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Best Practices for Simulated Annealing in 
Multiprocessor Task Distribution Problems 

Heikki Orsila, Erno Salminen and Timo D. Hämäläinen 
Department of Computer Systems 
Tampere University of Technology 

P.O. Box 553, 33101 Tampere,  
Finland 

1. Introduction 

Simulated Annealing (SA) is a widely used meta-algorithm for complex optimization 
problems. This chapter presents methods to distribute executable tasks onto a set of 
processors. This process is called task mapping. The most common goal is to decrease 
execution time via parallel computation. However, the presented mapping methods are not 
limited to optimizing application execution time because the cost function is arbitrary. The 
cost function is also called an objective function in many works. A smaller cost function 
value means a better solution. It may consider multiple metrics, such as execution time, 
communication time, memory, energy consumption and silicon area constraints. Especially 
in embedded systems, these other metrics are often as important as execution time. 
A multiprocessor system requires exploration to find an optimized architecture as well as 
the proper task distribution for the application. Resulting very large design space must be 
pruned systematically with fast algorithms, since the exploration of the whole design space 
is not feasible. Iterative algorithms evaluate a number of application mappings for each 
architecture, and the best architecture and mapping is selected in the process. 
The optimization process is shown in Figure 1(a). The application, the HW platform and an 
initial solution are fed to a mapping component. The mapping component generates a new 
solution that is passed to a simulation component. The simulation component determines 
relevant metrics of the solution. The metrics are passed to a cost function which will 
evaluate the badness (cost) of the solution. The cost value is passed back to the mapping 
component. The mapping component will finally terminate the optimization process and 
output a final solution. 
The system that is optimized is shown in Figure 1(b). The system consists of the application 
and the HW platform. The application consists of tasks which are mapped to processing 
elements (PEs). The PEs are interconnected with a communication network. 
The chapter has two focuses: 

• optimize the cost function and 

• minimize the time needed for simulated annealing. 
First, the task distribution problem is an NP problem which implies that a heuristic 
algorithm is needed. The focus is on reaching as good as possible mapping. Unfortunately 
the true optimum value is unknown for most applications, and therefore the relative O
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goodness of the solution to the true optimum is unknown. Experiments rely on convergence 
rates and extensive simulations to reduce this uncertainty. This chapter focuses on single-
objective rather than multi-objective optimization. 
 

 

Figure 1(a). Optimization process. Boxes indicate data. Ellipses indicate operations. This 
chapter focuses on the mapping part. 
 

 

Figure 1(b). The system that is optimized. The system consists of the application and the 
HW platform. PE is processing element. 

Second, the focus is minimizing the optimization time. A valid solution must be found in a 
reasonable time which depends on the application and the target multiprocessor platform. 
This chapter is structured as follows. We first introduce the problem of mapping a set of 

tasks onto a multiprocessor system. Then, we present a generic SA algorithm and give 

detailed analysis how the major functions may be implemented. That is followed by an 

overview of reported case studies, including our own. Last we discuss the findings and 

present the most important open research problems. 
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2. Task mapping problem 

The application in Figure 1(b) is divided into tasks. Tasks are defined as smallest 
components in the application that can be relocated to any or some PEs in the HW platform. 
A mapping algorithm will find a location for each task on some PE. The application model is 
irrelevant for the general mapping problem as long as the application model has mappable 
tasks. Mapping can be done on run-time or design-time. There are several types of 
application models that are used in literature: directed acyclic task graphs (Kwok & Ahmad, 
1999), Kahn Process Networks (Wikipedia, 2008b) and others. 
The mapping affects several properties of the system. Affected hardware properties are 
processor utilization, communication network utilization and power. Affected software 
and/or hardware properties are execution time,  memory usage, and application and 
hardware context switches. 

2.1 Application model 
Tasks can be dependent on each other. Task A depends on task B if task A needs data or 

control from task B. Otherwise tasks are independent. There are application models with 

dependent and independent tasks. Models with independent tasks are easier to map 

because there is zero communication between tasks. This enables the problem to be solved 

in separate sub-problems. However, independent tasks may affect each other if they 

compete for shared resources, such as a PE or a communication network. Scheduling 

properties of the application model may complicate evaluating a mapping algorithm. 

2.2 Hardware platform model 
The HW platform in Figure 1(b) can be heterogeneous which means that it executes different 

tasks with different characteristics. These characteristics include speed and power, for 

example. This does not complicate the mapping problem, but affects the simulation part in 

Figure 1(a). The mapping problem is the same regardless of the simulation accuracy, but the 

mapping solution is affected. This enables both fast and slow simulation models to be used 

with varying accuracy. Inaccurate models are usually based on estimation techniques. 

Accurate models are based on hardware simulation or native execution of the system that is 

being optimized. Accurate models are usually much slower than inaccurate models and 

they may not be available at the early phase of the system design. 

Depending on the application model, all PEs can not necessarily execute all tasks. 

Restricting mappability of tasks makes the optimization problem easier and enables shortcut 

heuristics to be used in optimization. The previous definition for tasks excludes application 

components that can not be relocated, and therefore each task has at least 2 PEs where it can 

be executed. 

2.3 Limiting the scope of problems 
We assume that communicating between two processors is much more expensive than 

communicating within a single processor. To generalize this idea, it is practically happening 

inside single processor computer systems because registers can be 100 times as fast as 

physical memory, and cache memory is 10 times as fast as physical memory. Multiprocessor 

systems could spend thousands of cycles to pass a message from one processor to other. 
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This trend is constantly changing as multicore and non-asymmetric computer architectures 

are becoming more common. 

We also assume that distributed applications are not embarrassingly parallel (Wikipedia, 

2008a). 

Without previous two assumptions the optimization algorithms can be trivially replaced 

with on-demand best-effort distributed job queues. 

This paper only considers the single-objective optimization case. Single-objective 

optimization finds the minimum for a given objective function. Multi-objective optimization 

tries to minimize several functions, and the result is a set of trade-offs, or so called Pareto-

optimal solutions. Each trade-off solution minimizes some of the objective functions, but not 

all. Having a systematic method for selecting a single solution from the trade-off set reduces 

the problem into a single-objective optimization task. 

2.4 Random mapping algorithm 
Random mapping algorithm is a simple Monte Carlo algorithm that randomizes processor 

assignment of each task at every iteration. The Monte Carlo process converges very slowly 

as it does not have negative feedback for moves into worse mappings. Random mapping 

algorithm is important because it sets the reference for minimum efficiency of any mapping 

algorithm. Any mapping algorithm should be able to do better than random mapping. 

Simulated Annealing algorithm produces a "Monte Carlo -like" effect at very high 

temperatures as almost all worsening moves are accepted. 

3. Simulated annealing 

Simulated Annealing is a probabilistic non-greedy algorithm (Kirkpatrick et al., 1983) that 

explores the search space of a problem by annealing from a high to a low temperature. 

Probabilistic behavior means that SA can find solutions of different goodness between 

independent runs. Non-greedy means that SA may accept a move into a worse state, and 

this allows escaping local minima. The algorithm always accepts a move into a better state. 

Move to a worse state is accepted with a changing probability. This probability decreases 

along with the temperature, and thus the algorithm starts as a non-greedy algorithm and 

gradually becomes more and more greedy. 

This chapter focuses only on using SA for mapping. The challenge is to find efficient 
optimization parameters for SA. (Braun et al., 2001) is a comparison of different mapping 
algorithms, such as Tabu Search, Genetic Algorithms, Load Balancing algorithms and others. 
Figure 2 shows an example of SA optimization process. Optimization begins from a high 
temperature where the accepted cost changes chaotically. As the temperature decreases the 
accepted cost changes less chaotically and the algorithm becomes greedier. 
Figure 3 shows the general form of Simulated Annealing algorithm pseudo-code. Table 1 

shows symbols, functions and various parameters for the pseudo-code. The algorithm starts 

with an initial solution 0S  (state). SA iterates through solutions until a termination 

condition is reached. At each temperature level, SA moves one or several tasks to different 

PEs and evaluates the cost of the new mapping solution. Then SA either accepts or rejects 

the new solution. If the new solution is accepted, it is used as a basis for the next iteration. 

Otherwise, the new solution is thrown away. 
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Figure 2. Cost per iteration plotted for Simulated Annealing when mapping a 100 task 
application to a 4 processor system. The cost is normalized so that initial cost 0 1.0C = . The 

plot is average filtered with a 256 sample window to hide the chaotic nature of the random 
process. This is also the reason why accepted cost does not always seem to touch the best 
cost line. 

Simulated Annealing(S0)
1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R ← 0
6 for i ← 0 to ∞
7 do T ← Temp(i)
8 Snew ← Move(S, T )
9 Cnew ← Cost(Snew)

10 ∆C ← Cnew − C
11 if ∆C < 0 or Accept(∆C, T )
12 then if Cnew < Cbest

13 then Sbest ← Snew

14 Cbest ← Cnew

15 S ← Snew

16 C ← Cnew

17 R ← 0
18 else R ← R + 1
19 if Terminate(i, R) = True

20 then break

21 return Sbest

 
Figure 3. Pseudo-code of the Simulated Annealing algorithm. See Table 1 for explanation of 
symbols. 
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Symbol Value range Definition A B C

Accept(∆C, T ) {False,True} Return accept (True) or B
reject (False) for a worsening move B

C = Cost() C > 0 Accepted cost (to be minimized) B
C0 C0 > 0 Initial cost C
Cnew Cnew > 0 Cost of the next state C
∆C = Cnew − C R Change of cost due to move C
i i > 0 Mapping iteration C
L L > 0 # Iterations per temperature level B
M M > 1 Number of processors A
N N > 1 Number of tasks A
q 0 < q < 1 Geometric temperature scaling factor B
R R ≥ 0 Number of consecutive rejected moves B
S mapping space Accepted state C
S0 mapping space Initial state B
Snew mapping space Next state C
Move(S, T ) mapping space Returns the next state B
T = Temp(i) T > 0 Return temperature T at iteration i B
T0 T0 > 0 Initial temperature B
Tf 0 < Tf < T0 Final temperature B
TN TN > 0 Number of temperature levels B
Terminate(i, R) {False,True} Return terminate (True) or B

continue (False)
x = random() 0 ≤ x < 1 Return a random value C
α α > 0 The number of neighbors for each A

state: α = M(N − 1)

 
Table 1. Simulated Annealing parameters and symbols. Column A indicates parameters 
related to the size of the mapping/optimization problem. Column B indicates parameters of 
the SA algorithm. Column C indicates an internal variable of the SA. 
 

The general algorithm needs a number of functions to be complete. Most common methods 

are presented in following sections. Implementation effort for most methods is low, and 

trying different combinations requires little effort. Therefore many alternatives should be 

tried. Most of the effort goes to implementing the Cost()  function and finding proper 

optimization parameters. The cost function is the simulation and cost evalution part in 

Figure 1(a). In some cases the Move heuristics can be difficult to implement. 

3.1 Cost function: Cost(S) 
Cost(S) evaluates the cost for any given state S of the optimization space. Here, each point in 

the optimization space defines one mapping for the application. Cost() can be a function of 

any variables. Without loss of generality, this chapter is only concerned about minimizing 

execution time of the application. Other factors such as power and real-time properties can 

be included. For example, 31 2( )
ww w

Cost S t A P= , where t is the execution time of the 

application, A is the silicon area and P is the power, and 1w , 2w  and 3w  are user-defined 

coefficients. 
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3.2 Annealing schedule: Temp(i) function 
Temp(i) determines the temperature as a function of the iteration number i. Initial 
temperature 0 (0)T Temp= . The final temperature 

f
T  is determined implicitly by Temp() and 

Terminate() functions. Temp() function may also contain internal state, and have access to 
other annealing metrics, such as cost. In those cases Temp() is not a pure function. For 
example, remembering cost history can be used for intelligent annealing schedules. 
In geometric temperature schedules the temperature is multiplied by a factor 0 1q< <  

between each temperature level. It is the most common approach. NT  is the number of 

temperature levels. Define L to be the number of iterations on each temperature level. 
There are 3 common schedules that are defined in following paragraphs. 
Geometric Temperature Schedule 

 0( )

i

LTemp i T q

⎢ ⎥
⎢ ⎥⎣ ⎦=  (1) 

i

L

⎢ ⎥
⎢ ⎥⎣ ⎦

 means rounding down the fraction. The number of mapping iterations is NLT . 

Fractional Temperature Schedule 

 0( )
1

T
Temp i

i
=

+
 (2) 

The number of mapping iterations is NT . It is inadvisable to use a fractional schedule 

because it distributes the number of iterations mostly to lower temperatures. Doubling the 
total number of iterations only halves the final temperature. Therefore, covering a wide 

relative temperature range 0 1
f

T

T
>>  is expensive. The geometric schedule avoids this 

problem. For this reason the geometric temperature schedule is the most common choice. 
Koch Temperature Schedule 

 

,

0

( 1)
if mod( , ) 0

( 1)
1

( ) ( 1) if mod( , ) 0̀

if 0

i L i

Temp i
i L

Temp i

Temp i Temp i i L

T i

δ
σ −

−⎧ =⎪ −
+⎪

⎪
⎪= − ≠⎨
⎪ =⎪
⎪
⎪
⎩

 (3) 

where 

 , { ( ) | }
i L i k

stddev Cost S i L k iσ − = − ≤ <  (4) 

Koch temperature schedule (Koch, 1995; Ravindran, 2007) decreases temperature with 
respect to cost standard deviation on each temperature level. Deviation is calculated from 
the L latest iterations. Higher standard deviation, i.e. more chaotic the annealing, leads to 
lower temperature decrease between each level. The number of mapping iterations depends 
on the problem. 
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3.3 Acceptance function: Accept (∆C,T)  

( , )Accept C TΔ  returns True if a worsening move should be accepted, otherwise False. An 

improving move ( 0CΔ < ) is always accepted by the SA algorithm, but this is not a part of 
Accept() behavior (although there are some implementations that explicitly do it). 
CΔ  has an arbitrary range and unit that depends on system parameters and the selected 

cost function. Since 
C

T

Δ
 is a relevant measure in acceptance functions, the temperature 

range needs to be adjusted to the CΔ  range, or vice versa. Following paragraphs define 4 
different acceptance functions. 

3.3.1 Inverse exponential form 

 
1

( , ) ()

1 exp( )

Accept C T random
C

T

Δ = ⇔ <
Δ

+
True  (5) 

It is important to notice that when 0CΔ = , the transition happens at 50% probability. This 

makes SA rather likely to shift between equally good solutions and thus find new points in 
space where a move to a better state is possible. Accepting a worsening move always has a 
probability less than 50%. Despite this, SA is rather liberal in doing random walks even at 
low temperatures. Small increases in cost are allowed even at low temperatures, but 
significant increases in cost are only accepted at high temperatures. 

Note that some implementations write the right part of (5) as 
1

()

1 exp( )

random
C

T

>
−Δ

+
, 

which is probabilistically equivalent. 

3.3.2 Normalized inverse exponential form 

 

0

1
( , ) ()

1 exp( )

Accept C T random
C

C T

Δ = ⇔ <
Δ

+
True  (6) 

This case has all the properties of the inverse exponential form, but the cost value difference 
is normalized. The idea is that selecting the temperature range 0[ , ]

f
T T  is easier when it is 

independent of the cost function and the temperature always lies inside the same range 
0 1T< ≤ . Specifically, changing the hardware platform should not make temperature range 
selection harder. Normalization keeps acceptance probabilities in a relevant range even if 

the cost function changes. Figure 4 shows specific probability curves for 
0

r

C
C

C

Δ
Δ =  that is 

used inside the exp() function. 

3.3.3 Exponential form 

 ( , ) () exp( )
C

Accept C T random
T

−Δ
Δ = ⇔ <True  (7) 
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Exponential form is similar to the inverse exponential form, but 0CΔ =  transition happens 
always whereas the inverse exponential form accepts the same move with 50% probability. 
See the reasoning in inverse exponential case. 
 

 

Figure 4. Acceptance probability curves for the normalized inverse exponential function (6) 

with q = 0.95 . The curve represents constant values of 
r

0

ΔCΔC =
C

. Probability of moving to 

a worse state decreases when the temperature decreases. Moves to slightly worse state have 
higher probability than those with large degradation. 

3.3.4 Normalized exponential form 

 
0

( , ) () exp( )
C

Accept C T random
C T

−Δ
Δ = ⇔ <True  (8) 

This case has all the properties of the exponential form, but in addition it is implied that 
temperature lies in range 0 1T< ≤ . This is reasoned in the normalized inverse exponential 
case. 

3.4 On effective temperature range 

Annealing starts with a high acceptance rate 0p  for bad moves and it decreases to a very 

low acceptance rate 
f

p . It is important to control the acceptance probability. If inverse 

exponential function (5) is solved with respect to T for a given probability p, we get: 

 
1

ln( 1)

C
T

p

Δ
=

−
  (9) 
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Assuming minimum expected cost change minCΔ  and maximum expected cost change 

maxCΔ , we get the proper temperature range 

 min max
0

0

1 1
ln( 1) ln( 1)

f

f

C C
T T T

p p

Δ Δ
= < < =

− −
 (10) 

Initial acceptance probability 0p  should be set close to 0.5, i.e. the maximum acceptance rate 

for inverse exponential function, but not too close to save optimization iterations. For 
example, 0 0.45p =  is sufficiently close to 0.5, but saves 58 temperature levels of iterations 

compared to 0 0.49p = , assuming 0.95q = . When 0CΔ =  the acceptance probability is 

always 50%. 
Final acceptance probability 

f
p  can be set large enough so that a worsening move happens 

n times in the final temperature level, where n is a parameter set by the designer. If there are 
L iterations per temperature level, we set /

f
p n L= . If we set 0.1n = , the final temperature 

level is almost entirely greedy, and a worsening move happens with 10% probability on the 
temperature level for a given minCΔ . The temperature range becomes 

 min max
0

0

1
ln( 1) ln( 1)

f

C C
T T T

L

n p

Δ Δ
= < < =

− −
 (11) 

The derivation of (10) and (11) for normalized inverse exponential, exponential and 
normalized exponential functions is similar. 

3.5 Methods to determine the initial temperature 
The initial temperature 0T  was not defined in annealing schedule functions in Section 3.2. 

As was explained in Section 3.3, the initial temperature is highly coupled with the 
acceptance function. Following paragraphs present common methods for computing the 
initial temperature. Note that final temperature is usually determined implicitly by the 
Terminate() function. 

3.5.1 Heating 
The initial temperature is grown large enough so that the algorithm accepts worsening 
moves with some given probability 0p . This requires simulating a sufficient number of 

moves in the optimization space. Either moves are simulated in the neighborhood of a single 
point, or moves are simulated from several, possibly random, points. The average increase 
in cost 

avg
CΔ  is computed for worsening moves. Given an acceptance function, 0T  is 

computed such that 0 0( , )
avg

Accept C T pΔ = . The solution is trivial for all presented acceptance 

functions. An example of heating is given in Section 4.2. 

3.5.2 Application and hardware platform analysis 
 
Application and hardware platform analysis can be used to determine the initial 
temperature. Rapid methods in this category do not use simulation to initialize parameters, 
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while slow but more accurate methods use simulation. An example, see (10), (11) and 
Section 4.3. 

3.5.3 Manual tuning 
Parameters can be set by manually testing different parameters. This option is discouraged 
for an automated optimization system where the problem varies significantly. 

3.5.4 Cost change normalization 
In this method the temperature scale is made independent of the cost function values. This 
is either accomplished by (6) or setting 0 0T C=  for (5). By using (6) it is easier to use other 

initial temperature estimation methods. 

3.6 Move function and heuristics: Move(S, T ) 
Move(S, T) function returns a new state based on the application specific heuristics and the 
current state S and temperature T . Move heuristics vary significantly. The simple ones are 
purely random. The complex ones analyze the structure of the application and the 
hardware, and inspect system load. 
It should be noted that given a current state value, randomizing a new state value should 
exclude the current value, i.e. current PE of the moved task in this case, for randomization 
process. For example, in two-processor system, there is a 50% probability of selecting the 
same CPU again, which means that half of the iterations are wasted. Many papers do not 
specify this aspect for random heuristics. 
Common choices and ideas for move heuristics from literature are presented in following 
sections. 

3.6.1 Single: move task to another processor 
Choose a random task and move it to a random processor. 

3.6.2 Multiple: move several tasks to other processors 
Instead of choosing only a single task to move to another processor, several tasks can be 
moved at once. The moved tasks are either mapped to the same processor, or different 
processors. If these tasks are chosen at random and each of their destinations are chosen at 
random, this approach is less likely to find an improving move than just moving a single 
task. This is a consequence of combinatorics as improving moves are a minority group in all 
possible moves. 
If a good heuristics is applied for moving multiple tasks, it is possible to climb up from a 
steep local minimum. A heuristics that only moves a single task is less likely to climb up 
from a steep local minimum. 

3.6.3 Swap: swap processes between processors 
Choose two different random processors, choose a random process on both processors, and 
swap the processes between processors. 

3.7 Heuristic move functions 
A heuristic move uses more information than just knowing the mapping space structure. 
Some application or hardware specific knowledge is used to move or swap tasks more 
efficiently. 
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3.7.1 ECP: Enhanced critical path 
Enhanced Critical Path method (Wild et al., 2003) is a heuristic move for directed acyclic task 
graphs. ECP favors swapping and moving processes that are on the critical path of the graph, 
or near the critical path. Critical path is the path with the largest sum of computation and 
communication costs in the graph. 

3.7.2 Variable grain move 
A variable grain move is a single task move that starts by favoring large execution time 
tasks statistically. Thus, tasks with large execution time are moved more likely than tasks 
with small execution time. The probability distribution is then gradually flattened towards 
equal probability for each task. At low temperatures each task is moved with the same 
probability. 

3.7.3 Topological move 
Assume tasks A and B, where A sends a message to B with a high probability after A has 
been activated. If B is the only task that gets a message from A with a high probability then 
it can be benefitial to favor moving them to the same processor. 
This heuristics could be implemented into Single task move by favoring processors of 
adjacent tasks. The probability distribution for processor selection should be carefully 
balanced to prevent mapping all tasks to the same processor, thus preventing speedup of a 
multiprocessor system. If a task sends messages to more than one task with a high 
probability, this heuristics is at least dubious and needs experimental verification. 

3.7.4 Load balancing move 
This heuristics makes heavily loaded processors less likely to get new tasks, and make 
slightly loaded processes more likely to get new tasks. Each processor's load can be 
determined by a test vector simulation, by counting the number of tasks on each processor, 
or by using more sophisticated load calculations. Each task can be attributed a constant load 
based on test vector simulations, and then each processor's load becomes the sum of loads of 
its tasks. 

3.7.5 Component move 
A task graph may consist from application or system level components each having 
multiple tasks. Separate components are defined by the designer. Instead of mapping single 
tasks, all tasks related to a single component could be mapped. This could be a coarse-grain 
starting point for finer-grain mapping. 

3.8 Other move heuristics 
3.8.1 Hybrid approach 
A hybrid algorithm might use all of the above move functions. For example, combine 
weighted task selection with weighted target PE selection (Sec 3.7.2 + 3.7.3). The move 
function can be selected by random on each iteration, or different move function can be used 
in different optimization phases. 

3.8.2 Compositional approach 
SA can be combined with other algorithms. The move function may use another 
optimization algorithm to make more intelligent moves. For example, the single move 
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heuristics might be adapted to give more weight to the best target processor determined by 
actually simulating each target. 

3.8.3 Optimal subset mapping move 
The move function can optimize a subset of the task graph. Each move will by itself 
determine a locally optimal mapping for some small subset of tasks. The number of 

mapping combinations for a subset of subN  tasks and M processors is subN
M  for the brute-

force approach. The number of brute-combinations for a single subset should only be a tiny 
fraction of total number of mappings that are evaluated, that is, a large number of subsets 
should be optimized. A brute-force based approach may yield rapid convergence but the 
final result is somewhat worse than with traditional SA (Orsila et al., 2007). It is suitable for 
initial coarse-grain optimization. 

3.8.4 Move processors from router to router 
In a Network-on-Chip (NoC) system, processors can be moved from router to router to 
optimize communication between system components. 

3.8.5 Task scheduling move 
Scheduling of tasks can be done simultaneously with mapping them. Scheduling means 
determining the priorities of tasks on each processor separately. Priorities for tasks is 
determined by a permutation of all tasks. Task A has higher priority than task B if it is 
located before task B in the permutation. A permutation can be altered by swapping two 
random tasks in the Move function. The order of tasks is only relevant for tasks on the same 
processor. As an optimization for the move heuristics, most permutations need not be 
considered. 

3.9 Termination function: Terminate(i, R) 
Terminate(i, R) returns True when the optimization loop should be terminated. R is the 

number of consecutive rejected moves, maxi  is a user-defined maximum number of 

iterations, and maxR  is a user-defined maximum number of consecutive rejects. Terminate() 

function often uses the T emp() function for determining the current temperature T. 
Following paragraphs present examples and analysis of commonly used termination 
functions from literature: 

3.9.1 Maximum number of iterations 
Annealing is stopped after imax iterations: 

 max( , )Terminate i R i i= ⇔ ≥True  (12) 

This approach is discouraged because annealing success is dependent on actual 
temperatures, rather than iterations. Final temperature and annealing schedule parameters 
can be selected to restrict the maximum number of iterations. 

3.9.2 Temperature threshold 

Annealing is stopped at a specific temperature 
f

T : 
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 ( , ) ( )
f

Terminate i R Temp i T= ⇔ <True  (13) 

This approach is discouraged in favor of coupled temperature and rejection threshold 
because there can be easy greedy moves left. 

3.9.3 Cost threshold 
Annealing is stopped when a target cost is achieved: 

 ( , ) ( )
target

Terminate i R Cost S Cost= ⇔ <True  (14) 

For example, if the cost function measures real-time latency, annealing is stopped when a 
solution that satisfies real-time requirements is found. This heuristics should not be used 
alone because if the target cost is not achieved, the algorithm loops forever. 

3.9.4 Rejection threshold 
Annealing is stopped when maxR R≥ : 

 max( , )Terminate i R R R= ⇔ ≥True  (15) 

This approach is discouraged because there is a risk of premature termination. 

3.9.5 Uncoupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature or if no improvement has occured for a 
while: 

 max( , ) ( )
f

Terminate i R Temp i T R R= ⇔ < ∨ ≥True  (16) 

This approach is discouraged because there is a risk of premature termination. 

3.9.6 Coupled temperature and rejection threshold 
Annealing is stopped at a low enough temperature only when no improvement has occured 
for a while: 

 max( , ) ( )
f

Terminate i R Temp i T R R= ⇔ < ∧ ≥True  (17) 

This approach has the benefit of going through the whole temperature scale, and continue 
optimization after that if there are acceptable moves. This will probably drive the solution 
into a local minimum. 

3.9.7 Hybrid condition 
Any logical combination of conditions 3.9.1 - 3.9.6 is a valid termination condition. 

4. Case studies 

This section summarizes 5 relevant works on the use of SA for task mapping. Task mapping 
problems are not identical but comparable in terms of SA parameterization. Selected SA 
parameterizations are presented to give insight into possible solutions. Table 2 shows move 
heuristics and acceptance functions, and Table 3 shows annealing schedules for the same 
cases. These cases are presented in detail in following sections. 

www.intechopen.com



Best Practices for Simulated Annealing in Multiprocessor Task Distribution Problems 

 

335 

Implementation Move Function Acceptance Function

Braun (Sec 4.1) Single Normalized Inverse Exponential
Coroyer (Sec 4.2) Single, Task Scheduling Exponential
Orsila (Sec 4.3) Single Normalized Inverse Exponential
Ravindran (Sec 4.4) Single Exponential
Wild (Sec 4.5) Single, ECP N/A  

Table 2. Simulated Annealing move heuristics and acceptance functions 

Implementation Annealing Schedule T0 End condition L

Braun (Sec 4.1) Geometric, q = 0.90 C0 Tf = 10−200 1
Coroyer (Sec 4.2) Geometric, Fractional Heuristic Heuristic α
Orsila (Sec 4.3) Geometric, q = 0.95 Heuristic Heuristic α
Ravindran (Sec 4.4) Koch T0 = 1 N/A N/A
Wild (Sec 4.5) Geometric, q = N/A N/A Heuristic N/A  

Table 3. Simulated Annealing schedules. See Table 1 for symbols. 

Single move (Sec 3.6.1) and the Geometric annealing scheduling (1) are the most common 
choices. They should be tested in every new experiment. All the cases use a single move so it 
is not covered in each case. Other choices are explicitly documented. 

4.1 Braun case 
(Braun et al., 2001) uses an inverse exponential form (5) as an acceptance function. However, 
the method uses it to actually implement a normalized inverse exponential form (6) by 

setting 0 0T C= . 

A geometric temperature schedule (1) with 0.90q =  and 1L =  is used. 

The termination condition is an uncoupled temperature and rejection threshold (16). 

Optimization is terminated when 20010fT
−= or when max 200R =  consecutive solutions are 

identical. The choice for L and 
f

T  values are not explained. If the HW platform or the 

number of tasks were changed, then trivially the number of iterations should be adjusted as 
well. 
The initial mapping used was a random mapping of tasks. 
The paper compares SA to ten other heuristics for independent task mapping problem. SA 
got position 8/11, where 1/11 is the best position received by a genetic algorithm. We believe 

SA was used improperly in this comparison. Based on (11), we think 
f

T  was set too low, 

and L should be much larger than 1. 

4.2 Coroyer case 
(Coroyer & Liu, 1991) do both single and task scheduling (Sec 3.8.5) moves. 
The acceptance function is exponential (7) accompanied with a heating process that puts 
acceptance probabilities to a relevant range. Initial temperature is set high enough so that 

0 0.95p =  of new mappings are accepted. If 
avg

CΔ  is the average increase in cost for 

generating new solutions, the initial temperature is set to 0

0ln

avg
C

T
p

−Δ
= . This approach 

depends on the exponential acceptance  function, but it can easily be adopted for other 
acceptance functions. The average increase is determined by simulating a sufficient number 
of moves. See Section 3.5.1. 
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Both fractional (2) and geometric (1) temperature schedules are used with various 
parameters. The number of mapping iterations per temperature level is ( 1)L N Mα= = − . 

The termination condition is an uncoupled temperature and rejection threshold (16). 

Optimization is terminated when 210fT
−≤  or when max 5R α=  consecutive solutions are 

identical. Also, a given temperature threshold (13) is used. 
The initial mapping used was a random mapping of tasks. 
They show that SA gives better results than priority-based heuristics for task mapping and 
scheduling, but SA is also much slower. 
Systematic methods are not used to tune parameters. 

4.3 Orsila case 
This case presents methods to derive SA parameters systematically from the problem 
parameters (Orsila et al., 2006). 
 
The annealing schedule is geometric with 0.95q = . The number of iterations per 

temperature level is ( 1)L N Mα= = − . 

 
The initial and final temperature range 0[ , ] (0,1]

f
T T ⊂  is defined with 

 max
0

min sum

kt
T

t
=  (18) 

 min

max

f

sum

t
T

kt
=  (19) 

where maxt  and mint  are the maximum and minimum execution time for any task (when it is 

activated) on any processor, min sumt is the sum of execution times for all tasks on the fastest 

processor in the system, max sumt  is the sum of execution times for all tasks on the slowest 

processor in the system, and 1k ≥  is a coefficient. 
The temperature range is tied to a slightly modified version of (6). The factor 0.5 is the only 
difference. 

 

0

1
( , ) ()

1 exp( )
0.5

Accept C T random
C

C T

Δ = ⇔ <
Δ

+
True  (20) 

The rationale is choosing an initial temperature where the longest single task will have a fair 
transition probability of being moved from one processor to another, and the same should 
hold true for the shortest single task with respect to final temperature. 

Coefficient k has an approximate relation to 
f

p . Substituting min

00.5

C

C

Δ
 in place of minCΔ  to 

make (10) compatible with (20) gives 

 min

0

1
0.5 ln( 1)

f

f

C
T T

C
p

Δ
= <

−
 (21) 
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Now, min

00.5

C

C

Δ
 is approximated with min

max sum

t

t
 from (19) 

 min

max

1
ln( 1)

f

sum

f

t
T T

t
p

<
−

∼  (22) 

Now comparing (19) and (22) we get the relation 

 
1

ln( 1)
f

k
p

−∼  (23) 

Solving (23) with respect to 
f

p  gives us 

 
1

1
f k

p
e +

∼  (24) 

For 1k =  the probability 
f

p  to accept a worsening move on the final temperature level 

given a cost change of order mint  is approximately 27%. For 2k = , probability is 12%. As k 

increases 
f

p  decreases exponentially. Suitable values for k are in range [1, 9] unless L is very 

large (hundreds of thousands or even millions of iterations). The temperature range implied 
by 1k =  is shown in Figure 5. The temperature range is calculated with (18) and (19). (Orsila 

et al., 2007) uses 2k =  and reaches are a local minimum more likely in the end, but it is 

more expensive than 1k = . 
 

 

Figure 5. Averaged speedup with respect to temperature for 300 node graphs with different 
L values. The temperature given with (18)(19) k = 1 is labeled „predicted range“. Notice that 
temperature and the number of iterations increase in different directions. The number of 
mapping iterations increases as the temperature decreases. 

The end condition is the coupled temperature and rejection threshold (17) with maxR α=
. 

4.4 Ravindran case 
(Ravindran, 2007) uses an exponential acceptance function (7). 
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A Koch temperature schedule (3) was used with parameters, including initial and final 
temperature, set manually. Termination condition is the temperature threshold (13). 
Systematic methods are not used to tune parameters. However, the Koch temperature 
schedule is mitigating factor since it affects the number of temperature levels and iterations 
based on the problem. 

4.5 Wild case 
(Wild et al., 2003) use a geometric annealing schedule (1) with unknown parameters. 
The termination condition is the uncoupled temperature and rejection threshold (16). 
They show that an ECP move heuristics (Sec 3.7.1) is significantly better than the single 
move with directed acyclic graphs. 
Systematic methods are not used to tune parameters. 

5. Analysis and discussion 

Following sections analyze the effect of iterations per temperature level, saving the number 
of iterations, give best practices for SA, and finally, SA is compared to two greedy 
algorithms and random mapping. 

5.1 Iterations per temperature level 
Figure 6 shows speedup of a 300N =  task directed acyclic graph with respect to iterations 

per temperature level L. Speedup is defined as 1t

t
, where t is the execution time of the 

optimized solution on multiprocessor system and t1 is the execution time on a single 
processor system. 

 
Figure 6. Averaged speedups for 300 node graphs with M=2-8 processing elements and 
different L values (L = 1, 2, 4, ..., 4096) for each processing element set. 

Figure 7 shows the speedup and the number of iterations for each L. These figures show that 
having ( 1) [300,600,900, ,2100]L N Mα≥ = − = …  for the number of processors [2,3, ,8]M = …  

does not yield a significant improvement in performance but optimization time is increased 
heavily. Parameter 1L =  performs very poorly (Orsila et al., 2006). 
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Figure 7. Averaged speedup with respect to mapping evaluations for 300 node graphs with 
different L values. 

5.2 Saving optimization effort 
Choosing initial temperature 0T  and final temperature 

f
T  is crucial for saving optimization 

iterations. With too high an initial temperature the optimization process is practically Monte 
Carlo which means it converges very slowly, and thus, initial iterations are practically 
wasted because bad moves are accepted with too high a probability. This effect is visible in 

Figure 5 at high temperatures, i.e. 210T
−> . Also, too low a probability reduces the annealing 

to greedy optimization. Greedy optimization becomes useless after a short time because it 
can not espace local minima. Therefore the final temperature must be set as high as possible 
without sacrificing the greedy part in optimization. This is the rationale for (Orsila et al., 
2006) in Section 4.3. 

5.3 Simulated annealing best practices 
Based on our experiments, we have identified few rules of thumb for using SA to task 
mapping. 
1. Choose the number of iterations per temperature level ( 1)L N Mα≥ = − , where N is the 

number of tasks and M  is the number of PEs. Thus, α  is the number of neighbouring 

mapping solutions because each of the N tasks could be relocated into at most 1M −   
alternatives. 

2. Use geometric temperature schedule with 0.90 0.98q≤ ≤ . This is the most common 

choice. 
3. Device a systematic method for choosing the initial and final temperatures. As an 

example, see (10). 
4. Use coupled temperature and rejection threshold as the end condition (Section 3.9.6) 

with maxR L=  (the number of iterations per temperature level) 

5. If in doubt, use the single task move (Sec 3.6.1). This is the most common choice. Other 
move heuristics can be very useful depending on the system. For example, ECP 
heuristics (Sec 3.7.1) is efficient for directed acyclic task graphs. 

6. Use normalized inverse exponential function (6) as the acceptance function. This 
implies that temperature is always in range (0, 1]. This also means that convergence of 
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separate annealing problems can be compared with each other, and thus, effective 
annealing temperatures become more apparent through experiments. 

7. Optimize the same problem many times. On each optimization run start with the best 
known solution so far. As simulated annealing is a probabilistic algorithm it can happen 
that the algorithm drives itself to a bad region in the optimization space. Running the 
algorithm several times reduces this risk. 

8. If in doubt of any of the parameters, find them experimentally 
9. Record the iteration number when the best solution was reached. If the termination 

iteration number is much higher than the best solution iteration, maybe the annealing 
can be made more efficient without sacrificing reliability. 

5.4 Comparing SA to greedy algorithms 
Figure 8 compares SA to two greedy algorithms and Random Mapping (Orsila et al., 2007). 
A 300 task application is distributed onto 8 processors to optimize execution time. Group 
Migration (GM) is a deterministic greedy algorithm that converges slowly. GM needs many 
iterations to achieve any speedup, but once that occurs, the speedup increases very rapidly. 
Optimal Subset Mapping (OSM) is a stochastic greedy algorithm that converges very 
rapidly. It reaches almost the maximum speedup level with very limited number of 
iterations. SA convergence speed is between GM and OSM but in the end it reaches a better 
solution. Random mapping saturates quickly and further iterations are unable to provide 
any speedup. Note that SA follows the random mapping line initially as it resembles a 
Monte Carlo process at high temperatures. Random mapping is the base reference for any 
mapping algorithm since any intelligent algorithm should do better than just random. 
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Figure 8. SA convergence speed compared to GM, OSM and Random Mapping algorithms 
for mapping 300 tasks to 8 processors. SA+AT is a Simulated Annealing algorithm 
presented in Section 4.3. GM and OSM are greedy heuristics. 

SA yields 8% better result than GM, 12% better than OSM, and 107% better than random 
mapping. SA is better than the greedy algorithms because it can espace local minima. 
However, when measuring the best speedup divided with the number of iterations needed  
to achieve the best result for each algorithm the relative order is different. We normalize the 
results so that random mapping gets value 1.00. SA gets 2.58, OSM 6.11 and GM 1.21. That 
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is, OSM is 2.4 times as efficient as SA is in terms of speedup divided by iterations. SA is 2.1 
times as efficient as GM. Thus, we note that greedy local search methods can converge much 
faster than SA. 

6. Open research challenges 

This section identifies some open research challenges related to using SA for task mapping. 
The challenges are in order of importance. 
What is the optimal annealing schedule for task mapping given a hardware,  application 
model and a trade-off between solution quality and speed? The hardware and application 
model determine all possible cost changes in the system, and this is tied to probabilistic SA 
transitions. Not all temperatures are equally useful, so iterations can be saved by not 
annealing on irrelevant temperatures. For example, it is not benefitial to use lots of iterations 
at high temperatures because the process is essentially a Monte Carlo process which 
converges very slowly. 
What are the best move heuristics for each type of application and hardware model? For 
example, ECP (Sec 3.7.1) is useful for application models that have the concept of critical 
path. 
What is the optimal transition probability for 0CΔ = ? The probability is 0.5 in (5) and 1.0 in 
(7), but it can be selected arbitrarily. This probability determines the tendency at which SA 
travels equally good solutions in the neighborhood. Is there advantage to using either (5) or 
(7) due to this factor? 
Can SA be made faster or better by first doing coarse-grain optimization on the application 
level and then continue with finer-grain optimization? Current optimization strategies are 
concerned with sequential small changes rather than employ a top-level strategy. 
What are the relevant test cases for comparing SA to other algorithms, or other SA 
implementations? (Barr et al., 1995) have laid out good rules for comparing heuristics. 
Excluding optimization programs, is there a problem where running SA as the main loop of 
the program would be benefitial? Each Cost() call would go one or several steps further in 
the program. In other words, is SA a feasible for run-time optimization rather than being 
used as an offline optimizer? Even small problems can take significant amount of iterations 
to get parameters correctly. The application must also tolerate slowdowns. 

7. Conclusions 

This chapter presents an overview of using SA for mapping application tasks to 
multiprocessor system. We analyze the different function variants needed in SA. Many 
choices are suboptimal with respect to iteration count or discouraged due to poor 
optimization results. We find that SA is a well performing algorithm if used properly, but in 
practice it is too often used badly. Hence, we present best practices for some of those and 
review the most relevant open research challenges. 
For best practices we recommend following. Iterations per temperature level should depend 
on the problem size. Systematic methods should be used for the temperature range. 
Normalized inverse exponential function should be used. 
For open research challenges we prioritize following. Find an optimal annealing 
schedule, move function and transition probabilities for each type of common task 
mapping problems. For example, it is possible to do critical path analysis for some task 
mapping problems. 

www.intechopen.com



 Simulated Annealing 

 

342 

8. References 

Barr, R. S.; Golden, B. L & Kelly, J. P. & Resende, M. G. C. & Stewart, W. R. (1995). Designing 
and Reporting on Computational Experiments with heuristic Methods, Springer 
Journal of Heuristics, Vol. 1, No. 1, pp. 9-32, 1995. 

Braun, T. D.; Siegel, H. J. & Beck, N. (2001). A Comparison of Eleven Static Heuristics for 
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Systems, 
IEEE Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-837, 2001. 

Cerny, V. (1985). Thermodynamical Approach to the Traveling Salesman Problem: An 
Efficient Simulation Algorithm, Journal of Opt. Theory Appl., Vol. 45, No. 1, pp. 41-
51, 1985. 

Coffman, E. G. Jr. & Graham, R. L. (1971). Optimal Scheduling for Two-Processor Systems, 
Springer Acta Informatica, Vol. 1, No. 3, pp. 200-213, September, 1971. 

Coroyer, C. & Liu, Z. (1991). Effectiveness of Heuristics and Simulated Annealing for the 
Scheduling of Concurrent Tasks - An Empirical Comparison, Rapport de recherch´ 
de l'INRIA - Sophia Antipolis, No. 1379, 1991. 

Kirkpatrick, S.; Gelatt, C. D. Jr. & Vecchi, M. P. (1983). Optimization by simulated annealing, 
Science, Vol. 200, No. 4598, pp. 671-680, 1983. 

Koch, P. (1995). Strategies for Realistic and Efficient Static Scheduling of Data Independent 
Algorithms onto Multiple Digital Signal Processors. Technical report, The DSP 
Research Group, Institute for Electronic Systems, Aalborg University, Aalborg, 
Denmark, December 1995. 

Kwok, Y.-K. & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task 
graphs to multiprocessors, ACM Comput. Surv., Vol. 31, No. 4, pp. 406-471, 1999. 

Orsila, H.; Kangas, T. & Salminen, E. & Hämäläinen, T. D. (2006). Parameterizing Simulated 
Annealing for Distributing Task Graphs on Multiprocessor SoCs, International 
Symposium on System-on-Chip 2006, Tampere, Finland, November, pp. 1-4, 2006. 

Orsila, H.; Salminen, E. & Hännikäinen, M. & Hämäläinen, T. D. (2007). Optimal Subset 
Mapping And Convergence Evaluation of Mapping Algorithms for Distributing 
Task Graphs on Multiprocessor SoC, International Symposium on System-on-Chip 
2007, Tampere, Finland, November, pp. 1-6, 2007. 

Ravindran, K. (2007). Task Allocation and Scheduling of Concurrent Applications to 
Multiprocessor Systems, PhD Thesis, UCB/EECS-2007-149, [online] 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-149.html, 2007. 

Wikipedia.       (2008).      Embarrassingly        Parallel,      [online] http://en.wikipedia.org 
/wiki/Embarrassingly_parallel 

Wikipedia.      (2008).      Kahn       Process     Network,       [online] http://en.wikipedia.org 
/wiki/Kahn_Process_Network 

Wild, T.; Brunnbauer, W. & Foag, J. & Pazos, N. (2003). Mapping and scheduling for 
architecture exploration of networking SoCs, Proc. 16th Int. Conference on VLSI 
Design, pp. 376-381, 2003. 

www.intechopen.com



Simulated Annealing

Edited by Cher Ming Tan

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the

various branches of engineering. We encourage readers to explore the application of Simulated Annealing in

their work for the task of optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Heikki Orsila, Erno Salminen and Timo D. Hämäläinen (2008). Best Practices for Simulated Annealing in

Multiprocessor Task Distribution Problems, Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-953-7619-

07-7, InTech, Available from:

http://www.intechopen.com/books/simulated_annealing/best_practices_for_simulated_annealing_in_multiproc

essor_task_distribution_problems



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


