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1. Introduction 

During the past several decades, simulated annealing (Kirkpatrick et al., 1983) and the 
genetic algorithm (Holland, 1975; Goldberg, 1989) have been applied successfully by many 
authors to highly complex optimization problems in different fields of sciences and 
engineering. In spite of their successes, both algorithms suffer from some difficulties in 
convergence to the global optima. 
Suppose that we are interested in minimizing the function U(x) over a given space X. 
Throughout this article, U(x) is called the energy function in terms of physics. Simulated 
annealing works by simulating a sequence of distributions defined as 

 
where τk is called the temperature. The temperatures form a decreasing ladder τ1 >…> τk > … 
with τ1 being reasonably large such that the Metropolis-Hastings (MH) moves (Metropolis et 

al., 1953; Hastings, 1970) have a high acceptance rate at this level and lim
k→∞

τk = 0. It has 

been shown by Geman and Geman (1984) that the global minima of U(x) can be reached by 
simulated annealing with probability 1 if the temperature decreases at a logarithmic rate. In 
practice, this cooling schedule is too slow; that is, CPU times can be too long to be affordable 
in challenging problems. Most frequently, people use a linearly or geometrically decreasing 
cooling schedule, which can no longer guarantee the global minima to be reached. 
The genetic algorithm solves the minimization problem by mimicking the natural 
evolutionary process. A population of candidate solutions (also known as individuals), 
generated at random, are tested and evaluated for their energy values; the best of them are 
then bred through mutation and crossover operations; the process repeated over many 
generations, until an individual of satisfactory performance is found. The mutation 
operation is modeled by random perturbations of the individuals. The crossover operation 
is modeled by random perturbations of the couples formed by two individuals selected 
according to some procedure, e.g., a roulette wheel selection or a random selection. Through 
the crossover operation, the solution information distributed across the population can be 
effectively used in the minimization process. Schmitt (2001) showed that under certain 
conditions, the genetic algorithm can converge asymptotically to the global minima at a 
logarithmic rate in analogy to simulated annealing. 

Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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Quite recently, the stochastic approximation Monte Carlo (SAMC) algorithm (Liang et al., 
2007) has been proposed in the literature as a dynamic importance sampling technique. A 
remarkable feature of SAMC is that it possesses the self-adjusting mechanism and is thus 
not trapped by local energy minima. In this article, we consider applications of SAMC in 
optimization. Two modified versions of SAMC, annealing SAMC (Liang, 2007; Zhu et al., 
2007) and annealing evolutionary SAMC (Liang, 2008), are discussed. Both algorithms have 
inherited self-adjusting ability from the SAMC algorithm. The annealing SAMC algorithm 
works in the same spirit as the simulated annealing algorithm but with the sample space 
instead of temperature shrinking with iterations. The annealing evolutionary SAMC 
algorithm represents a further improvement of annealing SAMC by incorporating some 
crossover operators originally used by the genetic algorithm into its search process. Under 
mild conditions, both annealing SAMC and annealing evolutionary SAMC can converge 
weakly toward a neighboring set of global minima in the space of energy. The new 
algorithms are tested on two optimization problems with comparisons with simulated 
annealing and the genetic algorithm. The numerical results favor to the new algorithms. 
The remainder of this article is organized as follows. In Section 2, w describe the ASAMC 
and AESAMC algorithms and study their convergence. In Section 3, we illustrate the new 
algorithms with two function minimization problems, one has a rugged energy landscape 
and the other is a complex least square estimation problem encountered in economic 
research. In Section 4, we conclude the paper with a brief discussion. 

2. Annealing stochastic approximation Monte Carlo algorithms 

2.1 Stochastic approximation Monte Carlo 
Before describing the annealing SAMC algorithms, we first give a brief description of 
SAMC. In our description, some of the conditions have been slightly modified from those 
given in Liang et al. (2007) to make the algorithm more suitable for solving optimization 
problems. Suppose that we are working with the following Boltzmann distribution, 

 
(1) 

where Z is the normalizing constant, τ is the temperature, and X is the sample space. For the 

reason of mathematical simplicity, we assume that X is compact. This assumption is 
reasonable, because for optimization problems we are usually only interested in the 
optimizers instead of samples drawn from the whole sample space and we have often some 
rough ideas where the optimizers are. Furthermore, we suppose that the sample space has 
been partitioned according to the energy function into m disjoint subregions denoted by  
E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, ..., Em−1 = {x : um−2 < U(x) ≤ um−1}, and Em = {x : U(x) 
> um−1}, where u1, . . . , um−1 are real numbers specified by the user. Let ψ(x) be a non-negative 

function defined on the sample space with 0 < ∫ X ψ (x)dx < ∞, and gi = ∫ Ei ψ(x)dx. In practice, 

we often set ψ(x)= exp{−U(x)/τ}. 
SAMC seeks to draw samples from each of the subregions with a pre-specified frequency. If 
this goal can be achieved, then the local-trap problem can be avoided successfully. Let x(t+1) 
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denote a sample drawn from a MH kernel K
( )tθ

(x(t),· ) with the proposal distribution  

q(x(t),· ) and the stationary distribution 

 
(2) 

where θ (t) = (θ ( )

1

t , . . . , θ ( )t

m
) is an m-vector in a space . 

Let π = (π1, . . . , πm) be an m-vector with 0 < πi < 1 and 
1

m

i=∑  πi = 1, which defines a desired 

sampling frequency for the subregions. Henceforth, π will be called the desired sampling 

distribution. Define H(θ(t), x(t+1)) = (e(t+1) − π), where e(t+1) = (
( 1)

1

t

e
+

, . . . , 
( 1)t

m
e

+

) and 
( 1)t

i
e

+

= 1 if 
x(t+1) ∈ Ei and 0 otherwise. Let {γt} be a positive non-decreasing sequence satisfying the 
conditions, 

 

(3) 

for some δ ∈ (1, 2). In this article, we set 

0

0
max( , )

t

t

t t

η

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4) 

for some specified values of t0 > 1 and η ∈ (
1

2

, 1]. A large value of t0 will allow the sampler 

to reach all subregions very quickly even for a large system. Let J(x) denote the index of the 
subregion the sample x belongs to. With above notations, one iteration of SAMC can be 
described as follows. 
SAMC algorithm: 

i. Generate x(t+1) ~ 
( )t

K
θ

(x(t),· ) with a single Metropolis-Hastings simulation step: 

(i.1) Generate y according to the proposal distribution q(x(t), y). 
(i.2) Calculate the ratio 

 
 

(i.3) Accept the proposal with probability min(1, r). If it is accepted, set x(t+1) = y; 
otherwise, set x(t+1) = x(t). 

ii. Set θ* = θ (t) + γtH(θ (t), x(t+1)), where γt is called the gain factor. 
iii. If θ* ∈ Θ, set θ (t+1) = θ*; otherwise, set θ (t+1) = θ* + c*, where c* = (c*, . . . , c*) and c* is 

chosen such that θ* + c* ∈ . 
A remarkable feature of ASAMC is its self-adjusting mechanism. If a proposal is rejected, 
the weight of the subregion that the current sample belongs to will be adjusted to a larger 
value, and thus the proposal of jumping out from the current subregion will less likely be 
rejected in the next iteration. This mechanism warrants that the algorithm will not be 
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trapped by local minima. This is very important for the systems with multiple local energy 
minima. 
The parameter space  is set to [−B, B]m with B being a huge number e.g., 10100, which, as 

a practical matter, is equivalent to setting B = Rm. In theory, this is also fine. As implied by 

Theorem 5.4 of Andrieu et al. (2005), the varying truncation of θ*can only occur a finite 
number of times, and thus {θ (t)} can be kept in a compact space during simulations. Note 
that ( ) t

f
θ

(x) is invariant with respect to a location transformation of θ (t)—that is, adding to 

or subtracting a constant vector from θ (t) will not change ( )tf
θ

(x). 

The proposal distribution q(x, y) used in the MH moves satisfies the minorisation condition, 
i.e., 

 
(5) 

The minorisation condition is a natural condition in study of MCMC theory (Mengersen and 
Tweedie, 1996). In practice, this kind of proposals can be easily designed for both discrete 
and continuous problems. Since both  and X are compact, a sufficient design for the 

minorisation condition is to choose q(x, y) > 0 for all x, y ∈ X. For example, for a continuous 

problem, q(x, y) can be chosen as a random walk Gaussian proposal y ~ N(x, σ 2) with σ 2 

being calibrated to have a desired acceptance rate. Issues on implementation of the 
algorithm, such as how to partition the sample space, how to choose the gain factor 
sequence, and how to set the number of iterations, have been discussed at length in Liang et 
al. (2007). 
SAMC falls into the category of stochastic approximation algorithms (Benveniste et al.,1990; 
Andrieu et al., 2005). The convergence of this algorithm can be extended from a theorem 
presented in Liang et al. (2007). Under mild conditions, we have 

 

(6) 

as t →∞ , where C is an arbitrary constant, π0 = 
{ : 0}ij i E∈ =∑ πj /(m−m0), and m0 = #{i : Ei = ;} is 

the number of empty subregions. A subregion Ei is called empty if 
iE∫ ψ (x)dx = 0. In SAMC, 

the sample space partition can be made blindly by simply specifying some values of  
u1, . . . , um−1. This may lead to some empty subregions. The constant C can be determined by 

imposing a constraint on θ (t), say, 
( )

1

t
im

i
e
θ

=∑  is equal to a known number. 

Let ( )ˆ t

i
π =P(x(t) ∈ Ei) be the probability of sampling from the subregion Ei at iteration t. 

Equation (6) implies that as t →∞, ( )ˆ t

i
π  will converge to πi + π0 if Ei ≠ 0 and 0 otherwise. With 

an appropriate specification of π, sampling can be biased to the low energy subregions to 
increase the chance of finding the global energy minima. 
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The subject of stochastic approximation was founded by Robbins and Monro (1951). After 
five decades of continual development, it has developed into an important area in systems 
control and optimization. Many of the neural network training algorithms, such as the 
simultaneous perturbation stochastic approximation algorithm (Spall, 1992), the Widrow 
Hoff algorithm (also known as the “least mean square” algorithm) (Haykin, 1999, pp.128-
135), the Alopex algorithm (Harth & Tzanakou, 1974) and self-organizing maps (Kohonen, 
1990), can be regarded as special instances of stochastic approximation. Refer to Bharath & 
Borkar (1999) for more discussions on this issue. Recently, stochastic approximation has 
been used with Markov chain Monte Carlo for solving maximum likelihood estimation 
problems (Gu & Kong, 1998; Delyon et al., 1999). The critical difference between SAMC and 
other stochastic approximation algorithms is at sample space partitioning. Sample space 
partitioning improves the performance of stochastic approximation in optimization. It forces 
each non-empty subregion to be visited with a fixed frequency, and thus increases the 
chance to locate the global energy minimizer. 

2.2 Annealing stochastic approximation Monte Carlo 
Like conventional Markov chain Monte Carlo algorithms, SAMC is able to find the global 
energy minima if the run is long enough. However, due to the broadness of the sample 
space, the process may be slow even when sampling has been biased to low energy 
subregions. To accelerate the search process, we shrink the sample space over iterations. As 
argued below, this modification preserves the theoretical property of SAMC when a global 
proposal distribution is used. 
Suppose that the subregions E1, . . . ,Em have been arranged in ascending order by energy; 
that is, if i < j, then U(x) < U(y) for any x ∈ Ei and y ∈ Ej . Let ϖ(u) denote the index of the 

subregion that a sample x with energy u belongs to. For example, if x ∈ Ej , then ϖ (U(x)) = j. 

Let X(t) denote the sample space at iteration t. Annealing SAMC initiates its search in the 

entire sample space X0 = 
1

m

ii
E

=∪ , and then iteratively searches in the set 

 

(7) 

where ( )

min

t
U  is the best energy value obtained until iteration t, and ℵ > 0 is a user specified 

parameter which determines the broadness of the sample space at each iteration. Since the 
sample space shrinks iteration by iteration, the algorithm is called annealing SAMC. In 
summary, the ASAMC algorithm consists of the following steps: 
ASAMC algorithm: 

a) (Initialization) Partition the sample space X into m disjoint subregions E1, . .. ,Em 

according to the objective function U(x); specify a desired sampling distribution π; 

initialize x(0) by a sample randomly drawn from the sample space X, θ (0) = ( (0)

1
θ , . . . , 

(0)

m
θ  ) = (0, 0, . . . , 0), ℵ, and X0 = 

1

m

ii
E

=∪ ; and set the iteration number t = 0. Let  be a 

compact subset in Rm, θ (0) = ( (0)

1
θ , . . . , (0)

m
θ  ) = (0, 0, . . . , 0), and θ (0) ∈ . 
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b) (Sampling) Update the current sample x(t) by a single or few MH moves which admit 
the following distribution as the invariant distribution, 

 

(8) 

where I(x ∈ Ei) is the indicator function, θ (t) i is a working weight associated with the 
subregion Ei, ψ(x) = exp{−U(x)/τ} is an unnormalized Boltzmann density, and τ is a user-

specified parameter. Denote the new sample by x(t+1). 

c) (Working weight updating) Update the working weight θ (t) as follows: 

 
where γt is called the gain factor. If θ* ∈  , set θ (t+1) = θ*; otherwise, set θ (t+1) = θ* + c*, 
where c* = (c*, . . . , c*) and c* is chosen such that θ* + c* ∈  

d) (Termination Checking) Check the termination condition, e.g., a fixed number of 
iterations or an optimal solution set have been reached. Otherwise, set t ←t + 1 and go 
to step (b). 

It has been shown in Liang (2007) that if the gain factor sequence satisfie (3) and the 
proposal distribution satisfies the minorisation condition (5), ASAMC can converge weakly 
toward a neighboring set of the global minima of U(x) in the space of energy. More 
precisely, the sample x(t) converges in distribution to a random variable with the density 
function 

 

(9) 

where umin is the global minimum value of U(x), '
i

π = πi+(1 −
{ : 0, 1,..., )}minkj k E k u +∈ ≠ =∑ ϖ( ℵ πi)/m0, 

m0 is the cardinality of the set {k : Ek ≠ 0, k = 1, . . . ,ϖ(umin + ℵ)}, and 0 denotes an empty set. 

The subregion Ei is called empty if 
iE∫ ψ (x)dx = 0. An inappropriate specification of ui’s may 

result in some empty subregions. ASAMC allows for the existence of empty subregions in 
simulations. 

2.3 Annealing evolutionary stochastic approximation Monte Carlo 
Like the genetic algorithm, AESAMC also works on a population of samples. Let x = (x1, . . . 
,xn) denote the population, where n is the population size, and xi = (xi1, . . . , xid) is a d-
dimensional vector called an individual or chromosome in terms of genetic algorithms. 

Thus, the minimum of U(x) can be obtained by minimizing the function U(x) =
1

n

i=∑ U(xi). 

An unnormalized Boltzmann density can be defined for the population as follows, 

 (10) 
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where Xn = X ×· · ·×X is a product sample space. The sample space can be partitioned 

according to the function U(x) into m subregions: E1 = {x : U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤u2}, . 

. ., Em−1 = {x : um−2 < U(x) ≤ um−1}, and Em = {x : U(x) > um−1}, where u1, . . . , um−1 are m − 1 

known real numbers. As in ASAMC, we suppose that the subregions have been arranged in 
ascending order by the function U(x). We note that here the sample space is not necessarily 
partitioned according to the function U(x), for example, λ(x) = min{U(x1), . . . ,U(xn)} is also a 
good choice. The population can then evolve under the framework of ASAMC with an 
appropriate specification of the proposal distribution for the MH moves. At iteration t, the 
MH moves admit the following distribution as the invariant distribution, 

 

(11) 

where ( )

min

t
U  denotes the best value of U(x) obtained by iteration t. As discussed before, {θ(t)} 

can be kept in a compact space in simulations.  
Since, in AESAMC, the state of the MH chain has been augmented to a population, the 
crossover operators used in the genetic algorithm can be employed to accelerate the 
evolution of the population. However, to satisfy the Markov chain reversibility condition, 
these operators need to be modified appropriately. As demonstrated by Liang and Wong 
(2000, 2001), Goswami and Liu (2007), and Jasra et al. (2007), incorporating genetic type 
moves into Markov chain Monte Carlo can often improve the mixing rate of the simulation. 
Note that the crossover operators used in these work may not be suitable for AESAMC, 
because asymptotic independence between individuals is required to be remained in the 
operations. Whilst this is not required in AESAMC. The sample space partition makes the 

individuals dependent on each other, although ψ(x) is defined as a product of the functions 

ψ(xi), i = 1, . . . , n. The crossover operators used in AESAMC can be described as follows. 

K-Point Crossover This proposal is the same as that used in Liang and Wong (2001). To 
make the article self-contained, it is briefly described as follows. Two chromosomes, say xi 

and xj with i < j, are selected from the current population x according to some selection 
procedure as parental chromosomes and two offspring chromosomes

i
x' and 

j
x'  are 

generated as follows: sample K integer crossover points without replacement from the set  
{1, . . . , d−1}; sort these points in ascending order; and construct offspring chromosomes by 
swapping the genes of the parental chromosomes between each odd and the next even 
crossover points (d is set as an additional crossover point when K is odd). The new 
population can then be formed as x’ = (x1, . . . , xi−1, i

x' , xi+1, . . . , xj−1, j
x' , xj+1, . . . , xn). In this 

article, 1 and 2-point crossover operators are applied equally when the K point crossover 
operator is selected in simulations. An extreme case of the K-point crossover is the uniform 
crossover, in which each element of 

i
x'  (i.e., genotype) is randomly chosen from the two 

corresponding elements of the parental chromosomes and the corresponding element of 
,

j
x is assigned to the element not chosen by x0i. 

www.intechopen.com



 Simulated Annealing 

 

194 

Throughout this article, the parental chromosomes for the K-point crossover operator are 
selected as follows. The first parental chromosome is selected from the current population 
according to the distribution 

 
(12 

where τs is the selection temperature. In this article, we set τs = τ / 10. Let xi denote the first 
parental chromosome. The second parental chromosome is then selected from the 
subpopulation x \ {xi} according to the distribution 

 
(13) 

For a given pair of chromosomes (xi, xj ), the selection probability is Ps(xi, xj |x) = w1(xi)w2(xj 

|xi)+ w1(xj)w2(xi|xj ). 
To have the distribution (11) invariant with respect to the crossove operation, the acceptance 
of the new population x’ should be moderated by the MH rule; that is, accepting x’with 
probability 

 (14) 

where the transition probability ratio is  

 
Snooker Crossover This operator proceeds as follows: 
a) Randomly select one chromosome, say xi, from the current population x. 
b) Select the other chromosome, say, xj , from the subpopulation x \ {xi} according to the 

distribution w2(x|xi) as defined in (13). 
c) Let e = (xj − xi)/║xj − xi║, and let 

i
x' = xi + re, where r is a random variable drawn for a 

normal distribution 2
(0, )

c
N σ with the standard deviation σc being calibrated such that 

the operation has a reasonable overall acceptance probability. 
d) Construct a new population x’ by replacing xi with the offspring 

i
x' , and accept the new 

population with probability min{1,
( )tθ

f (x’)/
( )tθ

f (x)}. For this operator, the transition 

probability ratio is 1; that is, T(x→x’) = T(x’→x). 
We note that this operator is a little different from the the snooker sampler described in 
Gilks et al. (1994) and the snooker crossover operator described in Liang and Wong (2001), 
where xi is required to be independent of other individuals and the operation is required to 
leave the marginal distribution of xi invariant. These requirements are waived here because 
AESAMC allows for the dependence among the individuals. 
Linear Crossover This operator has the same procedure with the snooker crossover operator 
except that step (c) is changed as follows. 

(c) Set 
i

x'  = xi + rxj , where r ~ Unif [−1, 1]. 
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This operator is designed for exploration of the triangular region between xi and xj and that 
between xi and −xj . 
Mutation In addition to the crossover operators, AESAMC also needs some mutation 
operators. Since the population size can be large, we here assume that the population is 
updated in the style of the Gibbs sampler, individual by individual, or component by 
component by viewing the population as a long vector. Furthermore, we assume that the 
mutation operator satisfies the minorisation condition 

 
(15) 

where x[−i] = (x1, . . . , xi−1, xi+1, . . . , xn) and q(xi → i
x' |x[−i]) denotes the proposal distribution 

use for updating xi. Note that the condition (15) can be further relaxed for AESAMC, 
requiring the inequality holds for any components of xi. Since both X and  are compact, it 
is easy to verify that the mutation operators described below satisfy the minorisation 
condition. 
Two types of mutation operators, MH-Gibbs mutation and point mutations, are used in this 
article. The MH-Gibbs mutation, also called the “Metropolis-within-Gibbs” sampler (Müller, 
1991) or the hybrid MCMC sampler (Robert & Casella, 2004, pp.393), proceeds as follows. 

For i = 1, . . . , n, given the population  

a) Generate a random direction vector e from a uniform distribution on the surface of a 
unit d-dimensional hypersphere. 

b) Generate a random number r ~ N(0, 2

m
σ ) and set 

i
x'  = ( )t

i
x + re, where σm is calibrated 

such that the operator has a reasonable overall acceptance rate. 
c) Construct a new population by replacing ( )t

i
x with 

i
x' , accept the new population 

according to the MH rule as in the snooker crossover, and denote the new population 
by x(t+1,i). 

For the reason of mathematical simplicity, we keep the working weights ( ( )

1

tθ , . . . , ( )t

m
θ ) 

unchanged in the cycle of the MH-Gibbs mutation. If the vector e used in step (b) is a (0,1)-
binary vector with the positions of nonzero elements being selected randomly, the above 
operator is called the point mutation operator. If the total number of nonzero elements in e is 
K, then the operator is called the K-point mutation operator. In this article, 1 and 2-point 
mutation operators are applied equally when the K-point mutation operator is selected in 
simulations. Let σp denote the step size of the K-point mutation; that is, the operator can be 

expressed as 
ij

x'  = ( )t

ij
x + rjej for j = 1, . . . , d, where rj is a random number drawn from the 

normal N(0, 2

p
σ ) and σp is called the step size of the operator. 

AESAMC Algorithm Let ρ1, . . . , ρ5, 0 < ρi < 1 and 5

1i=∑ ρi = 1, denote the respective 

probabilities for the MH-Gibbs mutation, K-point mutation, K point crossover, snooker 
crossover, and linear crossover operators to work at each iteration. In this article, we set  
ρ1 = ρ2 = 0.05 and ρ3 = ρ4 = ρ5 = 0.3. The AESAMC algorithm can be summarized as follows. 
AESAMC algorithm: 
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a) (Initialization) Partition the sample space Xn into m disjoint subregions E1, . . . ,Em; 

choose the threshold value ℵ and the working probabilities ρ 1, . . . , ρ 5; initialize a 

population x(0) at random; and set θ (0) = ( (0)

1
θ  , . . . ,

(0)

m
θ ) = (0, 0, . . . , 0), 

0

nX = 
1

m

ii=∪ E , 
(0)

min
U  = U (x(0)) and t = 0. 

b) (Sampling) Update the current population x(t) using the MH-Gibbs mutation, K-point 
mutation, K-point crossover, snooker crossover, and linear crossover operators 
according to the respective working probabilities. 

c) (Working weight updating) Update the working weight θ (t) by setting 

 

where Hi(θ(t), x(t+1)) = I(x(t+1) ∈ Ei) − πi for the crossover operators, and Hi(θ (t), x(t +1)) =  

1

n

j=∑  I(x(t +1,j) ∈ Ei)/n − πi for the mutation operators. If θ * ∈ , set θ ( t +1) = θ *; 

otherwise, set θ ( t +1) = θ * + c *, where c * = (c *, . . . , c *) and c * is chosen such that θ * + c 
* ∈ . 

d) (Termination Checking) Check the termination condition, e.g., a fixed number of 
iterations or an optimal solution set have been reached. Otherwise, set t → t + 1 and go 
to step (b). 

It has been shown in Liang (2008) that if the mutation operator satisfies the minorisation 
conditio (5) and the gain factor sequence satisfies (3), AESAMC also converges weakly 
toward a neighboring set of global minima of U(x) in the space of energy. 

2.4 Practical issues 
Liang et al. (2007) discussed practical issues on implementation of SAMC Some rules 
developed there, e.g., those on sample space partitioning and convergence diagnostic, are 
still applicable to ASAMC and AESAMC. Briefly speaking, the sample space should be 
partitioned such that the MH moves within the same subregion have a reasonable 
acceptance rate. In this article, the sample space is partitioned such that each subregion has 
an equal energy bandwidth Δu, i.e., ui+1 − ui ≡Δu for all i = 1, . . . ,m − 1. To ensure that the 
moves within the same subregion have a reasonable acceptance rate, it is set Δu = 0.2τ. The 
convergence can be diagnosed by examining the difference of the patterns of the working 
weights obtained in multiple runs. In the below, we discuss three more issues related to 
ASAMC and AESAMC. 
• On the choice of π. Liang et al. (2007) suggest to set π biased to the low energy regions if 

one aims at minimization. However, this is different for ASAMC and AESAMC, as it 
includes an extra parameter, namely, ℵ, to control its search space at each iteration. In 
our experience, a uniform setting is often better than a low-energy biasing setting in 
terms of efficiency of the two algorithms, especially when ℵ is small. Under the 
uniform setting, the system has more chances to visit higher energy regions, and thus 
has more chances to transit between disconnected regions. In this chapter, we set π to be 
uniform over all subregions, i.e., π1 = … = πm = 1/m, in all computations. 

• On the choice of ℵ, T0 and N, where N denotes the total number of iterations. Since ℵ 
determines the size of the neighboring set toward which ASAMC and AESAMC 
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converge, ℵ should be chosen carefully for better efficiency of the algorithms. If ℵ is too 
small, it may take a long time for the algorithms to locate the global minima. In this 
case, the sample space may contain a lot of separated regions, and most of the proposed 
transitions will be rejected if the proposal distribution is not spread enough. If ℵ is too 
large, it may also take a long time for the algorithms to locate the global energy 
minimum due to the broadness of the sample space. In principle, the value of ℵ should 
be chosen according to the roughness of the energy function. The rougher the energy 
function is, the larger value of ℵ one should choose. A large value of ℵ should associate 
with a large value of T0, as a larger value of T0 means faster transitions over the entire 
sample space. In practice, the values of ℵ, T0 and N can be determined through a trial 
and error process based on the diagnosis for the convergence of the algorithms. If they 
fail to converge, the parameters should be tuned to larger values. Finally, we point out 
that due to the population effect, AESAMC can often work with a smaller value of ℵ 
than ASAMC. 

• On the choice of population size for AESAMC. The genetic algorithm often works with 
a large population, because the crossover operation is the key to its efficiency. In 
AESAMC, the crossover operator has been modified to serve as a proposal for the MH 
moves, and it is no longer as critical as to the genetic algorithm. In AESAMC, the 
population size is usually set to a moderate number, ranging from 5 to 50. As known by 
many people, the crossover operation favors to high dimensional problems. 

3. Numerical examples 

3.1 A multiple local minima problem 
To illustrate ASAMC, we consider minimizing the following function on [−1.1, 1.1]2: 
 

 
 

whose global minimum is -8.12465 attained at (x1, x2) = (−1.0445,−1.0084) and 
(1.0445,−1.0084) This example is identical to Example 6.1 of Liang (2005). Figure 1 shows 
that U(x) has a multitude of local energy minima separated by high-energy barriers. 
Since the dimension of the problem is low, AESAMC was not applied to this example. In 
applyin ASAMC to this example, we partitioned the sample space into 41 subregions with 
an equal energy bandwidth: E1 = {x ∈ X : U(x) ≤ −8.0}, E2 = {(x) ∈ X : −8.0 < U(x) ≤ −7.8}, . . ., 

and E41 = {(x) ∈ X : −0.2 < U(x) ≤ 0}, set ψ(x) = exp(−U(x)/0.1), t0 = 100, and ℵ = 6, and choose 
the proposal distribution as N2(x, 0.32I2), where Id denotes an identity matrix of size d by d. 
The algorithm was run for 50000 iterations, and 500 samples were collected at equally 
spaced time intervals. 
For comparison, SAMC and SA were also applied to this example. SAMC was run for 50000 
iterations with the same setting as ASAMC (the parameter ℵ does not exist in SAMC), and 
500 samples were collected at equally spaced time intervals. For SA, we tried the linear and 
geometric cooling schedules. 
a) Linear. The temperature decreases linearly, i.e., 

Tk = Tk−1 − ̶ l, k = 1, . . . ,K, 

where ̶ l = (T1 − TK)/(K − 1). 
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Figure 1. Grid (a) and contour (b) representations of the function U(x) on [−1.1, 1.1]2. This 
figure characterizes multiple local minima problems. 

b) Geometric. The temperature decreases geometrically with a constant rate, i.e., 

Tk = ̶eTk−1, k = 1, . . . ,K, 

where ̶e = exp{(log TK − log T1)/(T − 1)}. 
In all simulations, we set the total number of temperature levels K = 500, and set the number 
of iterations performed at each temperature level to Nk = N/K, where N is the total numbers 
of iterations of a run. For this example, we set T1 = 10, T500 = 0.01 and N = 50000 for both 
cooling schedules. The resulting values of ̶l and ̶e are 0.02 and 0.986, respectively. The 
proposal distribution used at level k is N(xt, 0.12TkI2). In each run, 500 samples were collected 
at equally spaced time intervals. 
Figure 2 shows the evolving paths of the samples collected in the above runs. It is 
remarkable that ASAMC is ergodic as shown by Figure 2(a). Even though the sample space 

has been restricted to four isolated regions (four corners) by the choice of ℵ, successful 
transitions between different regions can still be made due to the use of the global proposal 
distribution. This also explains why a widely spread proposal distribution is preferred in 
ASAMC. Comparing to the sample path of SAMC, we can see that in ASAMC, sampling is 
more focused on the low energy regions. Hence, ASAMC is potentially more efficient than 
SAMC in optimization. 
Figures 2(c) and 2(d) show that at high temperatures, SA results in a random walk in the 
sample space; and that at low temperatures, SA tends to get trapped in a local minimum. 
Note that the linear cooling schedule contains more high temperature levels than the 
geometric cooling schedule. The sample paths of SA are significantly different from those of 
SAMC and ASAMC. The central part of the sample space (Figure 1(b)) has a big area, which 
is about half of the total area of the sample space, but it is seldom visited by ASAMC and 
SAMC. However, this part is visited by SA frequently with both linear and geometric 
cooling schedules. The reason is that SA tends to have a random walk in the sample space at 
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high temperatures, whereas ASAMC (so is SAMC) tends to have a random walk in the 
space of subregions, if each subregion is regarded as a single point. This implies that 
potentially ASAMC can overcome any barriers on the energy landscape and locate global 
energy minima quickly. Figure 2 shows that during the above runs SAMC and ASAMC 
have located the global energy minima many times, whilst SA has only located them a few 
times. 
 

 
Figure 2. Sample paths of the ASAMC, SAMC and SA samples. The circles in the plots show 
the locations of the two global energy minima. (a) Sample path of ASAMC. (b) Sample path 
of SAMC. (c) Sample path of SA with the linear cooling schedule. (d) Sample path of SA 
with the geometric cooling schedule. This figure characterizes the performance of ASAMC 
for multiple local minima problems: it is capable of transiting between different local 
minimum regions. 

To compare efficiency of ASAMC, SAMC and SA in global optimization, we conducted the 
following experiment. Each algorithm was run 1000 times independently. Each run 
consisted of 20000 iterations. ASAMC and SAMC were run under the same setting as used 
above except that the proposal distribution was changed to N2(x, 0.12I2). This change would 
force them to move more locally and thus to have more chances to locate the global energy 
minima. The proposal distribution used in SA has already been fine enough, and was not 
changed in this experiment. The numerical results are summarized in Table 1. The 
comparison shows that both ASAMC and SAMC are superior to SA for this example. Note 
that in all runs of the three algorithms, the total numbers of iterations were the same, and 
they cost about the same CPU times because the CPU time cost by each iteration is 
dominated by the part used for energy evaluation. This is especially true for more 
complicated problems, e.g., the neural network training problems studied in Liang (2007). 
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Table 1: Comparison of the SAMC, ASAMC, and SA algorithms for the multiple local 
minima example. Notations: let zi denote the minimum energy value obtained in the ith run 
for i = 1, . . . , 1000, “Mean” is the average of zi, “SD” is the standard deviation of “Mean”, 

“Minimum”= 1000

1
min

i=  zi, “Maximum”= 1000

1
max

i= zi, and “Proportion”= #{i : zi ≤ −8.12}. The 

cooling schedules used in SA-1 and SA-2 are linear and geometric, respectively. 

3.2 Rational-expectations model 
To illustrate the performance of AESAMC, we consider the following example, which is 
specified by the system of equations, 

 

(16) 

where α = (α11, α12, α13, α21, α22, α23), β = (β11, β12, β21, β22), γ = (γ1, γ2, γ3), Λ = [1 − β12β21(1 − 

β11)(1 − β22)]−1, and 
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The parameters (α,β,γ) can be estimated by minimizing the function 

 
 
                                                                                                                                                             (17) 

on the space: |αij | ≤ 10, |βij |≤ 10, |γi|≤ 1 and |x0i|≤ 10. 

This example is constructed by Dorsey & Mayer (1995) based on the rational-expectations 
model encountered in economic research (Hoffman & Schmidt, 1981). Following Dorsey & 
Mayer (1995), we use a dataset consisting of 40 observations simulated under the 

specifications: αij = 1 and βij = 0.2 for all i and j, γ1 = 0.1, γ2 = 0.2, γ3 = 0.8, ∈t1 ~ N(0, 252), ∈t2 ~  

N(0, 1), ut1 ~  N(0, 362), Uu2 ~  N(0, 42), and ut3 ~  N(0, 92). Dorsey and Mayer (1995) assessed 
the computational difficulty of this problem by running the Marquardt-Levenberg gradient 
algorithm from 50 different randomly chosen points in the search space. In 49 out of 50 runs, 
the Marquardt-Levenberg algorithm failed to converge because of either singularities or 
floating-point overflow, and on the one run that did converge was discovered to be 
suboptimal. 
AESAMC was first applied to this example with the following specifications: the 
temperature τ = 100, the population size n = 25, the mutation step sizes σm = σp = 1.5, the 
snooker crossover step size σc = 1, the threshold value ℵ= 5000, the gain factor scale  
T0 = 20000, and total number of iterations N = 5 × 106. To examine the performance of 
AESAMC in a long run, we set N to a large number. The algorithm was run 20 times. On 
average, each run requires 1.85 × 107 function evaluations and about 180s CUP time on a 
2.8GHZ computer. The results are summarized in Table 2 and Figure 3. To assess the 
robustness of AESAMC to the choices of ℵ and T0, the algorithm was also run 20 times with 
ℵ = 15000 and T0 = 50000 (keeping the values of other parameters unchanged). As discussed 
earlier, a large value of ℵ should associate with a large value of T0. The results suggest that 
the performance of AESAMC is quite robust to the choice of ℵ and T0. 
For comparison, ASAMC, SA and the genetic algorithm were also applied to this example. 
ASAMC and SA employed the mutation operators used by AESAMC as their local 
samplers. For ASAMC, we tried two different settings of (ℵ, T0): (10000, 20000) and (20000, 
50000). Under each setting, ASAMC was run 20 times, and each run consists of 1.85 × 107 

iterations. For SA, we tried three different choices of the highest temperature: 500, 1000, and 
2000. For each choice, SA was also run 20 times. Each run consists of 100 stages, each stage 
consists of 1.85 × 105 iterations, and the temperature ladder decreases at a rate of 0.95. 
The genetic algorithm has many variants, each covering different applications and aspects. 
The variant we adopted here is the so-called real-coded genetic algorithm (RGA), which is 
described in Ali et al. (2005). RGA includes three free parameters, namely, the population 
size, the number of individuals to be updated at each generation, and the number of 
generations. RGA has been tested by Ali et al. (2005) on a variety of continuous global 
optimization problems. The results indicate that it is effective and comparable or favorable 
to other stochastic optimization algorithms, such as controlled random search (Price, 1983; 

www.intechopen.com



 Simulated Annealing 

 

202 

Ali and Storey, 1994) and differential evolution (Storn & Price, 1997). For this example, we 
tried three different settings of population size: 50, 100 and 200. The number of individuals 
to be updated at each generation was set to one-fifth of the population size, and the number 
of generations was chosen such that the total number of function evaluations in each run is 
about 1.85 × 107. Under each setting, RGA was also run 20 times. The results are 
summarized in Table 2 and Figure 3. 
Table 2 shows that the averages of the best function values produced by AESAMC are lower 
than those produced by other algorithms, although the runs are so long. Figure 3 plots the 
average progression curves of the best function values produced by these algorithms. RGA 
performs less well than SA and ASAMC for this example. This implies that this example 
does not favor to the crossover operations. Even so, AESAMC still significantly outperforms 
other algorithms. The average of the best function values produced by ASAMC with 1.85 × 
107 function evaluations is about the same as that produced by AESAMC with about 6 × 106 

function evaluations. This translates to a 3- fold improvement. The results produced by SA 
and RGA are not comparable to that produced by AESAMC at all. In our experience, high 
dimensional optimizations usually favor to the crossover operations. 
 

 
 

Table 2. Comparison of AESAMC, ASAMC, SA and RGA for minimization of the function 
(17). Let ui denote the best function value produced in the i-th run. The numbers in the 
columns of Minimum, Maximum, Average, and SD are calculated, respectively, as follows: 

min1 ≤ i ≤ 30ui, max1 ≤ I ≤ 30ui, 
30

1i=∑ ui / 30, and the standard deviation of the average. Cost: the 

number of function evaluations in each run. 

4. Discussion 

In this article, we have described the ASAMC and AESAMC algorithms. A remarkable 
feature of the two algorithms is that they are not trapped by local energy minima. Under 
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mild conditions they can converge weakly toward a neighboring set of the global minima in 
the space of energy. The algorithms were tested on two examples. The numerical results 
indicate that ASAMC and AESAMC can significantly outperform their competitors, 
including SAMC, simulating annealing and genetic algorithms, in terms of quality of the 
solutions obtained with the same CPU time. 
 

 
 

Figure 3: Average progression curves of the best function values (over 20 runs) and their 
95% confidence regions (shaded area) produced by AESAMC (ℵ= 5000, T0 = 20000), ASAMC 
(ℵ = 10000, T0 = 20000), SA (τhigh = 10) and RGA (n = 100) for minimizing the function (17). 

In this paper, both ASAMC and AESAMC are described for continuous optimization 
problems only. Extension to discrete optimization problems is straightforward. For discrete 
optimization problems, the mutation and crossover operators required by AESAMC can be 
designed as in Liang & Wong (2000) and Goswami & Liu (2006). The K-point crossover 
operator described in this paper can also be used for discrete problems. 
Although ASAMC and AESAMC are proposed as optimization techniques, they can also be 
used as importance sampling techniques by keeping the sample space unshrinked through 
iterations. AESAMC has provided a general framework on how to incorporate crossover 
operations into dynamically weighted MCMC simulations, e.g., dynamic weighting (Wong 
& Liang, 1997; Liang, 2002) and population Monte Carlo (Cappé et al., 2004). This framework 
is potentially more useful than the conventional MCMC framework provided by 
evolutionary Monte Carlo (Liang & Wong, 2000, 2001). Under the conventional MCMC 
framework, the crossover operation has often a low acceptance rate. The MH rule will 
typically reject an unbalanced pair of offspring samples for which one has a high density 
value and other low. In AESAMC, this difficulty has been much alleviated due to the self-
adjusting ability of the algorithm. 
In this article, the parameter ℵ is set to a constant. If we associate it with iterations by letting 
ℵ(t) be a monotonically decreasing function of t with the limit 0, then ASAMC and 
AESAMC will converge in distribution toward the set of global energy minima. An 
interesting problem is to find the decreasing rate of ℵ(t) under which ASAMC and 
AESAMC can converge faster to the global energy minima. 
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