
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

16

Best Practices for Simulated Annealing in
Multiprocessor Task Distribution Problems

Heikki Orsila, Erno Salminen and Timo D. Hämäläinen
Department of Computer Systems
Tampere University of Technology

P.O. Box 553, 33101 Tampere,
Finland

1. Introduction

Simulated Annealing (SA) is a widely used meta-algorithm for complex optimization
problems. This chapter presents methods to distribute executable tasks onto a set of
processors. This process is called task mapping. The most common goal is to decrease
execution time via parallel computation. However, the presented mapping methods are not
limited to optimizing application execution time because the cost function is arbitrary. The
cost function is also called an objective function in many works. A smaller cost function
value means a better solution. It may consider multiple metrics, such as execution time,
communication time, memory, energy consumption and silicon area constraints. Especially
in embedded systems, these other metrics are often as important as execution time.
A multiprocessor system requires exploration to find an optimized architecture as well as
the proper task distribution for the application. Resulting very large design space must be
pruned systematically with fast algorithms, since the exploration of the whole design space
is not feasible. Iterative algorithms evaluate a number of application mappings for each
architecture, and the best architecture and mapping is selected in the process.
The optimization process is shown in Figure 1(a). The application, the HW platform and an
initial solution are fed to a mapping component. The mapping component generates a new
solution that is passed to a simulation component. The simulation component determines
relevant metrics of the solution. The metrics are passed to a cost function which will
evaluate the badness (cost) of the solution. The cost value is passed back to the mapping
component. The mapping component will finally terminate the optimization process and
output a final solution.
The system that is optimized is shown in Figure 1(b). The system consists of the application
and the HW platform. The application consists of tasks which are mapped to processing
elements (PEs). The PEs are interconnected with a communication network.
The chapter has two focuses:

• optimize the cost function and

• minimize the time needed for simulated annealing.
First, the task distribution problem is an NP problem which implies that a heuristic
algorithm is needed. The focus is on reaching as good as possible mapping. Unfortunately
the true optimum value is unknown for most applications, and therefore the relative O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria

www.intechopen.com

 Simulated Annealing

322

goodness of the solution to the true optimum is unknown. Experiments rely on convergence
rates and extensive simulations to reduce this uncertainty. This chapter focuses on single-
objective rather than multi-objective optimization.

Figure 1(a). Optimization process. Boxes indicate data. Ellipses indicate operations. This
chapter focuses on the mapping part.

Figure 1(b). The system that is optimized. The system consists of the application and the
HW platform. PE is processing element.

Second, the focus is minimizing the optimization time. A valid solution must be found in a
reasonable time which depends on the application and the target multiprocessor platform.
This chapter is structured as follows. We first introduce the problem of mapping a set of

tasks onto a multiprocessor system. Then, we present a generic SA algorithm and give

detailed analysis how the major functions may be implemented. That is followed by an

overview of reported case studies, including our own. Last we discuss the findings and

present the most important open research problems.

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

323

2. Task mapping problem

The application in Figure 1(b) is divided into tasks. Tasks are defined as smallest
components in the application that can be relocated to any or some PEs in the HW platform.
A mapping algorithm will find a location for each task on some PE. The application model is
irrelevant for the general mapping problem as long as the application model has mappable
tasks. Mapping can be done on run-time or design-time. There are several types of
application models that are used in literature: directed acyclic task graphs (Kwok & Ahmad,
1999), Kahn Process Networks (Wikipedia, 2008b) and others.
The mapping affects several properties of the system. Affected hardware properties are
processor utilization, communication network utilization and power. Affected software
and/or hardware properties are execution time, memory usage, and application and
hardware context switches.

2.1 Application model
Tasks can be dependent on each other. Task A depends on task B if task A needs data or

control from task B. Otherwise tasks are independent. There are application models with

dependent and independent tasks. Models with independent tasks are easier to map

because there is zero communication between tasks. This enables the problem to be solved

in separate sub-problems. However, independent tasks may affect each other if they

compete for shared resources, such as a PE or a communication network. Scheduling

properties of the application model may complicate evaluating a mapping algorithm.

2.2 Hardware platform model
The HW platform in Figure 1(b) can be heterogeneous which means that it executes different

tasks with different characteristics. These characteristics include speed and power, for

example. This does not complicate the mapping problem, but affects the simulation part in

Figure 1(a). The mapping problem is the same regardless of the simulation accuracy, but the

mapping solution is affected. This enables both fast and slow simulation models to be used

with varying accuracy. Inaccurate models are usually based on estimation techniques.

Accurate models are based on hardware simulation or native execution of the system that is

being optimized. Accurate models are usually much slower than inaccurate models and

they may not be available at the early phase of the system design.

Depending on the application model, all PEs can not necessarily execute all tasks.

Restricting mappability of tasks makes the optimization problem easier and enables shortcut

heuristics to be used in optimization. The previous definition for tasks excludes application

components that can not be relocated, and therefore each task has at least 2 PEs where it can

be executed.

2.3 Limiting the scope of problems
We assume that communicating between two processors is much more expensive than

communicating within a single processor. To generalize this idea, it is practically happening

inside single processor computer systems because registers can be 100 times as fast as

physical memory, and cache memory is 10 times as fast as physical memory. Multiprocessor

systems could spend thousands of cycles to pass a message from one processor to other.

www.intechopen.com

 Simulated Annealing

324

This trend is constantly changing as multicore and non-asymmetric computer architectures

are becoming more common.

We also assume that distributed applications are not embarrassingly parallel (Wikipedia,

2008a).

Without previous two assumptions the optimization algorithms can be trivially replaced

with on-demand best-effort distributed job queues.

This paper only considers the single-objective optimization case. Single-objective

optimization finds the minimum for a given objective function. Multi-objective optimization

tries to minimize several functions, and the result is a set of trade-offs, or so called Pareto-

optimal solutions. Each trade-off solution minimizes some of the objective functions, but not

all. Having a systematic method for selecting a single solution from the trade-off set reduces

the problem into a single-objective optimization task.

2.4 Random mapping algorithm
Random mapping algorithm is a simple Monte Carlo algorithm that randomizes processor

assignment of each task at every iteration. The Monte Carlo process converges very slowly

as it does not have negative feedback for moves into worse mappings. Random mapping

algorithm is important because it sets the reference for minimum efficiency of any mapping

algorithm. Any mapping algorithm should be able to do better than random mapping.

Simulated Annealing algorithm produces a "Monte Carlo -like" effect at very high

temperatures as almost all worsening moves are accepted.

3. Simulated annealing

Simulated Annealing is a probabilistic non-greedy algorithm (Kirkpatrick et al., 1983) that

explores the search space of a problem by annealing from a high to a low temperature.

Probabilistic behavior means that SA can find solutions of different goodness between

independent runs. Non-greedy means that SA may accept a move into a worse state, and

this allows escaping local minima. The algorithm always accepts a move into a better state.

Move to a worse state is accepted with a changing probability. This probability decreases

along with the temperature, and thus the algorithm starts as a non-greedy algorithm and

gradually becomes more and more greedy.

This chapter focuses only on using SA for mapping. The challenge is to find efficient
optimization parameters for SA. (Braun et al., 2001) is a comparison of different mapping
algorithms, such as Tabu Search, Genetic Algorithms, Load Balancing algorithms and others.
Figure 2 shows an example of SA optimization process. Optimization begins from a high
temperature where the accepted cost changes chaotically. As the temperature decreases the
accepted cost changes less chaotically and the algorithm becomes greedier.
Figure 3 shows the general form of Simulated Annealing algorithm pseudo-code. Table 1

shows symbols, functions and various parameters for the pseudo-code. The algorithm starts

with an initial solution 0S (state). SA iterates through solutions until a termination

condition is reached. At each temperature level, SA moves one or several tasks to different

PEs and evaluates the cost of the new mapping solution. Then SA either accepts or rejects

the new solution. If the new solution is accepted, it is used as a basis for the next iteration.

Otherwise, the new solution is thrown away.

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

325

0 2000 4000 6000 8000 10000 12000 14000 16000
0.88

0.9

0.92

0.94

0.96

0.98

1

Mapping iteration

N
or

m
al

iz
ed

 c
os

t

Accepted cost
Best cost

Figure 2. Cost per iteration plotted for Simulated Annealing when mapping a 100 task
application to a 4 processor system. The cost is normalized so that initial cost 0 1.0C = . The

plot is average filtered with a 256 sample window to hide the chaotic nature of the random
process. This is also the reason why accepted cost does not always seem to touch the best
cost line.

Simulated Annealing(S0)
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R ← 0
6 for i ← 0 to ∞
7 do T ← Temp(i)
8 Snew ← Move(S, T)
9 Cnew ← Cost(Snew)

10 ∆C ← Cnew − C
11 if ∆C < 0 or Accept(∆C, T)
12 then if Cnew < Cbest

13 then Sbest ← Snew

14 Cbest ← Cnew

15 S ← Snew

16 C ← Cnew

17 R ← 0
18 else R ← R + 1
19 if Terminate(i, R) = True

20 then break

21 return Sbest

Figure 3. Pseudo-code of the Simulated Annealing algorithm. See Table 1 for explanation of
symbols.

www.intechopen.com

 Simulated Annealing

326

Symbol Value range Definition A B C

Accept(∆C, T) {False,True} Return accept (True) or B
reject (False) for a worsening move B

C = Cost() C > 0 Accepted cost (to be minimized) B
C0 C0 > 0 Initial cost C
Cnew Cnew > 0 Cost of the next state C
∆C = Cnew − C R Change of cost due to move C
i i > 0 Mapping iteration C
L L > 0 # Iterations per temperature level B
M M > 1 Number of processors A
N N > 1 Number of tasks A
q 0 < q < 1 Geometric temperature scaling factor B
R R ≥ 0 Number of consecutive rejected moves B
S mapping space Accepted state C
S0 mapping space Initial state B
Snew mapping space Next state C
Move(S, T) mapping space Returns the next state B
T = Temp(i) T > 0 Return temperature T at iteration i B
T0 T0 > 0 Initial temperature B
Tf 0 < Tf < T0 Final temperature B
TN TN > 0 Number of temperature levels B
Terminate(i, R) {False,True} Return terminate (True) or B

continue (False)
x = random() 0 ≤ x < 1 Return a random value C
α α > 0 The number of neighbors for each A

state: α = M(N − 1)

Table 1. Simulated Annealing parameters and symbols. Column A indicates parameters
related to the size of the mapping/optimization problem. Column B indicates parameters of
the SA algorithm. Column C indicates an internal variable of the SA.

The general algorithm needs a number of functions to be complete. Most common methods

are presented in following sections. Implementation effort for most methods is low, and

trying different combinations requires little effort. Therefore many alternatives should be

tried. Most of the effort goes to implementing the Cost() function and finding proper

optimization parameters. The cost function is the simulation and cost evalution part in

Figure 1(a). In some cases the Move heuristics can be difficult to implement.

3.1 Cost function: Cost(S)
Cost(S) evaluates the cost for any given state S of the optimization space. Here, each point in

the optimization space defines one mapping for the application. Cost() can be a function of

any variables. Without loss of generality, this chapter is only concerned about minimizing

execution time of the application. Other factors such as power and real-time properties can

be included. For example, 31 2()
ww w

Cost S t A P= , where t is the execution time of the

application, A is the silicon area and P is the power, and 1w , 2w and 3w are user-defined

coefficients.

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

327

3.2 Annealing schedule: Temp(i) function
Temp(i) determines the temperature as a function of the iteration number i. Initial
temperature 0 (0)T Temp= . The final temperature

f
T is determined implicitly by Temp() and

Terminate() functions. Temp() function may also contain internal state, and have access to
other annealing metrics, such as cost. In those cases Temp() is not a pure function. For
example, remembering cost history can be used for intelligent annealing schedules.
In geometric temperature schedules the temperature is multiplied by a factor 0 1q< <

between each temperature level. It is the most common approach. NT is the number of

temperature levels. Define L to be the number of iterations on each temperature level.
There are 3 common schedules that are defined in following paragraphs.
Geometric Temperature Schedule

 0()

i

LTemp i T q

⎢ ⎥
⎢ ⎥⎣ ⎦= (1)

i

L

⎢ ⎥
⎢ ⎥⎣ ⎦

 means rounding down the fraction. The number of mapping iterations is NLT .

Fractional Temperature Schedule

 0()
1

T
Temp i

i
=

+
 (2)

The number of mapping iterations is NT . It is inadvisable to use a fractional schedule

because it distributes the number of iterations mostly to lower temperatures. Doubling the
total number of iterations only halves the final temperature. Therefore, covering a wide

relative temperature range 0 1
f

T

T
>> is expensive. The geometric schedule avoids this

problem. For this reason the geometric temperature schedule is the most common choice.
Koch Temperature Schedule

,

0

(1)
if mod(,) 0

(1)
1

() (1) if mod(,) 0̀

if 0

i L i

Temp i
i L

Temp i

Temp i Temp i i L

T i

δ
σ −

−⎧ =⎪ −
+⎪

⎪
⎪= − ≠⎨
⎪ =⎪
⎪
⎪
⎩

 (3)

where

 , { () | }
i L i k

stddev Cost S i L k iσ − = − ≤ < (4)

Koch temperature schedule (Koch, 1995; Ravindran, 2007) decreases temperature with
respect to cost standard deviation on each temperature level. Deviation is calculated from
the L latest iterations. Higher standard deviation, i.e. more chaotic the annealing, leads to
lower temperature decrease between each level. The number of mapping iterations depends
on the problem.

www.intechopen.com

 Simulated Annealing

328

3.3 Acceptance function: Accept (∆C,T)

(,)Accept C TΔ returns True if a worsening move should be accepted, otherwise False. An

improving move (0CΔ <) is always accepted by the SA algorithm, but this is not a part of
Accept() behavior (although there are some implementations that explicitly do it).
CΔ has an arbitrary range and unit that depends on system parameters and the selected

cost function. Since
C

T

Δ
 is a relevant measure in acceptance functions, the temperature

range needs to be adjusted to the CΔ range, or vice versa. Following paragraphs define 4
different acceptance functions.

3.3.1 Inverse exponential form

1

(,) ()

1 exp()

Accept C T random
C

T

Δ = ⇔ <
Δ

+
True (5)

It is important to notice that when 0CΔ = , the transition happens at 50% probability. This

makes SA rather likely to shift between equally good solutions and thus find new points in
space where a move to a better state is possible. Accepting a worsening move always has a
probability less than 50%. Despite this, SA is rather liberal in doing random walks even at
low temperatures. Small increases in cost are allowed even at low temperatures, but
significant increases in cost are only accepted at high temperatures.

Note that some implementations write the right part of (5) as
1

()

1 exp()

random
C

T

>
−Δ

+
,

which is probabilistically equivalent.

3.3.2 Normalized inverse exponential form

0

1
(,) ()

1 exp()

Accept C T random
C

C T

Δ = ⇔ <
Δ

+
True (6)

This case has all the properties of the inverse exponential form, but the cost value difference
is normalized. The idea is that selecting the temperature range 0[,]

f
T T is easier when it is

independent of the cost function and the temperature always lies inside the same range
0 1T< ≤ . Specifically, changing the hardware platform should not make temperature range
selection harder. Normalization keeps acceptance probabilities in a relevant range even if

the cost function changes. Figure 4 shows specific probability curves for
0

r

C
C

C

Δ
Δ = that is

used inside the exp() function.

3.3.3 Exponential form

 (,) () exp()
C

Accept C T random
T

−Δ
Δ = ⇔ <True (7)

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

329

Exponential form is similar to the inverse exponential form, but 0CΔ = transition happens
always whereas the inverse exponential form accepts the same move with 50% probability.
See the reasoning in inverse exponential case.

Figure 4. Acceptance probability curves for the normalized inverse exponential function (6)

with q = 0.95 . The curve represents constant values of
r

0

ΔCΔC =
C

. Probability of moving to

a worse state decreases when the temperature decreases. Moves to slightly worse state have
higher probability than those with large degradation.

3.3.4 Normalized exponential form

0

(,) () exp()
C

Accept C T random
C T

−Δ
Δ = ⇔ <True (8)

This case has all the properties of the exponential form, but in addition it is implied that
temperature lies in range 0 1T< ≤ . This is reasoned in the normalized inverse exponential
case.

3.4 On effective temperature range

Annealing starts with a high acceptance rate 0p for bad moves and it decreases to a very

low acceptance rate
f

p . It is important to control the acceptance probability. If inverse

exponential function (5) is solved with respect to T for a given probability p, we get:

1

ln(1)

C
T

p

Δ
=

−
 (9)

www.intechopen.com

 Simulated Annealing

330

Assuming minimum expected cost change minCΔ and maximum expected cost change

maxCΔ , we get the proper temperature range

 min max
0

0

1 1
ln(1) ln(1)

f

f

C C
T T T

p p

Δ Δ
= < < =

− −
 (10)

Initial acceptance probability 0p should be set close to 0.5, i.e. the maximum acceptance rate

for inverse exponential function, but not too close to save optimization iterations. For
example, 0 0.45p = is sufficiently close to 0.5, but saves 58 temperature levels of iterations

compared to 0 0.49p = , assuming 0.95q = . When 0CΔ = the acceptance probability is

always 50%.
Final acceptance probability

f
p can be set large enough so that a worsening move happens

n times in the final temperature level, where n is a parameter set by the designer. If there are
L iterations per temperature level, we set /

f
p n L= . If we set 0.1n = , the final temperature

level is almost entirely greedy, and a worsening move happens with 10% probability on the
temperature level for a given minCΔ . The temperature range becomes

 min max
0

0

1
ln(1) ln(1)

f

C C
T T T

L

n p

Δ Δ
= < < =

− −
 (11)

The derivation of (10) and (11) for normalized inverse exponential, exponential and
normalized exponential functions is similar.

3.5 Methods to determine the initial temperature
The initial temperature 0T was not defined in annealing schedule functions in Section 3.2.

As was explained in Section 3.3, the initial temperature is highly coupled with the
acceptance function. Following paragraphs present common methods for computing the
initial temperature. Note that final temperature is usually determined implicitly by the
Terminate() function.

3.5.1 Heating
The initial temperature is grown large enough so that the algorithm accepts worsening
moves with some given probability 0p . This requires simulating a sufficient number of

moves in the optimization space. Either moves are simulated in the neighborhood of a single
point, or moves are simulated from several, possibly random, points. The average increase
in cost

avg
CΔ is computed for worsening moves. Given an acceptance function, 0T is

computed such that 0 0(,)
avg

Accept C T pΔ = . The solution is trivial for all presented acceptance

functions. An example of heating is given in Section 4.2.

3.5.2 Application and hardware platform analysis

Application and hardware platform analysis can be used to determine the initial
temperature. Rapid methods in this category do not use simulation to initialize parameters,

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

331

while slow but more accurate methods use simulation. An example, see (10), (11) and
Section 4.3.

3.5.3 Manual tuning
Parameters can be set by manually testing different parameters. This option is discouraged
for an automated optimization system where the problem varies significantly.

3.5.4 Cost change normalization
In this method the temperature scale is made independent of the cost function values. This
is either accomplished by (6) or setting 0 0T C= for (5). By using (6) it is easier to use other

initial temperature estimation methods.

3.6 Move function and heuristics: Move(S, T)
Move(S, T) function returns a new state based on the application specific heuristics and the
current state S and temperature T . Move heuristics vary significantly. The simple ones are
purely random. The complex ones analyze the structure of the application and the
hardware, and inspect system load.
It should be noted that given a current state value, randomizing a new state value should
exclude the current value, i.e. current PE of the moved task in this case, for randomization
process. For example, in two-processor system, there is a 50% probability of selecting the
same CPU again, which means that half of the iterations are wasted. Many papers do not
specify this aspect for random heuristics.
Common choices and ideas for move heuristics from literature are presented in following
sections.

3.6.1 Single: move task to another processor
Choose a random task and move it to a random processor.

3.6.2 Multiple: move several tasks to other processors
Instead of choosing only a single task to move to another processor, several tasks can be
moved at once. The moved tasks are either mapped to the same processor, or different
processors. If these tasks are chosen at random and each of their destinations are chosen at
random, this approach is less likely to find an improving move than just moving a single
task. This is a consequence of combinatorics as improving moves are a minority group in all
possible moves.
If a good heuristics is applied for moving multiple tasks, it is possible to climb up from a
steep local minimum. A heuristics that only moves a single task is less likely to climb up
from a steep local minimum.

3.6.3 Swap: swap processes between processors
Choose two different random processors, choose a random process on both processors, and
swap the processes between processors.

3.7 Heuristic move functions
A heuristic move uses more information than just knowing the mapping space structure.
Some application or hardware specific knowledge is used to move or swap tasks more
efficiently.

www.intechopen.com

 Simulated Annealing

332

3.7.1 ECP: Enhanced critical path
Enhanced Critical Path method (Wild et al., 2003) is a heuristic move for directed acyclic task
graphs. ECP favors swapping and moving processes that are on the critical path of the graph,
or near the critical path. Critical path is the path with the largest sum of computation and
communication costs in the graph.

3.7.2 Variable grain move
A variable grain move is a single task move that starts by favoring large execution time
tasks statistically. Thus, tasks with large execution time are moved more likely than tasks
with small execution time. The probability distribution is then gradually flattened towards
equal probability for each task. At low temperatures each task is moved with the same
probability.

3.7.3 Topological move
Assume tasks A and B, where A sends a message to B with a high probability after A has
been activated. If B is the only task that gets a message from A with a high probability then
it can be benefitial to favor moving them to the same processor.
This heuristics could be implemented into Single task move by favoring processors of
adjacent tasks. The probability distribution for processor selection should be carefully
balanced to prevent mapping all tasks to the same processor, thus preventing speedup of a
multiprocessor system. If a task sends messages to more than one task with a high
probability, this heuristics is at least dubious and needs experimental verification.

3.7.4 Load balancing move
This heuristics makes heavily loaded processors less likely to get new tasks, and make
slightly loaded processes more likely to get new tasks. Each processor's load can be
determined by a test vector simulation, by counting the number of tasks on each processor,
or by using more sophisticated load calculations. Each task can be attributed a constant load
based on test vector simulations, and then each processor's load becomes the sum of loads of
its tasks.

3.7.5 Component move
A task graph may consist from application or system level components each having
multiple tasks. Separate components are defined by the designer. Instead of mapping single
tasks, all tasks related to a single component could be mapped. This could be a coarse-grain
starting point for finer-grain mapping.

3.8 Other move heuristics
3.8.1 Hybrid approach
A hybrid algorithm might use all of the above move functions. For example, combine
weighted task selection with weighted target PE selection (Sec 3.7.2 + 3.7.3). The move
function can be selected by random on each iteration, or different move function can be used
in different optimization phases.

3.8.2 Compositional approach
SA can be combined with other algorithms. The move function may use another
optimization algorithm to make more intelligent moves. For example, the single move

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

333

heuristics might be adapted to give more weight to the best target processor determined by
actually simulating each target.

3.8.3 Optimal subset mapping move
The move function can optimize a subset of the task graph. Each move will by itself
determine a locally optimal mapping for some small subset of tasks. The number of

mapping combinations for a subset of subN tasks and M processors is subN
M for the brute-

force approach. The number of brute-combinations for a single subset should only be a tiny
fraction of total number of mappings that are evaluated, that is, a large number of subsets
should be optimized. A brute-force based approach may yield rapid convergence but the
final result is somewhat worse than with traditional SA (Orsila et al., 2007). It is suitable for
initial coarse-grain optimization.

3.8.4 Move processors from router to router
In a Network-on-Chip (NoC) system, processors can be moved from router to router to
optimize communication between system components.

3.8.5 Task scheduling move
Scheduling of tasks can be done simultaneously with mapping them. Scheduling means
determining the priorities of tasks on each processor separately. Priorities for tasks is
determined by a permutation of all tasks. Task A has higher priority than task B if it is
located before task B in the permutation. A permutation can be altered by swapping two
random tasks in the Move function. The order of tasks is only relevant for tasks on the same
processor. As an optimization for the move heuristics, most permutations need not be
considered.

3.9 Termination function: Terminate(i, R)
Terminate(i, R) returns True when the optimization loop should be terminated. R is the

number of consecutive rejected moves, maxi is a user-defined maximum number of

iterations, and maxR is a user-defined maximum number of consecutive rejects. Terminate()

function often uses the T emp() function for determining the current temperature T.
Following paragraphs present examples and analysis of commonly used termination
functions from literature:

3.9.1 Maximum number of iterations
Annealing is stopped after imax iterations:

 max(,)Terminate i R i i= ⇔ ≥True (12)

This approach is discouraged because annealing success is dependent on actual
temperatures, rather than iterations. Final temperature and annealing schedule parameters
can be selected to restrict the maximum number of iterations.

3.9.2 Temperature threshold

Annealing is stopped at a specific temperature
f

T :

www.intechopen.com

 Simulated Annealing

334

 (,) ()
f

Terminate i R Temp i T= ⇔ <True (13)

This approach is discouraged in favor of coupled temperature and rejection threshold
because there can be easy greedy moves left.

3.9.3 Cost threshold
Annealing is stopped when a target cost is achieved:

 (,) ()
target

Terminate i R Cost S Cost= ⇔ <True (14)

For example, if the cost function measures real-time latency, annealing is stopped when a
solution that satisfies real-time requirements is found. This heuristics should not be used
alone because if the target cost is not achieved, the algorithm loops forever.

3.9.4 Rejection threshold
Annealing is stopped when maxR R≥ :

 max(,)Terminate i R R R= ⇔ ≥True (15)

This approach is discouraged because there is a risk of premature termination.

3.9.5 Uncoupled temperature and rejection threshold
Annealing is stopped at a low enough temperature or if no improvement has occured for a
while:

 max(,) ()
f

Terminate i R Temp i T R R= ⇔ < ∨ ≥True (16)

This approach is discouraged because there is a risk of premature termination.

3.9.6 Coupled temperature and rejection threshold
Annealing is stopped at a low enough temperature only when no improvement has occured
for a while:

 max(,) ()
f

Terminate i R Temp i T R R= ⇔ < ∧ ≥True (17)

This approach has the benefit of going through the whole temperature scale, and continue
optimization after that if there are acceptable moves. This will probably drive the solution
into a local minimum.

3.9.7 Hybrid condition
Any logical combination of conditions 3.9.1 - 3.9.6 is a valid termination condition.

4. Case studies

This section summarizes 5 relevant works on the use of SA for task mapping. Task mapping
problems are not identical but comparable in terms of SA parameterization. Selected SA
parameterizations are presented to give insight into possible solutions. Table 2 shows move
heuristics and acceptance functions, and Table 3 shows annealing schedules for the same
cases. These cases are presented in detail in following sections.

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

335

Implementation Move Function Acceptance Function

Braun (Sec 4.1) Single Normalized Inverse Exponential
Coroyer (Sec 4.2) Single, Task Scheduling Exponential
Orsila (Sec 4.3) Single Normalized Inverse Exponential
Ravindran (Sec 4.4) Single Exponential
Wild (Sec 4.5) Single, ECP N/A

Table 2. Simulated Annealing move heuristics and acceptance functions

Implementation Annealing Schedule T0 End condition L

Braun (Sec 4.1) Geometric, q = 0.90 C0 Tf = 10−200 1
Coroyer (Sec 4.2) Geometric, Fractional Heuristic Heuristic α
Orsila (Sec 4.3) Geometric, q = 0.95 Heuristic Heuristic α
Ravindran (Sec 4.4) Koch T0 = 1 N/A N/A
Wild (Sec 4.5) Geometric, q = N/A N/A Heuristic N/A

Table 3. Simulated Annealing schedules. See Table 1 for symbols.

Single move (Sec 3.6.1) and the Geometric annealing scheduling (1) are the most common
choices. They should be tested in every new experiment. All the cases use a single move so it
is not covered in each case. Other choices are explicitly documented.

4.1 Braun case
(Braun et al., 2001) uses an inverse exponential form (5) as an acceptance function. However,
the method uses it to actually implement a normalized inverse exponential form (6) by

setting 0 0T C= .

A geometric temperature schedule (1) with 0.90q = and 1L = is used.

The termination condition is an uncoupled temperature and rejection threshold (16).

Optimization is terminated when 20010fT
−= or when max 200R = consecutive solutions are

identical. The choice for L and
f

T values are not explained. If the HW platform or the

number of tasks were changed, then trivially the number of iterations should be adjusted as
well.
The initial mapping used was a random mapping of tasks.
The paper compares SA to ten other heuristics for independent task mapping problem. SA
got position 8/11, where 1/11 is the best position received by a genetic algorithm. We believe

SA was used improperly in this comparison. Based on (11), we think
f

T was set too low,

and L should be much larger than 1.

4.2 Coroyer case
(Coroyer & Liu, 1991) do both single and task scheduling (Sec 3.8.5) moves.
The acceptance function is exponential (7) accompanied with a heating process that puts
acceptance probabilities to a relevant range. Initial temperature is set high enough so that

0 0.95p = of new mappings are accepted. If
avg

CΔ is the average increase in cost for

generating new solutions, the initial temperature is set to 0

0ln

avg
C

T
p

−Δ
= . This approach

depends on the exponential acceptance function, but it can easily be adopted for other
acceptance functions. The average increase is determined by simulating a sufficient number
of moves. See Section 3.5.1.

www.intechopen.com

 Simulated Annealing

336

Both fractional (2) and geometric (1) temperature schedules are used with various
parameters. The number of mapping iterations per temperature level is (1)L N Mα= = − .

The termination condition is an uncoupled temperature and rejection threshold (16).

Optimization is terminated when 210fT
−≤ or when max 5R α= consecutive solutions are

identical. Also, a given temperature threshold (13) is used.
The initial mapping used was a random mapping of tasks.
They show that SA gives better results than priority-based heuristics for task mapping and
scheduling, but SA is also much slower.
Systematic methods are not used to tune parameters.

4.3 Orsila case
This case presents methods to derive SA parameters systematically from the problem
parameters (Orsila et al., 2006).

The annealing schedule is geometric with 0.95q = . The number of iterations per

temperature level is (1)L N Mα= = − .

The initial and final temperature range 0[,] (0,1]

f
T T ⊂ is defined with

 max
0

min sum

kt
T

t
= (18)

 min

max

f

sum

t
T

kt
= (19)

where maxt and mint are the maximum and minimum execution time for any task (when it is

activated) on any processor, min sumt is the sum of execution times for all tasks on the fastest

processor in the system, max sumt is the sum of execution times for all tasks on the slowest

processor in the system, and 1k ≥ is a coefficient.
The temperature range is tied to a slightly modified version of (6). The factor 0.5 is the only
difference.

0

1
(,) ()

1 exp()
0.5

Accept C T random
C

C T

Δ = ⇔ <
Δ

+
True (20)

The rationale is choosing an initial temperature where the longest single task will have a fair
transition probability of being moved from one processor to another, and the same should
hold true for the shortest single task with respect to final temperature.

Coefficient k has an approximate relation to
f

p . Substituting min

00.5

C

C

Δ
 in place of minCΔ to

make (10) compatible with (20) gives

 min

0

1
0.5 ln(1)

f

f

C
T T

C
p

Δ
= <

−
 (21)

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

337

Now, min

00.5

C

C

Δ
 is approximated with min

max sum

t

t
 from (19)

 min

max

1
ln(1)

f

sum

f

t
T T

t
p

<
−

∼ (22)

Now comparing (19) and (22) we get the relation

1

ln(1)
f

k
p

−∼ (23)

Solving (23) with respect to
f

p gives us

1

1
f k

p
e +

∼ (24)

For 1k = the probability
f

p to accept a worsening move on the final temperature level

given a cost change of order mint is approximately 27%. For 2k = , probability is 12%. As k

increases
f

p decreases exponentially. Suitable values for k are in range [1, 9] unless L is very

large (hundreds of thousands or even millions of iterations). The temperature range implied
by 1k = is shown in Figure 5. The temperature range is calculated with (18) and (19). (Orsila

et al., 2007) uses 2k = and reaches are a local minimum more likely in the end, but it is

more expensive than 1k = .

Figure 5. Averaged speedup with respect to temperature for 300 node graphs with different
L values. The temperature given with (18)(19) k = 1 is labeled „predicted range“. Notice that
temperature and the number of iterations increase in different directions. The number of
mapping iterations increases as the temperature decreases.

The end condition is the coupled temperature and rejection threshold (17) with maxR α=
.

4.4 Ravindran case
(Ravindran, 2007) uses an exponential acceptance function (7).

www.intechopen.com

 Simulated Annealing

338

A Koch temperature schedule (3) was used with parameters, including initial and final
temperature, set manually. Termination condition is the temperature threshold (13).
Systematic methods are not used to tune parameters. However, the Koch temperature
schedule is mitigating factor since it affects the number of temperature levels and iterations
based on the problem.

4.5 Wild case
(Wild et al., 2003) use a geometric annealing schedule (1) with unknown parameters.
The termination condition is the uncoupled temperature and rejection threshold (16).
They show that an ECP move heuristics (Sec 3.7.1) is significantly better than the single
move with directed acyclic graphs.
Systematic methods are not used to tune parameters.

5. Analysis and discussion

Following sections analyze the effect of iterations per temperature level, saving the number
of iterations, give best practices for SA, and finally, SA is compared to two greedy
algorithms and random mapping.

5.1 Iterations per temperature level
Figure 6 shows speedup of a 300N = task directed acyclic graph with respect to iterations

per temperature level L. Speedup is defined as 1t

t
, where t is the execution time of the

optimized solution on multiprocessor system and t1 is the execution time on a single
processor system.

Figure 6. Averaged speedups for 300 node graphs with M=2-8 processing elements and
different L values (L = 1, 2, 4, ..., 4096) for each processing element set.

Figure 7 shows the speedup and the number of iterations for each L. These figures show that
having (1) [300,600,900, ,2100]L N Mα≥ = − = … for the number of processors [2,3, ,8]M = …

does not yield a significant improvement in performance but optimization time is increased
heavily. Parameter 1L = performs very poorly (Orsila et al., 2006).

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

339

Figure 7. Averaged speedup with respect to mapping evaluations for 300 node graphs with
different L values.

5.2 Saving optimization effort
Choosing initial temperature 0T and final temperature

f
T is crucial for saving optimization

iterations. With too high an initial temperature the optimization process is practically Monte
Carlo which means it converges very slowly, and thus, initial iterations are practically
wasted because bad moves are accepted with too high a probability. This effect is visible in

Figure 5 at high temperatures, i.e. 210T
−> . Also, too low a probability reduces the annealing

to greedy optimization. Greedy optimization becomes useless after a short time because it
can not espace local minima. Therefore the final temperature must be set as high as possible
without sacrificing the greedy part in optimization. This is the rationale for (Orsila et al.,
2006) in Section 4.3.

5.3 Simulated annealing best practices
Based on our experiments, we have identified few rules of thumb for using SA to task
mapping.
1. Choose the number of iterations per temperature level (1)L N Mα≥ = − , where N is the

number of tasks and M is the number of PEs. Thus, α is the number of neighbouring

mapping solutions because each of the N tasks could be relocated into at most 1M −
alternatives.

2. Use geometric temperature schedule with 0.90 0.98q≤ ≤ . This is the most common

choice.
3. Device a systematic method for choosing the initial and final temperatures. As an

example, see (10).
4. Use coupled temperature and rejection threshold as the end condition (Section 3.9.6)

with maxR L= (the number of iterations per temperature level)

5. If in doubt, use the single task move (Sec 3.6.1). This is the most common choice. Other
move heuristics can be very useful depending on the system. For example, ECP
heuristics (Sec 3.7.1) is efficient for directed acyclic task graphs.

6. Use normalized inverse exponential function (6) as the acceptance function. This
implies that temperature is always in range (0, 1]. This also means that convergence of

www.intechopen.com

 Simulated Annealing

340

separate annealing problems can be compared with each other, and thus, effective
annealing temperatures become more apparent through experiments.

7. Optimize the same problem many times. On each optimization run start with the best
known solution so far. As simulated annealing is a probabilistic algorithm it can happen
that the algorithm drives itself to a bad region in the optimization space. Running the
algorithm several times reduces this risk.

8. If in doubt of any of the parameters, find them experimentally
9. Record the iteration number when the best solution was reached. If the termination

iteration number is much higher than the best solution iteration, maybe the annealing
can be made more efficient without sacrificing reliability.

5.4 Comparing SA to greedy algorithms
Figure 8 compares SA to two greedy algorithms and Random Mapping (Orsila et al., 2007).
A 300 task application is distributed onto 8 processors to optimize execution time. Group
Migration (GM) is a deterministic greedy algorithm that converges slowly. GM needs many
iterations to achieve any speedup, but once that occurs, the speedup increases very rapidly.
Optimal Subset Mapping (OSM) is a stochastic greedy algorithm that converges very
rapidly. It reaches almost the maximum speedup level with very limited number of
iterations. SA convergence speed is between GM and OSM but in the end it reaches a better
solution. Random mapping saturates quickly and further iterations are unable to provide
any speedup. Note that SA follows the random mapping line initially as it resembles a
Monte Carlo process at high temperatures. Random mapping is the base reference for any
mapping algorithm since any intelligent algorithm should do better than just random.

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

Mapping iterations (log scale)

A
ve

ra
ge

 g
ai

n
(s

pe
ed

up
)

OSM

SA+AT

Hybrid

Random

GM

Random
GM

OSM

SA+AT

Hybrid

Figure 8. SA convergence speed compared to GM, OSM and Random Mapping algorithms
for mapping 300 tasks to 8 processors. SA+AT is a Simulated Annealing algorithm
presented in Section 4.3. GM and OSM are greedy heuristics.

SA yields 8% better result than GM, 12% better than OSM, and 107% better than random
mapping. SA is better than the greedy algorithms because it can espace local minima.
However, when measuring the best speedup divided with the number of iterations needed
to achieve the best result for each algorithm the relative order is different. We normalize the
results so that random mapping gets value 1.00. SA gets 2.58, OSM 6.11 and GM 1.21. That

www.intechopen.com

Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems

341

is, OSM is 2.4 times as efficient as SA is in terms of speedup divided by iterations. SA is 2.1
times as efficient as GM. Thus, we note that greedy local search methods can converge much
faster than SA.

6. Open research challenges

This section identifies some open research challenges related to using SA for task mapping.
The challenges are in order of importance.
What is the optimal annealing schedule for task mapping given a hardware, application
model and a trade-off between solution quality and speed? The hardware and application
model determine all possible cost changes in the system, and this is tied to probabilistic SA
transitions. Not all temperatures are equally useful, so iterations can be saved by not
annealing on irrelevant temperatures. For example, it is not benefitial to use lots of iterations
at high temperatures because the process is essentially a Monte Carlo process which
converges very slowly.
What are the best move heuristics for each type of application and hardware model? For
example, ECP (Sec 3.7.1) is useful for application models that have the concept of critical
path.
What is the optimal transition probability for 0CΔ = ? The probability is 0.5 in (5) and 1.0 in
(7), but it can be selected arbitrarily. This probability determines the tendency at which SA
travels equally good solutions in the neighborhood. Is there advantage to using either (5) or
(7) due to this factor?
Can SA be made faster or better by first doing coarse-grain optimization on the application
level and then continue with finer-grain optimization? Current optimization strategies are
concerned with sequential small changes rather than employ a top-level strategy.
What are the relevant test cases for comparing SA to other algorithms, or other SA
implementations? (Barr et al., 1995) have laid out good rules for comparing heuristics.
Excluding optimization programs, is there a problem where running SA as the main loop of
the program would be benefitial? Each Cost() call would go one or several steps further in
the program. In other words, is SA a feasible for run-time optimization rather than being
used as an offline optimizer? Even small problems can take significant amount of iterations
to get parameters correctly. The application must also tolerate slowdowns.

7. Conclusions

This chapter presents an overview of using SA for mapping application tasks to
multiprocessor system. We analyze the different function variants needed in SA. Many
choices are suboptimal with respect to iteration count or discouraged due to poor
optimization results. We find that SA is a well performing algorithm if used properly, but in
practice it is too often used badly. Hence, we present best practices for some of those and
review the most relevant open research challenges.
For best practices we recommend following. Iterations per temperature level should depend
on the problem size. Systematic methods should be used for the temperature range.
Normalized inverse exponential function should be used.
For open research challenges we prioritize following. Find an optimal annealing
schedule, move function and transition probabilities for each type of common task
mapping problems. For example, it is possible to do critical path analysis for some task
mapping problems.

www.intechopen.com

 Simulated Annealing

342

8. References

Barr, R. S.; Golden, B. L & Kelly, J. P. & Resende, M. G. C. & Stewart, W. R. (1995). Designing
and Reporting on Computational Experiments with heuristic Methods, Springer
Journal of Heuristics, Vol. 1, No. 1, pp. 9-32, 1995.

Braun, T. D.; Siegel, H. J. & Beck, N. (2001). A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Systems,
IEEE Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-837, 2001.

Cerny, V. (1985). Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm, Journal of Opt. Theory Appl., Vol. 45, No. 1, pp. 41-
51, 1985.

Coffman, E. G. Jr. & Graham, R. L. (1971). Optimal Scheduling for Two-Processor Systems,
Springer Acta Informatica, Vol. 1, No. 3, pp. 200-213, September, 1971.

Coroyer, C. & Liu, Z. (1991). Effectiveness of Heuristics and Simulated Annealing for the
Scheduling of Concurrent Tasks - An Empirical Comparison, Rapport de recherch´
de l'INRIA - Sophia Antipolis, No. 1379, 1991.

Kirkpatrick, S.; Gelatt, C. D. Jr. & Vecchi, M. P. (1983). Optimization by simulated annealing,
Science, Vol. 200, No. 4598, pp. 671-680, 1983.

Koch, P. (1995). Strategies for Realistic and Efficient Static Scheduling of Data Independent
Algorithms onto Multiple Digital Signal Processors. Technical report, The DSP
Research Group, Institute for Electronic Systems, Aalborg University, Aalborg,
Denmark, December 1995.

Kwok, Y.-K. & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv., Vol. 31, No. 4, pp. 406-471, 1999.

Orsila, H.; Kangas, T. & Salminen, E. & Hämäläinen, T. D. (2006). Parameterizing Simulated
Annealing for Distributing Task Graphs on Multiprocessor SoCs, International
Symposium on System-on-Chip 2006, Tampere, Finland, November, pp. 1-4, 2006.

Orsila, H.; Salminen, E. & Hännikäinen, M. & Hämäläinen, T. D. (2007). Optimal Subset
Mapping And Convergence Evaluation of Mapping Algorithms for Distributing
Task Graphs on Multiprocessor SoC, International Symposium on System-on-Chip
2007, Tampere, Finland, November, pp. 1-6, 2007.

Ravindran, K. (2007). Task Allocation and Scheduling of Concurrent Applications to
Multiprocessor Systems, PhD Thesis, UCB/EECS-2007-149, [online]
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-149.html, 2007.

Wikipedia. (2008). Embarrassingly Parallel, [online] http://en.wikipedia.org
/wiki/Embarrassingly_parallel

Wikipedia. (2008). Kahn Process Network, [online] http://en.wikipedia.org
/wiki/Kahn_Process_Network

Wild, T.; Brunnbauer, W. & Foag, J. & Pazos, N. (2003). Mapping and scheduling for
architecture exploration of networking SoCs, Proc. 16th Int. Conference on VLSI
Design, pp. 376-381, 2003.

www.intechopen.com

Simulated Annealing

Edited by Cher Ming Tan

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the

various branches of engineering. We encourage readers to explore the application of Simulated Annealing in

their work for the task of optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Heikki Orsila, Erno Salminen and Timo D. Hämäläinen (2008). Best Practices for Simulated Annealing in

Multiprocessor Task Distribution Problems, Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-953-7619-

07-7, InTech, Available from:

http://www.intechopen.com/books/simulated_annealing/best_practices_for_simulated_annealing_in_multiproc

essor_task_distribution_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

