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1 University of Western Macedonia, Department of Engineering and Management of 
Energy Resources, Bakola & Sialvera Str., 50100, Kozani  

2 National Center for Scientific Research Demokritos, 15310 Ag. Paraskevi Attikis, Athens, 
Greece 

1. Introduction 

“┨形┥┬α ├径 ├┧┢┡┤形┞┝┬┝, ┬ὸ ┢α┣ὸ┥ ┢α┬恵χ┝┬┝, ἀ┨ὸ ┨α┥┬ὸ┪ ┝ἴ├┧┭┪ ┨┧┥┟┩┧ῦ ἀ┨恵χ┝┫┠┝.” 
“Try everything, keep the good, stay away from all form of evil.” 
(St. Paul, 1 Thessalonians 5:21-22) 
The study of multiphase systems is of great importance in various fields of technological 
and environmental interest such as oil recovery, gas separations by adsorption, study of 
hazardous waste repositories and catalysis (Mohanty, 2003). In the past decade there has 
been considerable interest in numerical simulation studies (Baldwin et al., 1996; Torquato, 
2005; Kumar et al. 2008) where an accurate representation of the complex multiphase matrix 
at the pore scale enables detailed studies of equilibrium and dynamic processes in these 
structures.  Understanding the relationship between multiphase distribution at the 
microscale and transport properties is a general problem in applications involving 
multiphase systems (Kosek et al., 2005; Bruck et al., 2007). However, the direct correlation of 
experimental transport data to the underlying microscopic multiphase distribution is often 
found to be a very complicated procedure mainly because the multiphase configuration 
structure itself is highly complex and inadequately known. Hence, there is a strong need for 
a direct quantitative description of the pore-solid structure and the single or multi phase 
fluid distribution within this structure that should provide the basis for a reliable 
determination of the respective macroscopic transport properties. Such a methodology 
could contribute significantly to the efficient design of improved porous materials and 
multiphase flow processes. 
Simulated Annealing has become a paradigm methodology in many areas of non-linear 

multiparameter global optimization. It represents a powerful and algorithmically simple 

solution to some of the most demanding computational task. One could summarize the 

method in one sentence: try all that matter, keep the best and stay away from local traps. 

The scope of this chapter is to demonstrate the effectiveness of SA for the realistic three-

dimensional (3D) representation of the complex landscapes of multiphase systems thus 

enabling the simulation of disordered microstructures as they are experimentally observed 

in real materials.   O
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Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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Disordered materials, such as glasses, liquids and random heterogeneous materials, 

(Torquato, 2002) have a structure that is stochastic in nature. Their microstructure defines a 

random field, fully characterized by n-moments of the phase-function or simplified 

phenomenological expressions that contain semi-empirical parameters that implicitly 

depend on these moments.  In this context are defined the effective properties of the system 

that can be expressed as ensemble averages (expectations) of the moment generating 

probability functions. It is then natural to approximate such properties by ergodic averages 

through Monte Carlo simulation.  The derivation of the mathematical expressions for the 

ensemble averages is the subject of homogenisation theory and gives the necessary formal 

justification for the definition of effective properties such as conductivity, permeability, 

elastic moduli and wetting factors. 

The SA methodology will be illustrated in two applications: 

1. To solve an inverse problem for a two-phase, solid-void medium, namely the 3D 
microstructure reconstruction from statistical descriptors based on two-dimensional 
(2D) cross-sections of real-world materials. 

2. To determine the fluid spatial distribution in a multiphase system (pore-solid-fluid).  
An inverse, ill-posed problem implies that there are many realizations of a porous medium 

that share the same objective function and there is no unique solution.  When solving the 

reconstruction problem, the minimization of the objective function (system ‘energy’) has no 

physical significance and only serves as an ad hoc optimization variable. Thus, even 

intermediate, far from optimal, solutions represent a physically valid microstructure. This 

should be distinguished conceptually from finding the global minimum for the fluid 

distribution case that entails only the optimal solution as the one corresponding to a 

situation matching reality. Examples of the latter are common in many areas of Physical 

Chemistry where Statistical Thermodynamics formulations provide the theoretical basis for 

Monte Carlo simulations. 

To determine the fluid spatial distribution in the three-phase system it is also necessary to 

decouple the effect of the solid-void interface, which is structure depended and thus 

requires geometrical analysis, from the effect fluid-solid and fluid-fluid interface which 

depend on thermodynamic and physicochemical concepts and require the application of 

microscopic analysis in the form of simple or complex thermodynamic rules (Kainourgiakis 

et al., 2002). 

2. Optimization problem 

The multiphase distribution problem can be formulated as an optimization problem, 

seeking to minimize the difference between the statistical properties of the generated 

structure and the imposed ones. Simulated annealing (SA) was originally formulated as an 

optimization algorithm by Kirkpatrick and coworkers (Kirkpatrick et al., 1983).  They used 

the Metropolis algorithm to solve combinatorial problems establishing an analogy between 

the annealing process in solids, the behavior of systems with many degrees of freedom in 

thermal equilibrium at a finite temperature and the optimization problem of finding the 

global minimum of a multi-parameter objective function.  
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A randomly generated perturbation of the current system configuration is applied so that a 

trial configuration is obtained. Let cE and t  E denote the energy level of the current and 

trial configurations, respectively. If c t E E≥ , then a lower energy level has been reached, the 

trial configuration is unconditionally accepted and becomes the current configuration. On 

the other hand, if c tE E< then the trial configuration is accepted with a probability given by 

( )
( ) BE k T

P E e
−ΔΔ = where t cE E EΔ = − , Bk is the Boltzmann constant and T is the 

temperature (or an arbitrary analog of it, used only to symbolically represent the degree of 

randomness in the spatial distribution of the system phases). This step prevents the system 

from being trapped in a local lowest-energy state. After a sufficient number of iterations, the 

system approaches equilibrium, where the free energy reaches its minimum value. By 

gradually decreasing T and repeating the simulation process (using every time as initial 

configuration the one found as equilibrium state for the previous T value), new lower 

energy levels become achievable. The process is considered complete when despite the 

change in T the number of accepted changes in different configurations becomes lower than 

a pre-specified value.  

The two applications that will be presented can be seen in from a very different perspective.  

The reconstruction of random media is an intriguing inverse problem that must be 

interpreted in the appropriate physical context whereas the fluid-phase distribution is a 

purely numerical exercise in finding the global minimum. 

In trying to address the non-uniqueness problem we have proposed (Politis et al., 2008) a 

novel methodology that uses a simple process-based structure, matching only limited 

structural information with the target material, to initialize the simulated annealing and 

thus reduce the search-space, constraining the solution path.  The stochastic / process-based 

hybrid method starts with a random sphere pack obtained using the ballistic deposition 

algorithm as the process-based step and then uses SA to minimize the least-squares error 

functional of the correlation functions (Kainourgiakis et al., 1999; Kainourgiakis et al., 2005).  

3. Reconstruction of random media 

The reconstruction of realizations of random media is of interest although it is possible to 

directly obtain, at least for some materials, high resolution (~200nm/pixel) 3D 

microtomography images (Spanne et al 2001; Tomutsa & Radmilovic 2003).  The use of 

limited information from low-order correlations can offer a valuable theoretical probe to the 

very nature of the complex structure (Sheehan & Torquato, 2001; Torquato, 2005). Exploring 

all physically realizable correlation functions enables the investigation of effective properties 

in ad hoc reconstructed materials that suit the experimenter.  

There are several techniques to statistically generate the 3D structures but broadly fall in 

three categories:  

1. Gaussian Random Fields: Based on thresholding a Gaussian random field, was the first to 
be introduced by P. M. Adler and co-workers (Adler et al., 1990; Adler, 1992; Thovert et 
al., 2001).  The reconstruction is based on and limited to the porosity and 2-point 
correlation function of the sample, measured by image analysis.  The method is 
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computationally very efficient but can not use additional spatial correlation functions or 
extended to non-Gaussian statistics. 

2. Simulated Annealing optimization: These methods attempt to reconstruct the phase 
function from theoretically any number of stochastic functions that describe the sample 
geometry (Rintoul & Torquato, 1997; Yeong & Torquato 1998a; Yeong & Torquato 
1998b; Torquato, 2002).  Computationally they can be demanding if higher order 
statistical moments are used (e.g. chord length, lineal path or 3-point correlation). 

3. Maximum entropy methods: They are derived from Bayesian statistics methods first 
applied for inverse problems is signal processing. Microstructures are assumed to be 
samples from a governing probability distribution function (PDF) which is computed 
from the limited available statistical descriptors (correlation functions) using maximum 
entropy theory (Sankaran & Zabaras, 2006). 

An alternative method to obtain the microstructure is to simulate the physical (thermo-

mechanical) process that they result from, in effect recreating the material synthesis history. 

This is an extremely complex and computationally very expensive process but still viable in 

small domains (Bakke & Oren, 1997; Bryant & Blunt, 2004).  

Effective reconstruction of random two-phase heterogeneous media can be realized from 

statistical descriptors, namely n-point correlation functions, obtained from digitized images 

of a material.  The n-point correlation function is a measure of the probability of finding n-

points (in a specified geometrical arrangement) all lying in the region of space occupied by 

one constituent of a two-phase material. For example the one-point correlation function is 

the probability that any point lies in a specific phase (either pore or solid phase). Thus if we 

define the phase function of a porous material as follows (Berryman, 1985; Torquato, 2002):  

 ( ) 1, if  is in phase 1 (pore)

0, if  is in phase 2 (solid)
Z

⎧
= ⎨
⎩

x

x

x

 (1) 

 

If the medium is statistically homogeneous, then the probability functions are translationally 

invariant in space and depend only on the spatial separation between the points. Then it 

follows that the 1-point correlation function is by definition equal to the porosity: 

 ( ) ( )1S Zε = =u x  (2) 

 

The angular brackets denote an ensemble average. Accordingly, the 2-point correlation 

function is the probability that two points at a specified distance can be found both in the 

same phase of the material: 

 ( )2 ( ) ( )S Z Z= +u x x u  (3) 

In general,  

 ( ) ( )1

1

,...,
n

n n i

i

S Z
=

= ∏x x x  (4) 

www.intechopen.com



Application of Simulated Annealing on the Study of Multiphase Systems 

 

211 

An additional simplification can be made if the medium is statistically isotropic. For an 

isotropic medium, ( )2S u becomes one-dimensional as it is only a function of u = u . It is 

often preferable to work with the 2-point auto-correlation function ( )z
R u  which is a 

normalized version of ( )2S u : 

 ( )
( ) ( )

2

( ) ( )
Z

Z Z
R

ε ε

ε ε

− ⋅ + −
=

−

x x u

u  (5) 

Note that if we reverse the phase function in order to calculate the n-point correlation 

functions for the solid phase we observe that ( )z
R u  remains exactly the same; simply 

change Z to 1-Z, and ε to 1-ε everywhere in eq. (5). For a statistically homogenous and 

spatially ergodic medium, the spatial average is equivalent to the ensemble average and 

thus we can define and compute the average quantities of the medium. 

Based on the work of Debye (Debye et al., 1957), the 2-point correlation function can be 

related to the interface area per unit volume of the material.  The specific internal surface 

area per unit volume (
v

S ) can be determined from the slope of ( )z
R u  at u=0 using eq. (6), 

adjusted for a digitized 3D medium (Jiao et al., 2007): 

 06 (1 )
v u

dR
S

du
ε ε == − −  (6) 

vS  can also be directly calculated from the reconstructed binary realization by counting the 

pixels at the void-solid interface. 

A reconstruction of a porous medium in three dimensions should reproduce the same 

statistical correlation properties as those obtained from the two-dimensional image and 

defined by the n-moments of the phase function.  In this work we only match the trivial one-

point correlation function, the porosity ε, and the two-point auto-correlation function which 

contain information about the phase size, orientation and surface area.  Other important 

descriptors that can be used are the lineal path function, the chord length function and the 

three-point correlation function (Torquato & Lee, 1990; Torquato, 2002).  Reconstructing a 

material using limited microstructural information is an inverse, ill-posed problem, i.e. there 

are many realizations of a porous medium that share same the porosity and two-point 

correlation function.  The choice to use only two functions can thus sometimes be 

inadequate to reproduce the material microstructure.  Matching higher order correlation 

functions should also be considered (Kainourgiakis et al., 2000) but it is computationally 

much more expensive for the realization of sufficiently large 3D domains.   

3.1 SA and process-based hybrid reconstruction of porous media 
In the typical SA method we start from a completely random initial distribution of the phase 

function in space.  In the proposed hybrid method we start with an initial configuration 

www.intechopen.com



 Simulated Annealing 

 

212 

provided by the output of a process-based method such as the described ballistic deposition 

of equal spheres.  The porosity of the initial structure must be equal with that of the original 

structure (usually the source image). 

The next step is to define the Energy, E, of our system. In this case E is the sum of squared 

differences between experimental correlation functions obtained from the SEM 

micrographs, and those calculated from the 3D generated structure.  

 
2

exp( ) ( )
i j i j

i j

E S u S u⎡ ⎤= −⎣ ⎦∑∑  (7) 

index i  corresponds to the degree of the correlation function, and index j , corresponds to 

the digitized distance u. If only the two-point correlation function interests us, then 2i = and 

the first summation is dropped out from eq. (7). Note that in the above algorithm, the one-

point correlation function (porosity) is always identical to the experimental by construction. 

The SA algorithm for the reconstruction problem has as follows: 
 

1. Create a candidate 3D image using random packing of spheres with a volume 
fraction equal to the target microstructure.  Adjust the porosity, if necessary, using 
Grain Consolidation to match that of the target medium.  Calculate the initial 

energy cE . 

2. A new trial state is obtained by interchanging (swapping) two arbitrarily selected 
pixels of different phases. This way the initial porosity of the structure is always 

preserved. Accordingly the energy of the trial state tE is determined through eq. 

(7).  

3. If   c tE E≥ , the trial configuration is unconditionally accepted, and becomes the 

current configuration. On the other hand, if  c tE E< then the trial configuration is 

accepted with a probability ( ) BE k T
P E e

−ΔΔ = . 

4. Steps 2, 3 are repeated at the same temperature T. 
5. Decrease temperature by a very slow rate and repeat steps 2-4. 
6. The process terminates when the successful exchanges become less than a specified 

number per iteration. 
 

The process is terminated when the number of accepted changes in different configurations 

becomes lower than a pre-specified value. The most time-consuming step in the SA method 

is the determination of E through the repeated calculation of the correlation function(s) at 

each pixel interchange.  Nevertheless, this calculation can be improved considerably be 

observing that once ( )2S u of the initial structure is calculated there is no need to fully 

sample all intermediate (trial) structures since any change in the correlation function(s) will 

be only due to the change along the x-, y- and z- direction that cross each altered pixel (two 

pixels at each swapping). This change in S2 can be simply evaluated by invoking the 

sampling procedure only along those rows, columns and heights crossing the altered pixels, 

adjusting appropriately the initially stored ( )2S u . 
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  (a) Starting from a random sphere pack (ε=0.4) (e) Starting from a random material (ε=0.4) 

  

                     (b) Structure at step 25                   (f) Structure at step 83 

  

                        (c) Structure at step 70                   (g) Structure at step 110 

  

                   (d) Final structure (step 112)                (h) Final structure (step 245) 

Figure 1.  Progress of the evolving microstructure at specific SA instances.  The material 

shown is the sintered SiC case (ε = 0.4).  Image size is 140 × 140 pixels. (solid is shown white) 
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T0=10-6 T0=10-9

An important parameter in the SA algorithm is the initial temperature T0, particularly if the 
original structure is not truly random but has some noticeable degree of correlation as it is 
the case of starting with a random sphere pack as input.  If T0 is too low then the algorithm 
is quite immobile, not many swaps are accepted and the initial structure is quite close to the 
final structure. On the other hand, if T0 is not too low, the algorithm becomes quite mobile, 
swaps are accepted more easily and the initial structure is not close to the final structure. 
 

 

T0=10-7 

 

  

 

 

 

 T0=10-12  

Figure 2. The effect of initial SA temperature, the target structure is in the middle, porosity is 
~42% and solid-space is shown black. 

4. Determination of the spatial fluid distribution 

To determine the multi-phase fluid distribution in porous material, the porous structure is 

represented by a set of cubic voxels of length ` . Each voxel is labeled by an integer that 

corresponds to its phase. The solid phase is labeled as 0 while the fluid phases as1 2 3 n, , , ,A . 

The saturation of the phase i, denoted as iS , is the volume fraction of the pore space 

occupied by the phase i. The distribution of the n fluid phases in the pore space is 

determined assuming that the total interfacial free energy, 
sG , is minimal. The function sG  

can be evaluated by:  

 
1

0

n n

s ij ij

i j i

G A σ
−

= >

=∑∑  (8) 
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where 
ijA  is the elementary ij interfacial area and 

ijσ  the interfacial free energy per unit 

area of ij interface. The interfacial free energies obey Young’s equation and consequently the 

following set of 
( 1)

2

n n −
 equations is satisfied (van Kats & Egberts, 1998):  

 0 0 cosi j ij ijσ σ σ θ= +  (9) 

where ijθ  is the contact angle that the ij interface forms with the solid surface, 0i ≠ , 0j ≠  

and i j< . The determination of the spatial distribution of fluid phases that corresponds to 

the minimum sG  is achieved by exploring all possible configurations. In practice this is 

impossible since the number of configurations is extremely high and consequently, the 
optimal one must be determined by importance-sampling procedures. When only two fluid 
phases are present, the simplest and rather inefficient heuristic technique that can be used is 
the following: A specified number of voxels, in random positions of the pore space, are 
marked as sites occupied by phase 1 while the rest are marked as belonging to phase 2. The 
number of sites occupied by each fluid phase corresponds to a desired fraction of pore space 
occupied by that phase (saturation). Then two randomly selected sites occupied by different 

fluid phases exchange their positions. This change results in a variation of sG  by an 

amount sGΔ . To minimize sG , one can accept every phase exchange trial with 0sGΔ ≤  and 

reject those where 0sGΔ > . However, due to the complicated sG  landscape with respect to 

the spatial distribution of the fluid phases, local minima are present and when the system 
reaches one of them no escape is possible (Knight et al., 1990).  
The SA algorithm is used for the minimization of the multidimensional functions as 
originally adapted for a similar problem by Knight et al. (1990). Now, the new configuration 
that is generated by the phase exchange of random voxels is accepted with a probability 
given by:  

 min 1 s refG G
p e

−Δ /⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= ,  (10) 

where refG  is an analog of the  Bk T parameter in the Metropolis algorithm and Bk , T  are 

the Boltzmann constant and the ambient temperature respectively. After a sufficient number 
of iterations (usually ten-times the number of the pixels occupied by the fluid phases) and 

for a specific refG  value, the system approaches the equilibrium state. By gradually 

decreasing refG , according to a specified “cooling schedule” and repeating the simulation 

process, using every time as initial configuration the one found as equilibrium state for the 

previous refG  value, new lower energy levels of sG  become achievable. The process is 

considered complete when despite the change in refG , the number of accepted changes in 

different configurations becomes lower than a pre-specified value (typically when the ratio 
of the number of acceptable moves to the total number of trials becomes lower than 10-5).  
The above technique can be generalized for n fluid phases distributed in the pore space. 

Each voxel of the pore space is randomly characterized by an integer, 1,2, ,n… , that 

corresponds to one of the existing fluid phases. The number of voxels that are occupied by 
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each phase satisfies a predefined saturation of the specific phase, iS . Then, two voxels 

belonging to fluid phases are randomly selected, their phases are exchanged and the swap is 
accepted with probability according to eq. (10). This procedure is termed procedure (A).  
To employ a more efficient minimization strategy, termed procedure B, n voxels occupied 

by different fluid phases are randomly selected at each minimization step. Then, ( 1) 2n n − /  

voxel-phase interchanges are performed. For the case of three fluid phases, the trial swaps 

are 1-2, 1-3 and 2-3. Each trial swap is accompanied by a variation of sG  by s ijG ,Δ , where 

i j< . If at least one 0s ijG ,Δ < , the trial swap with the minimum s ijG ,Δ  is accepted. In the 

opposite case, where every 0s ijG ,Δ > , the swap ij  is accepted with probability ijp  defined 

as:  

 
( 1) 2

s ij refG G

ij

e
p

n n

,−Δ /

=
− /

 (11) 

Note that since s ij refG G
e ,−Δ /

 then 
1

1

1
n n

ij

i j i

p
−

= >

≤∑∑ and therefore the system remains unchanged 

with probability
1

1

1
n n

ij

i j i

q p
−

= >

= −∑∑ . After a sufficient number of iterations, 
ref

G  is gradually 

decreased and the system approaches the lowest energy configuration. It must be noticed 

that for 2n = the acceptance rule described by eq. (10) is recovered.  

The simple case of a single pore with square cross section containing three fluid phases is 

selected to start with. The size of the pore is 50 50 100× ×  and the saturation of each phase is 

equal to 1 3/ . The corresponding interfacial free energies in arbitrary energy units per unit 

area (square voxel length) are 01 3000σ = , 02 2500σ = , 03 1200σ = , 12 500σ = , 13 1800σ = , 

23 1200σ =  and consequently 12 13 23 0θ θ θ= = = . Thus, the labels 1,2,3 correspond to the non-

wetting, intermediate wetting and wetting phases respectively. The “cooling schedule”, the 

initial choice of 
ref

G  and the minimization strategy are determined with the help of this 

simple pore geometry. The results obtained are used for the determination of the phase 
distribution in more complicated porous domains. The “cooling schedule” applied is:  

 0

N

ref ref
G f G ,=  (12) 

where f  is a tunable parameter obeying 0 1f< < , N is the number of iterations for a given 

ref
G  and 0ref

G ,  is the initial choice of 
ref

G . A “cooling schedule” of this form is used by 

Knight et al. (1990) and has the advantage that during the annealing process the variation of 

ref
G  decreases, allowing for better resolution as the system approaches the optimal 

configuration. The value of the parameter f  plays a dominant role in the simulation. Small 

f  values decrease 
ref

G  quickly resulting in fast simulations, however the risk of local 

minima trapping is high in that case. Contrarily, when f  approaches unity the simulation 

becomes lengthy in time but the system escapes more efficiently from metastable 
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configurations. Figure 3 illustrates the distribution of the fluid phases obtained for different 

f  values. It is observed that for 0 999f < .  the simulation produces final configurations 

where, although some clusters are present, the phases are rather randomly mixed. As f  

increases, physically sound configurations appear. The wetting phase (blue) is located in 
contact with the solid walls, the non wetting phase (red) forms a cylinder-like cluster at the 
center of the pore while the intermediate wetting phase (green) fills the space between the 

wetting and the non-wetting ones. In Fig. 4 the minimum total interfacial energy, 
s min

G , , is 

plotted against f . It is noteworthy that the total interfacial energy values are considerably 

close to each other, compared with their absolute values, although the distribution of the 
fluid phases in Fig. 3 is undoubtedly different. This indicates that the minimization 
procedure must be handled with care. In the present work, in order to achieve as accurately 

as possible the configuration with minimum interfacial energy, 0 999f = .  is used.  

At the beginning of the simulation, another important issue that must be considered is the 

initial choice of 
ref

G . The value of 
0ref

G ,  must be large enough, approximately 30-times the 

highest 
ij

σ  value, in order to ensure that the system is initially in a “molten” state and not 

trapped in a local minimum. When 0ref
G , is not large enough the system cannot approach 

the optimal distribution.   
 

Figure 3. Phase distribution in a rectangular pore for different f  values when three fluid 

phases are present. Blue color: wetting phase, green color: intermediate wetting phase, red 

color: non wetting phase. The saturation of each phase is 1 3 . 

www.intechopen.com



 Simulated Annealing 

 

218 

Figure 4. Minimum interfacial energy vsf for rectangular pore containing three fluid phases. 

The saturation of each phase is 1 3 and the initial choice of 
ref

G is 510 . 

Figure 5. Phase distribution in a random sphere packing when three fluid phases are 
present. Blue color: wetting phase, green color: intermediate wetting phase, red color: non 

wetting phase. The saturation of each phase is 1 3 . 

5. Evaluation of the SA method for the reconstruction problem 

To demonstrate the proposed method (Politis et al., 2008) we have chosen to calculate the air 
permeability of a sintered silicon carbide (SiC) ceramic characterized in-house and the Ni-
YSZ anode cermet of a solid oxide fuel cell (SOFC) found in the literature (Lee et al, 2004).  
The backscatter electron SEM micrographs of both materials were digitized using standard 
image processing techniques (Ioannidis et al., 1996). Both materials are consolidated, 
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produced using a fine powder substrate that is sintered at an elevated temperature.  In total 
we have generated two realizations for each material: one using the hybrid method and 
starting from the porosity-matching random sphere pack and one by using the SA algorithm 
with a random initial structure. 

5.1 Constructing the microstructure 
The reconstructed material domains are three-dimensionally periodic with a simulation 
volume of 1403 pixels and a porosity of ~40%.  The mean pore size though differs by almost 
an order of magnitude: 10.2 μm for SiC and 0.9 μm for Ni-YSZ.  In Fig. 6, we plot the two-
point auto-correlation function for the test-target materials, as obtained from the digitized 
SEM images.  The corresponding two-point correlation function of the reconstructed 
structure it is not shown as it is an exact match.  This is expected because it is the only 
optimization target for the SA algorithm.  If more additional correlation functions are added 
then the match becomes non-trivial.  We can noticed that for SiC the Rz(u) drops practically 
to zero after ~16 μm, meaning that there is no correlation after this length.  Similarly, for Ni-
YSZ, there is no correlation after ~4 μm.  The domains used in the computations are equal to 
1403 pixels for both structures, resulting in spatial dimensions of 200 μm3 for SiC and 
21.5 μm3 for Ni-YSZ. 
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(a) SiC (100μm scale-bar) (b) Ni-YSZ cermet (10μm scale-bar) 

Figure 6. Binarized SEM image, 2-point autocorrelation function and 3D hybrid 
reconstruction realization with a volume of 1003 pixels that represent 142.8 μm3 for the SiC 
and 15.4 μm3 for the Ni-YSZ (pore space is transparent for clarity). The Ni-YSZ porosity is 

0.40 with an image size of 154 154× pixels (pixel length ~0.154 μm).  The SiC porosity is 0.40 

with an image size of 235 235×  (pixel length ~1.428 μm).  

5.2 Absolute permeability calculations 
The absolute permeability of the porous material gives a measure of the resistance of the 
porous medium in the viscous incompressible fluid flow through its pore space. In a 
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representative macroscopic element of homogeneous and isotropic porous material the 

superficial velocity, 
s
v , of a viscous fluid is described by Darcy’s law  

 
s

k
v p

η
= − ⋅∇  (13) 

where p∇ is a prescribed pressure gradient, k is the permeability coefficient, which depends 

on the spatial distribution of solid and void phase and η is the fluid viscosity.  

The calculation of the permeability coefficient k , requires the determination of the flow 

field at the microscale at creeping flow conditions, described by the Stokes equation coupled 
with the continuity equation: 

 2
pη∇ = ∇v  (14a) 

 0∇⋅ =v  (14b) 

where v and p  are the local fluid velocity vector and the pressure, respectively. The 

boundary conditions are no-slip of the fluid at the solid-void interface and periodicity. 
The numerical method employed in this work is a finite difference scheme, used previously 
in similar studies (Quiblier, 1984; Adler et al., 1990; Coelho, 1997; Liang et al., 2000). A 
staggered marker-and-cell mesh is used, with the pressure defined at the centre of the cell, 
and the velocity components defined along the corresponding surface boundaries of the 
rectangular cell. A successive overrelaxation method is used to solve for the microscopic 
velocity field.  To cope with the numerical instabilities caused by the continuity equation, an 
artificial compressibility technique has been employed (Roache, 1982).  In this fashion, the 
steady state problem is replaced by an unsteady one, which converges to the incompressible 
steady state solution at sufficiently long time.  Convergence was achieved when the 
calculated flow rate values fluctuated less than 1% across the various cross-sections of the 
medium (Kikkinides & Burganos, 1999). 
The results for the permeability of two different porous materials, using air as the flowing 
fluid, are summarized in Table 1. 
 

 Air Permeability (m2) 

 Experiment Simulation 

  Hybrid method SA only 

Ni-YSZ cermet 6.0×10-15 5.67×10-15 4.00×10-15

Sintered SiC 9.4×10-13 1.07×10-12 8.12×10-13

Table 1: Numerically calculated and experimentally measured permeability values for the 
Ni-YSZ cermet and sintered SiC.   

It is evident that the permeability results obtained from the hybrid reconstruction method in 
excellent agreement for Ni-YSZ (within 5%) and very close for SiC (within 13%).  The 
permeability of the SiC that resulted using the SA alone, overestimates the experimental 
value as much as the hybrid method underestimates it. For Ni-YSZ the error is much more 
pronounced (~33%) when using SA alone.  The hybrid algorithm requires less than half the 
processing steps of the purely SA approach (see Fig. 1) resulting in a significant speed-up of 
the computations.   
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6. Evaluation of the SA method for the multiphase distribution problem 

The assessment of the validity of the generated multiphase distributions in a pore structure 
is achieved by the measurement of the relative permeability of the porous material when 
two or more fluids are present. A significant simplification in the calculation of this property 
is to consider that only one fluid is flowing each time, the rest of the fluid(s) being immobile 
and simply treated as additional “solid” phase in the pore structure. In such a case one can 
still use the methodology outlined above for the determination of the absolute permeability 
treating the immobile fluid(s) as an expansion of the solid phase. This procedure can be 
performed sequentially for each fluid in order to get the relative permeability for each fluid 
in the multiphase configuration (Kainourgiakis et al. 2003; Galani et al, 2007). 

6.1 Relative permeability calculations 
The effective permeability for fluid i, ke,i, which depends on the spatial distribution of solid 
and fluid phases, is calculated again through Darcy's law: 

 
,

,

i

e i

s i

k
v p

η
= − ⋅∇  (15) 

Where ,s iv  is the superficial velocity of a viscous fluid in a sample of the homogeneous 

and isotropic porous medium and 
i

η is the fluid viscosity. Then the relative permeability for 

fluid i, ,R i
k , is defined by dividing the effective permeability, ,e i

k , with the absolute 

permeability, k , measured in the absence of other fluids: 

 
,

,

e i

R i

k
k

k
=  (16) 

It is evident that ,R i
k  is a non-dimensional parameter.  

Galani et al (2007) calculate the relative permeabilities of two and three phase fluid 
distributions for mono-dispersed random sphere packs when only one fluid phase is 
moving with low flow rate while the other fluid phase(s) are immobile and considered as an 
“expansion” of the solid phase. The results for the case of a two-phase fluid system of a 
wetting and non-wetting fluid are given in Fig. 7 and 8. 
Fig. 7 presents relative permeability as a function of the effective saturation of the wetting 

phase (phase 2), ( ) ( ),2 2 ,2 ,2
  / 1

e im im
S S S S= − − ,where ,2imS  is the residual or immobile 

saturation of phase 2 when the non-wetting phase (phase 1) is stagnant while the wetting 
phase (phase 2) is flowing. Residual saturation is the amount of a fluid (e.g. oil) that remains 
in a porous material after the displacement of this fluid from another immiscible fluid (e.g. 
water) which penetrates the porous medium. The remaining fluid is stagnant and may form 
scattered clusters instead of a continuous phase. Fig. 7 also presents the corresponding 
experimental results that were obtained by Stubos (1990) for steel particle beads of porosity 
0.4, as well as semi-empirical correlations from Levec (1986). In the present work, the 

residual saturation value, 
,2imS , is set equal to 0.25, just as it was measured by Stubos (1990). 
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In all cases the computed relative permeability curves in very good agreement with the 

experiments in the whole spectrum of the effective saturation of the wetting phase, ,2eS . 
 

Fig. 7. Relative permeability of the wetting phase vs. the effective saturation of that phase, 

,2eS , for the random packing of non-overlapping spheres of porosity 0.41.  

Fig. 8 presents relative permeability as a function of the effective saturation of the non-

wetting phase (phase 1), ( ) ( ),1 1 ,1 ,1
 / 1

e im im
S S S S= − − , when the wetting phase (phase 2) is  

 

 

Fig. 8. Relative permeability of the non-wetting phase vs. the effective saturation of that 

phase, ,1eS , for the random packing of non-overlapping spheres of porosity 0.41. 

stagnant while the non-wetting phase is flowing. The corresponding relative permeability 
experimental data that are used for comparison purpose have been obtained for low flow 
rates of the non-wetting phase. Fig. 8 also presents the corresponding experimental results 
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that have been obtained by Stubos (1990) for steel particle beads of porosity 0.4, for two 
different values of equivalent diameters, dc and also those of the correlated function 

2

,1 ,1R e
k S= . In the present work, the residual saturation value, Sim,1, was set equal to 0.12, as 

it was measured by Stubos (1990). The observed differences between the results of the 
present work and the corresponding experimental ones are again relatively small and can be 
explained by potential deviations between the calculated and the experimental fluid-phase 
distribution.  

7. Summary 

The SA method was applied to the study of multiphase, disordered systems.  Determining 
the phase distribution in the microstructure is of fundamental importance in making a 
connection with their effective properties that ultimately provides a tool to design optimized 
and tailor-made materials. SA was shown to provide a flexible and simple to implement 
methodology. Two conceptually distinct problem classes were used to illustrate the method: 
1) an inverse problem, the 3D microstructure reconstruction from statistical descriptors 
(correlation functions) extracted from standard microscopic imaging methods (e.g. 
SEM/TEM) and 2) finding the global optimum corresponding to the minimum energy 
configuration in a multiphase system (pore-solid-fluid).   
In solving the reconstruction problem there are many realizations of a porous medium that 
satisfy the minimization of the objective function that constitutes a functional of statistical 
descriptors with no physical significance per se.  We have proposed a novel, hybrid 
methodology using a defined initial structure that attempts to incorporate the natural 
synthesis history of the material and thus address the non-uniqueness of solution issues in 
the inverse problem.  The method was implemented with a random sphere pack obtained 
using ballistic deposition as the process-based step and then matched the porosity and pair 
correlation function of the material with SA. 
For the multiphase system, tracing the minimum of the total free interfacial energy with SA 
is directly equivalent with the thermodynamic distribution of the fluid phases in the pore 
space. The optimum configuration for a given degree of phase partitioning is derived 
assuming that in equilibrium the total interfacial free energy reaches a global minimum 
value. 
The procedure has been validated by the determination of the absolute and relative 
permeability in the multiphase system. The agreement of the results with pertinent 
literature data reinforces the validity of the proposed techniques. 
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