNN 
feedback controller has the topology (12, 9, 2). The RTNN particular plant model has 2 
inputs (AF, HU), two outputs (%TPH, CO2) and 12 states. In that reduced model, depending 
on the available measurements, the input and output patterns are chosen as: ILP(AF, HU, 
CO2, TPH); OLP(CO2, TPH). For both control schemes, the two system set points 
(continuous line) are compared with the two plant outputs (%TPH, CO2) (pointed line) and 
are plotted subsequently for seven sets of set point data. The control variables shown are: 
AF, HU. However the lost of water is pretended to be compensated by the wet saturated air 
flux with controlled humidity introduced, which could accelerate the bioremediation 
process in the biopile system. The obtained MSE% of control in the end of the process for 
both control schemes is below 1%. The behaviour of the control system in the presence of 
10% white Gaussian noise (with different SEED parameter at each run) added to the plant 
outputs could be studied acumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (see Table 1 for SMC and Table 2 for DANC). The mean average 

cost for all runs (ε) of control, the standard deviation (σ) with respect to the mean value and 

the deviation (Δ) are computed by means of the following formulas: 
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No 1 2 3 4 5 

MSE% 1.106 1.0035 1.001 1.0951 0.93454 

No 6 7 8 9 10 

MSE% 1.146 1.3214 1.225 1.4721 1.1206 

No 11 12 13 14 15 

MSE% 1.3185 1.1544 1.1821 1.0316 1.1267 

No 16 17 18 19 20 

MSE% 1.1295 1.3268 1.1842 1.2858 1.1993 

Table 1. Final MSE (%) of control (ξav) for 20 runs of the SMC control program 

  
a) b) 

Fig. 9. a) Graphical results of the biodegradation process SMC; b) Graphical results of the 
biodegradation process DANC; for both  schemes the variables shown are (%TPH, CO2, AF, 
HU, MSE%) 

No 1 2 3 4 5 

MSE% 0.9805 0.8207 1.0421 0.8148 0.8813 

No 6 7 8 9 10 

MSE% 0.8227 1.0959 0.8990 0.8100 1.0881 

No 11 12 13 14 15 

MSE% 1.0551 0.9569 0.8227 1.0619 1.0891 

No 16 17 18 19 20 

MSE% 1.0518 1.1173 0.8045 1.0454 1.1012 

Table 2. Final MSE (%) of control (ξav) for 20 runs of the DANC control program 
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Where k is the run number and n is equal to 20. The mean and standard deviation values of 
process error, obtained for the SMC, are respectively: ǆ  = 1.1682%; ǔ= 0.1276 %. The mean 
and standard deviation values of process control, obtained for DANC, are respectively: ǆ  = 
0.9680 %; ǔ= 0.0583 % which is a little bit smaller that the results, obtained for the SMC due 
to the nonlinearity and adaptivity of the DANC, which contained two RTNN controllers. 

4.2 Simulation results obtained for the rotating drum 

Description of the Process and the Experiment. For the bioremediation process one 
challenge is to provide enough O2 and nutrients to enable rapid conversion of contaminants 
by either indigenous microorganisms or inoculated species (Alexander, 1994). Another 
challenge is to achieve efficient contact between the active micro-organisms and the 
contaminants, which may represented a problem with in-situ treatment. An attractive 
alternative to overcome this problem is to apply a biological treatment in slurry phase using 
Horizontal Rotating Drum (HRD) (see the schematic diagram given on Fig. 10a). The HRD 
can effectively mix heterogeneous blends of a wide range of particle sizes and high solid 
concentration (more than 60 %), (Alexander, 1994). The HRD operated with oxygen supply 
or aeration. Independently of the type of HRD operation (open or close), the insufficiency of 
water decreased the efficiency of hydrocarbon degradation in HRD favouring the formation 
of hydrocarbon balls (Alexander, 1999). So one objective of the process control is to maintain 
the humidity at 60%, which is the maximal solid concentration determined as the best for 
hydrocarbon removal from polluted soils treated in open rotating slurry bioreactors. 
Nowadays, semi empirical models, based on the Monod equation, have been developed to 
predict micro-organism growth as a function of available contaminants concentration. 
However, as the application of such models requires experimental work for calculating the 
kinetics parameters involved, so an alternative modelling technique is required. The KF 
RNN model offers many advantages as the possibility to approximate complex non linear 
high order multivariable processes, as the biodegradation process is. The bioremediation of 
polluted soils selected for modelling purpose was carried out by bio-stimulation in slurry 
phase using an open HRD. A silt loam (sand 36.5%w/w, silt 62.5% w/w and clay 1% w/w) 
soil of an average diameter of 15 Ǎm, particle diameter in the range 2 - 75 Ǎm, was used. The 
soil was contaminated with 50000 ppm of crude oil collected from a contaminated zone 
located near from a petroleum refinery. The slurry was prepared with 40% weight of soil 

(715 g) and 60% weight of a mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; KH2PO4, 1.7; 

MgSO4, 1; CaCl2⋅2H2O, 0.005; FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 0.5%). The 
slurry was added to a HRD of 4 litters (13 cm diameter by 30 cm long), which was opened, 
on the flat faces, for a natural air supply (see Fig. 10a). The drum was operated during 19 
days at a fix turning in the interval 3.5-20 RPM. During this time, the reactor was daily 
weighted in order to replace the water lost, so to maintain constant the water concentration. 
Samples were removed each day for analysis of residual hydrocarbons, pH, water 
concentration and slurry viscosity. The hydrocarbon concentration was determined by an 

infrared spectrometer; the pH was measured with a Beckman Φ potentiometer; water 
concentration was calculated by difference of two sequence data of the drum weight; finally, 
slurry viscosity was measured with an AND Vibro-viscometer SV-10 (MED BY A&D LTD). 
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a) b) 

Fig. 10. a) Schematic diagram of a rotating drum system. b) Learning pattern 

The biodegradation process was repeated at a different turning value (3.5, 5, 7.5, 10, 15, 20 
RPM) in order to vary the oxygen available into the HRD. The learning pattern (see Fig. 10b) 
used for KF RNN training is composed by six input variables and three output variables. In 
order to avoid saturation problems in the RNNM training, the variables of the learning 
pattern are normalized in the interval 0-1. The measured variables are: Residual 
Hydrocarbon Concentration (RH), Evaporated Water (EW); Soil Viscosity (VISC), Added 
Water (AW); Temperature (T); Velocity of Agitation (VA). The RNNM outputs are: OUT 
(RH, EW, VISC). Depending on the available measurements and the control objectives, this 
model could be simplified, where the input- output pattern is chosen as: ILP (RH, EW, AW, 
VA); OLP (RH, EW). This reduced model will be used for SMC and DANC system design. 
Process Identification. The described above learning algorithm is applied simultaneously to 
four fermentation kinetic data, represented by its input/output learning data patterns, and 
containing 19 points each (one per day). The total time of learning is 200 epochs, where the 
epoch size, corresponding to the number of data, is 76 iterations. After each epoch of 
training, the 4 sets are interchanged in an arbitrary manner from one epoch to another. The 
learning is stopped when the MSE% of learning reached values below 1.5%, the MSE% of 

generalization reached valued below 2%, and the relationship |ΔWij(k)|/|Wij(k)|*100% 
reached values below or equal of 2% for all updated parameters. Graphical results of RNNM 
training are given in Fig. 11a for the last epoch of learning. In the graphics, the output 
variables of the KF RNN are compared with the experimental data. The Fig. 11a compared 
the 4 kinetics experimental data with those, issued by the KF RNN. The output process data 
of 76 points are the hydrocarbon residual, the water requirements and the soil viscosity 
(EW, RH, VISC). The last figure in Fig. 11a represents the evolution of the mean squared 
error of approximation (MSE%) for whole learning process of 200 epochs. An unknown set 
of kinetic data, containing 19 points and repeated 4 times, so to maintain the same 76-points 
epoch size, is used as a validation (generalization) set, and these results are given on Fig. 
11b. The obtained graphical results of KF RNN training and generalization shows a good 
convergence with an MSE% below 1.5% for the training and 2% for the generalization.  
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. A simplified RTNN process model extracted from the KFRNN complete 
identified model has been used to design SMC and DANC systems. The RTNN particular 
model has two inputs (AW, VA), two outputs (EW, RH) and nine states. The SMC SSEF is 
chosen as a first order one (P=1) with parameters Uo=1, Ǆ=0.07, L=M=2. The DANC RTNN 
particular model used as a feedforward controller has two reference inputs (EW, RH), two 
outputs as control signals (VA, AW) and six states. The feedback RTNN controller has 
topology (12, 6, 2).  The graphical simulation results of the controlled system outputs (EW, 
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a) 

 
b) 

Fig. 11. Graphical results of experimental biodegradation process identification; a) graphical 
results of KF RNN learning (EW, RH, VISC, and MSE%.); b) graphical results of KF RNN 
generalization (EW, RH, VISC, and MSE%.) 

RH), and the control variables (AW, VA) for both control schemes are given on Fig. 12 a,b  
for 76 points (one epoch of learning). For both control schemes, the two system set points 
(continuous line) are compared with the plant outputs (EW, RH) (data point line) and are 
plotted subsequently for four sets of set point data. The MSE% of control is given also in Fig. 
12 a,b for all 200 epochs of learning. For both control schemes, the obtained MSE% of control 
at the end of the process is below 1%. The behaviour of the control system in the presence of 
5% white Gaussian noise (with different SEED parameter at each run) added to the plant 
output has been studied accumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (SMC and DANC), which results are given on Table 3, Table 4 
for 20 runs. The mean average cost for all runs (ε) of control, the standard deviation (σ) with 
respect to the mean value and the deviation (Δ) are computed using the formulas (71). The 
mean and standard deviation values of process error, obtained for the SMC are respectively: 
ǆ  = 0.6663 %; ǔ= 0.0593 %. The mean and standard deviation values of process control, 
obtained for the DANC are respectively: ǆ  = 0.5456 %; ǔ= 0.0124 %, which is slightly smaller 
with respect to the SMC, due to the nonlinearity and the adaptivity of the DANC, which 
contained two RTNN controllers. 

5. Conclusion 

The chapter proposes a new Kalman filter closed loop topology of recurrent neural network 
for identification and modeling of an unknown hydrocarbon degradation process carried 
out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent 
neural plant model, a recurrent neural output plant filter and posses global and local 
feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation 
one derived using the adjoint KF RNN topology by means of the diagramatic method. The 
obtained KF RNN model issued parameters and states information appropriate for control 
systems design purposes. 
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b) 

Fig. 12. a) Graphical results of the biodegradation process SMC; b) Graphical results of the 
biodegradation process DCD; for both  schemes the variables shown are (VA, AW, EW, RH, 
MSE%) 
 

No 1 2 3 4 5 

MSE% 0.6434 0.6577 0.7669 0.6805 0.6662 

No 6 7 8 9 10 

MSE% 0.5757 0.5835 0.7043 0.7040 0.6350 

No 11 12 13 14 15 

MSE% 0.6602 0.7759 0.7732 0.6566 0.6408 

No 16 17 18 19 20 

MSE% 0.6481 0.6061 0.7240 0.6514 0.5725 

Table 3. Final MSE (%) of control (ξav) for 20 runs of the control program 

The obtained complete KF RNN model is simplified and used to design an indirect sliding 

mode control and a direct recurrent feedback-feedforward neural control. The simulation 

results obtained with the recurrent neural model learning and control exhibited a good 

convergence and precise reference tracking. The MSE% of the KF RNN learning and 

generalization is below 2% and the MSE% of the indirect and direct control is below 1%. 
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No 1 2 3 4 5 

MSE% 0.5187 0.5449 0.5788 0.5738 0.5496 

No 6 7 8 9 10 

MSE% 0.5208 0.5732 0.5418 0.5672 0.5576 

No 11 12 13 14 15 

MSE% 0.5619 0.5040 0.5468 0.5471 0.5029 

No 16 17 18 19 20 

MSE% 0.5752 0.5744 0.5228 0.5065 0.5440 

Table 4. Final MSE (%) of control (ξav) for 20 runs of the control program 

Some statistical results of multiple run of the control program with noisy data, obtained 

with both control schemes are also given. The results show a slight priority of the DANC 

with respect to the SMC due to the better adaptation abilities to the first one. 
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7. Appendix: Proof of the Theorem of RTNN Stability 

Let the Recurrent Trainable Neural Network with Jordan Canonical Structure given by (1), 
(2), (3), (4), (5), (6), (7) and the nonlinear plant model as follows: 

 ( ) ( ) ( )[ ]x k+1 =g x k ,u k  (A.1) 

 ( ) ( )[ ]y k =f x k  (A.2) 

and the plant and activation functions fulfill the following assumptions: 

Assumption 1: The plant dynamics is locally Lipchitz, so the functions ⋅g( ) , ⋅f( ) are as: 

( ){ }≤ 0 1f:= f|f=ǔ+Δf, Δf f +f x k  

( ){ }≤ 0 1g:= g|g=ǔ+Δg, Δg +g x kg  

andΔg , Δf are modeling errors, which reflex the effect of unmodeled dynamics. 

Assumption 2: The activation function has the following Taylor approximation: 

( ) ( )
( ) ( )∂

−
∂

ǔ ǉ
ǔ ǉ =ǔ ǉ + ǉ ǉ +Ǔ

ǉ
 

with the approximation error bound given by: 

≤ −
22 LǓ ǉ ǉ

2
 

and the signal error defined by: 

( ) ( ) ( )ˆe k =y k -y k  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]− = − −⎡ ⎤⎣ ⎦
*ˆ ˆˆe k+1 =y k+1 y k+1 C k x k C x k Δf x kF F  

Now, let us define the state estimation error, add and subtract the RTNN to the last equation 
and apply the Assumption 2, then: 

( ) ( ) ( )ˆΔ k =x k -x k  

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]= ⎡ ⎤⎣ ⎦
* *ˆ ˆ ˆΔ k+1 =x k+1 -x k+1 A k x k +B k u k -G A x k +B u k -Δg x k ,u kG  

www.intechopen.com



Recurrent Neural Network Identification and Adaptive Neural Control  
of Hydrocarbon Biodegradation Processes 

 

85 

Let us now define the output identification error and put it in terms of the state estimation 

error as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ] ( ) ( ) ( )( )
( ) ( )( )

⎡ ⎤⎣ ⎦
* * *

3 F 4

1 2

ˆe k+1 =F' k ǅC k G' k ǅA k x k +ǅB k u k +Θ +F' k ǅC G' k A Δ k -B O +Θ
            +Θ +Θ -Δf x k ,u k

 

 

Where: the term ( ) ( ) Fu k =u k +O ; the 1,2,3,4Θ  are the higher order terms in the Taylor series 

approximation; ( ) ( )( )Δf x k ,u k  is the unmodeled dynamics; FO  is an offset. 

 If Assumptions 1 and 2 fulfil, the learning algorithm for the RTNN is given by (8) and the 

learning parameters kǈ , kα  are normalized and depended on the output error structure.  

Then, the approximation error is bounded. 

Consider a Lyapunov candidate function as 

 ( ) ( ) ( )1 2k =L k +L kL  (A.3) 

In which ( )1L k  and ( )2L k  are given by: 

 ( ) ( )2
1

1
k = e k

2
L  (A.4) 

 ( ) ( ) ( ) ( )# # # # # #T T T
2 A B CBA Ck =tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)L  (A.5) 

Where:  

# # #* * *
A B C1

ˆ ˆˆW (k)=A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C  

 

are vectors of the estimation error and * * *(A ,B ,C )  and k k k
ˆ ˆˆ(A ,B ,C )  denote the ideal neural 

weight and the estimate of neural weight at the k-th step, respectively, for each case. 

Let us consider the equation (A.4). The change of the Lyapunov function in two consecutive 
samples due of the training process is obtained by: 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]− = − −1 1
1 1 1

2 2
ΔL k =L k+1 L k e k+1 e k e k + e k+1 e k   (A.6) 

 

Then, defining  ( )Δe k  as the difference between two consecutive error samples, the 

equation (A.6) becomes: 

 ( ) ( ) ( ) ( )[ ]1
1

2
ΔL k =Δe k e k + Δe k  (A.7) 

Where: ( )Δe k can be defined as: 

 ( ) ( )∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

fe kΔe k = ΔW
W

 (A.8) 

Putting all weights into one vector as 
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 ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
f f ff TT TT

W= A B C  (A.9) 

Where: 

 ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
f f f f f f f ff f f fT TTT T T T T TT T T

1 2 1 2 m 1 2 nnA= A A L A ,B= B B L B ,C= C C L C  

 

which  represents the weight vectors constructed by their columns. Also let: 

 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A A

B B

C C

ǈ α
ǈ ǈ ,   α α

ǈ α
 (A.10) 

 

Where: A B C(ǈ ,ǈ ,ǈ )  and A B C(α ,α ,α )  represented the learning rate matrix, the momentum 

rate matrix corresponding to (A,B,C) , respectively, and A
1 Aǈ =ǈ I , B

2 Bǈ =ǈ I , C
3 Cǈ =ǈ I , 

A
1 Aα =α I , B

2 Bα =α I , C
3 Cα =α I . Moreover, ( )iǈ i=1,...,3 and ( )iα i=1,...,3  are two positive 

constants, and ZI  is an identity matrix with Z  representing A,B,C , respectively. Now, we 

could define ΔW  and derive an expression for ( )1ΔL k :   

 ( ) ( )−ΔW=ǈΔW k +αΔW k 1  (A.11) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∂ ∂ − ∂ − ∂ −
− − − − −

∂ ∂ ∂ ∂
⎡ ⎤

∂ ∂ ∂⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

∂ − ∂ − ∂ −⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

1 1

A
TT T T

B

C

A
TT T T

B

C

k k 1 e k 1 e k 1ΔW= ǈ α = e k ǈ e k 1 α
W W W W

ǈ
e k e k e k

     = e k ǈ ×
A B C

ǈ

α
e k 1 e k 1 e k 1

     e k 1 α ×
A B C

α

L L

 (A.12) 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

⎛ ⎞∂ ∂ ∂
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ − ∂ − ∂ −
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

T

2 2 2

1 2 3

2 2 2

1 2 3

e kΔe k = ΔW
W

e k e k e k
       = e k × ǈ +ǈ +ǈ

A B C

e k 1 e k 1 e k 1
         e k-1 × α +α +α

A B C

 (A.13) 

 

( ) ( ) ( )

( ) ( ) ( )

∂ ∂ ∂
∂ ∂ ∂

∂ − ∂ − ∂ −
∂ ∂ ∂

2 2 2

1 2 3

2 2 2

1 2 3

e k e k e kǄ=ǈ +ǈ +ǈ
A B C

e k 1 e k 1 e k 1ǌ=α +α +α
A B C

 (A.14) 
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 ( ) ( ) ( )− −Δe k+1 = Ǆe k+1 ǌe k  (A.15) 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ( )
=

= − − −⎡ ⎤⎣ ⎦

1
1

2

2 2 2 21 1
2 2

ΔL k+1 Δe k+1 e k+1 + Δe k+1

                e k+1 2Ǆ Ǆ +e k+1 e k Ǆ 1 ǌ+ ǌ e k
 (A.16) 

Proposing: −ǌ=Ǆ 1 , then: 

 ( ) ( ) ( )[ ]= − − − −⎡ ⎤⎣ ⎦
22 2 21 1

1
2 2

ΔL k+1 e k+1 2Ǆ +4Ǆ 1 ǌ Δe k  (A.17) 

According to the Lyapunov’s stability theory, the convergence could be be guaranteed, if 

( )ΔL k+1 <0 , thus − −22Ǆ +4Ǆ 1>0 , and 

 
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 1
1 <Ǆ< 1+

2 2
 (A.18) 

That is : 

 
( ) ( ) ( )∂ ∂ ∂⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

2 2 2

1 2 3
1 e k e k e k 1

1 <ǈ +ǈ +ǈ < 1+
A B C2 2

 (A.19) 

Let { }
3

max i
i=1

ǈ =max ǈ ; thus, as long as: 

 
( ) ( ) ( ) ( ) ( ) ( )

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

max
2 2 2 2 2 2

1 1
1 1+

2 2<ǈ <
e k e k e k e k e k e k

+ + + +
A B C A B C

 (A.20) 

Note that ⋅   is the Euclidean norm, therefore: 

 
( ) ( ) ( ) ( )∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

2 2 2 2
e k e k e k e k

+ + =
A B C W

 (A.21) 

Now let : ( ) ( ) ( )∂∂
∂ ∂= − y ke k

W W
ψ k =  and ( )max kψ =max ψ k , then: 

 

 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max

max max

1 1
1- 1+

2 2<ǈ <
ψ ψ

 (A.22) 

Now, working with equation (A.5), we have:  

 ( ) ( ) ( ) ( )= # # # # # #T T T
2 A B CBA CL k tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  (A.23) 

Considering the change of the Lyapunov function in two consecutive samples of the training 

process, and substituting the quantities: ( )# # #* * *
B CA k

ˆ ˆˆW =A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C , we get:  
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( ) ( ) ( )
⎛ ⎞− −
⎜ ⎟= =
⎜ ⎟− −⎝ ⎠

− −

− −

T T T

T T

T T T

T

T * * * *

2 2 2
T * * T * *

T * * * *

T * * T *

ˆ ˆ ˆ ˆA(k+1)A (k+1) A(k+1)A A A (k+1)+A A
ΔL k L k+1 -L k tr

ˆ ˆ ˆ ˆA(k)A (k)+A(k)A (k)+A A (k) A A

ˆ ˆ ˆ ˆB(k+1)B (k+1) B(k+1)B B B (k+1)+B B
              +tr

ˆ ˆ ˆ ˆB(k)B (k)+B(k)B +B B (k) B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞− −
⎜ ⎟
⎜ ⎟− −⎝ ⎠

T

T T T

T T

*

T * * * *

T * * T * *

B

ˆ ˆ ˆ ˆC(k+1)C (k+1) C(k+1)C C C (k+1)+C C
              +tr

ˆ ˆ ˆ ˆC(k)C (k)+C(k)C +C C (k) C C

 (A.24) 

Applying the learning law (8) and the trace properties we obtained: 

 

( )

( )
( )

⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦

# ##

# ##

2 2 2 22 22 2
2 max max

T T T
max

T T T
max

ˆ ˆ ˆ ˆˆ ˆΔL k ǈ ΔA(k) + ΔB(k) + ΔC(k) +α ΔA(k-1) + ΔB(k-1) + ΔC(k-1)

ˆ ˆˆ             +2ǈ tr A(k)ΔA (k)+B(k)ΔB (k)+C(k)ΔC (k)

ˆ ˆˆ             +2α tr A(k)ΔA (k-1)+B(k)ΔB (k-1)+C(k)ΔC (k-1)

( )T T T
max max

ˆ ˆ ˆ ˆˆ ˆ             +2α ǈ tr ΔA(k)ΔA (k-1)+ΔB(k)ΔB (k-1)+ΔC(k)ΔC (k-1)

 (A.25) 

Substituting the learning values and errors (9)-(15), we obtained terms like: 

 
2

max max2ǈ e(k) -2ǈ ξ(k)e(k)  ; 
2

max max2ǈ e(k-1) -2ǈ ξ(k-1)e(k-1)  (A.26) 

Applying the following inequality: ( ) ≤
TT T T T -1X Y+ X Y X ΛX+Y Λ Y , which is valid for any 

∈ℜn×mX,Y , and for any positive definite matrix ×< Λ = Λ ∈ℜ0 T n n ,  we obtained: 

 ( ) ( ) ≤ -1
1 1

2 22
max max max max Λ Λ2ǈ e(k)ξ(k)= ǈ e(k) ξ(k)+ξ(k) ǈ e(k) ǈ e(k) + ξ(k) ; 

 ( ) ( ) ≤ -1
2 2

2 22
max max max max Λ Λ2α e(k-1)ξ(k-1)= α e(k-1) ξ(k-1)+ξ(k-1) α e(k-1) α e(k-1) + ξ(k-1)  (A.27) 

Analyzing (A.27) term by term and applying the Rayleigh inequality: 

( ) ( )≤ ≤2 2T
min maxǌ Λ x x Λx ǌ Λ x  we obtained a statement for ( )2ΔL k . Making inner terms 

equal to one as in the unit circle condition for discrete time, at last we get the final condition: 

 ( ) ( ) ( ) ( )≤ 2 2
2 max maxΔL k -ǈ e k -α e k-1 +d k   (A.28) 

 ( ) -1 -1
1 2

2 2

Λ Λd k = ξ(k) + ξ(k-1)   (A.29) 

Where ( )d k  represented the unmodeled dynamics and/or perturbations term. Applying 

the Rate of Convergence Lemma (Nava et al., 2004) for the result (A.28) we could conclude 

that: the d(k)  - term must be bounded by the weight matrices and the learning parameter in 

order to obtain the final result: ( ) ∞∈2ΔL k L . As a consequence we get : 

( ) ( ) ( )∞ ∞ ∞∈ ∈ ∈k k kA L ,B L ,C L . From equations (A.22) and (A.28) we easily could get the 

inequality (A.20). Therefore the boundedness of  L(k) , +∈ 0k Z  is guaranteed. 
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The concept of neural network originated from neuroscience, and one of its primitive aims is to help us

understand the principle of the central nerve system and related behaviors through mathematical modeling.

The first part of the book is a collection of three contributions dedicated to this aim. The second part of the

book consists of seven chapters, all of which are about system identification and control. The third part of the

book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are discussed, respectively.The

fourth part of the book comprises four chapters focusing on optimization problems. Doing optimization in a way

like the central nerve systems of advanced animals including humans is promising from some viewpoints.
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