
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

3

Using Simulated Annealing for Open Shop
Scheduling with Sum Criteria

Michael Andresen, Heidemarie Bräsel, Mathias Plauschin
 and Frank Werner

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik
Germany

1. Introduction

In this chapter, we consider the open shop scheduling problem which can be described as

follows. A set of n jobs J1, J2, . . . , Jn has to be processed on a set of m machines M1,M2, . . . ,

Mm. The processing of job Ji on machine Mj is denoted as operation (i, j), and the sequence in

which the operations of a job are processed on the machines is arbitrary. Moreover, each

machine can process at most one job at a time and each job can be processed on at most one

machine at a time.

Such an open shop environment arises in many industrial applications. For example,

consider a large aircraft garage with specialized work-centers. An airplane may require

repairs on its engine and electrical circuit system. These two tasks may be carried out in any

order but it is not possible to do these tasks on the same plane simultaneously. Further

applications of open shop scheduling problems in automobile repair, quality control centers,

semiconductor manufacturing, teacher-class assignments, examination scheduling, and

satellite communications are described by Kubiak et al. (1991), Liu and Bulfin (1987) and

Prins (1994).

For each job Ji, i = 1, 2, . . . , n, there may be given a release date ri ≥ 0 which is the earliest

possible time when the first operation of this job may start, a weight wi and a due date di ≥ 0

by which the job should be completed. The processing time of operation (i, j) is denoted as

tij. It is assumed that the processing times of all operations are assumed to be given in

advance.

Let Ci be the completion time of job Ji, i.e. the time when the last operation of this job is

completed. Traditional optimization criteria are basically partitioned into two types: either

the minimization of the maximum term max 1≤i≤n {fi(Ci)} or of the sum
1

()
n

i i i
f C=∑ is

considered, where fi(Ci) denotes the cost arising when job Ji is completed at time Ci. A typical

example of an optimization criterion of the first type is the minimization of makespan

Cmax = max 1≤i≤n {Ci}, while a rather general example of a criterion of the second type is the

minimization of total weighted tardiness
1 1

max{0, }
n n

i i i i i i i
wT w C d= == −∑ ∑ . If release dates

of the jobs are given, the latter problem is also denoted as 0
i i i

O r wT≥ ∑ which is the most

general problem considered in this study.

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

 Simulated Annealing

50

In the following, we first give a few comments on the open shop problem with minimizing
the makespan Cmax and then a literature review on such problems with sum optimization
criteria. Here we discuss only some papers dealing with arbitrary processing times.
Most papers in the literature dealt with the minimization of makespan. In view of the NP-
hardness of problem O||Cmax, branch and bound as well as heuristic algorithms have been
developed for this problem. Among the exact algorithms, we only mention those given by
Laborie (2005) and Tamura et al. (2006) which were able to solve open benchmark instances
from the recent literature. In Laborie (2005), a complete search for cumulative scheduling
based on the detection and resolution of minimal critical sets was performed. The heuristic
for selecting such sets relied on an estimation of the related reduction of the search space,
where additionally an extension of the search procedure using a selfadapted shaving was
proposed. This approach was implemented on the top of classical constraint propagation
algorithms. The algorithm was able to solve the remaining 34 open instances out of the 80
instances with up to 10 jobs and 10 machines given by Gueret and Prins (1999). In Tamura et
al. (2006), a method to encode constraint satisfaction problems with integer linear
constraints into Boolean satisfiability problems was proposed. The effectiveness of this
approach was tested on several benchmark instances for the open shop problem. In
particular, this algorithm was able to solve all the 192 benchmark instances of three sets
from the literature (Brucker et al. (1997), Gueret & Prins (1999), Taillard (1993)).
Among metaheuristic algorithms, we only discuss two papers presenting simulated
annealing algorithms. The first algorithm by Liaw (1999) used particular neighborhoods
based on up to three pairwise interchanges of two adjacent operations belonging to the same
job or being processed on the same machine such that the resulting neighbor satisfies a
necessary condition for an improvement of the objective function value. The cooling scheme
was of the geometric type and used an initial temperature of 15. The recommended variant
had a low temperature reduction scheme (it used a reduction factor of 0.995 for the
temperature). The number of iterations with a constant temperature was set to be equal to
30 · n · m. Taking into account that at least 100 epochs with constant temperatures have been
considered per run in Liaw (1999) (usually even substantially more epochs), this means that
e.g. for problems with 20 jobs and 20 machines, at least 30 · 20 · 20 · 100 = 1, 200, 000
iterations had to be performed. Moreover, since five runs were made for each instance and
in one iteration of the algorithm, up to four neighbors were checked (see neighborhood NH1

in Liaw (1999)) and the best neighbor among them was then taken, much more than
6, 000, 000 feasible solutions had to be evaluated per instance to get the results presented in
Liaw (1999). Thus, extremely long runs of simulated annealing were considered in that
paper (up to 3.5 hours per single run of an instance with n = m = 30). On the other side, the
quality of the solutions obtained was comparable to the results obtained by the insertion
algorithm combined with beam search given in Bräsel et al. (1993). In particular, comparing
the best results of some beam-insert variant from Bräsel et al. (1993) with the best of the five
runs of the simulated annealing algorithm from Liaw (1999) on the 30 benchmark instances

with n = m ∈ {10, 20, 30} given by Taillard (1993), the results were equal for 18 instances, 8
times the simulated annealing algorithm was better and four times the beam-insert
algorithm was better. A particle swarm algorithm combined with simulated annealing has
been given by Yang et al. (2006). For the simulated annealing routine, a very small initial
temperature of 2 was used. Computational results have been presented for some benchmark
instances with up to 20 jobs and machines given by Taillard (1993) (however, the values

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

51

stated as best known solutions in Yang et al. (2006) are rather far away from the real best
known solutions so that also the results presented in that paper are not competitive). For a
discussion of further exact and heuristic algorithms for open shop problems with
minimizing the makespan, the reader is referred to Andresen et al. (2008).
There exist only a few papers considering sum criteria. First, we discuss the papers dealing
with minimization of mean flow time (or what is the same, total completion time) in an open
shop. If preemptions are allowed, the two-machine problem is NP-hard in the ordinary
sense (Du & Leung (1990)) while the three-machine preemptive problem is NP-hard in the

strong sense (Liu & Bulfin (1985)). For problem
i

O pmtn C∑ , Bräsel & Hennes (2004)

derived lower bounds and heuristics which have been tested on problems with up to 50 jobs
and 50 machines. For problems with a small number of jobs, the results with the heuristics
have been compared to the optimal solutions found by an exact algorithm.
Concerning non-preemptive problems, Achugbue & Chin (1982) proved that problem

2
i

O C∑ is NP-hard in the strong sense. Liaw et al. (2002) considered the problem of

minimizing total completion time with a given sequence of jobs on one machine. This
problem is NP-hard in the strong sense even in the case of two machines. A lower bound
has been derived based on the optimal solution of a relaxed problem in which the
operations on every machine may overlap except for the machine with a given sequence of
jobs. Although the relaxed problem is NP-hard in the ordinary sense, it can nevertheless be
rather quickly solved via a decomposition into subset-sum problems. Moreover, a branch
and bound algorithm has been presented and tested on problems with n = m. The algorithm
was able to solve all problems with 6 jobs in 15 minutes on average and most problems with
7 jobs within a time limit of 50 hours with an average computation time of about 15 hours
for the solved problems. A heuristic algorithm has been given which consists of two major
components: a one-pass heuristic generating a complete schedule at each iteration, and an
adjustment strategy to adjust the parameter used in each iteration. This algorithm has been
tested on square problems with up to 30 jobs and 30 machines. For the small problems with
at most 7 jobs, the average percentage deviation from the optimal value was about 4 % while
for larger problems, the average percentage deviation from the lower bound was about 8 %.
Bräsel et al. (2008) presented a computational study of heuristic constructive algorithms for
mean flow time open shop scheduling. They compared matching heuristics, priority
dispatching rules as well as insertion and appending algorithms combined with beam
search on problems with up to 50 jobs and 50 machines, respectively. From Bräsel et al.
(2008), it followed that the choice of an appropriate constructive algorithm strongly depends
on the ratio n/m. In particular, it turned out that for problems with n > m, the rather fast
algorithm beam-append was superior while for problems with n < m, the more time-
consuming algorithm beam-insert gave the best results. For the square problems with n = m,
an overlapping has been observed: For small problems, the beam-insert algorithm was
slightly superior while for larger problems, variants of the beam-append algorithm were
better. However, the algorithms were rather sensitive with respect to parameter settings.
Andresen et al. (2008) presented a simulated annealing and a genetic algorithm for the
problem of minimizing mean flow time. They tested their algorithms on problems with up
to 50 jobs when performing short runs, where every algorithm may generate 30,000
solutions. It has been found that in contrast to makespan minimization, the hardest
problems are those with n > m, while for problems with n < m, often a lower bound for the

www.intechopen.com

 Simulated Annealing

52

corresponding preemptive open shop problem (Bräsel & Hennes (2008)) was reached. For
the hard problems, it was essential to use a good constructive initial solution and to start the
simulated annealing algorithm with an extremely small temperature.
Concerning approximation algorithms with a performance guarantee, the currently best
result has been given by Queyranne and Sviridenko (2000, 2002). They presented a 5.83-
approximation algorithm for the non-preemptive open shop problem of minimizing
weighted mean flow time which was based on linear programming relaxations in the
operation completion times. This was used to generate precedence constraints. For the
preemptive version of this problem, a 3-approximation algorithm has been given.
There exist some papers dealing with open shop problems and other optimization criteria
than makespan and mean flow time. Liaw (2004) gave a dynamic programming algorithm
for the two-machine preemptive problem of minimizing total weighted completion time.
Moreover, a restricted variant was given as a heuristic which was based on pairwise
interchanges in the job completion time sequence, i.e. the sequence in which the jobs are
ordered according to non-decreasing completion times. Computational experience has
shown that the dynamic programming algorithm can handle problems with up to 30 jobs
and that the heuristic has an average percentage deviation of less than 0.5 % from the
optimal value for these problems.
Liaw (2005) presented a branch and bound algorithm for the preemptive open shop problem
to minimize total tardiness. Computational results for the two-machine problem showed
that the algorithm can handle problems with up to 30 jobs. A heuristic procedure was also
given which determined in the q-th iteration the job to be placed in position q in the
sequence of the jobs ordered according to non-decreasing completion times. This was done
by means of the repeated solution of linear programs. The solutions obtained by the
heuristic algorithm had an average deviation of less than 2 % from the optimal value.
Blazewicz et al. (2004) considered open shop problems with a common due date, where the
goal is to minimize total weighted late work, i.e. the weighted portion processed after the
common due date. In addition to some complexity results, a polynomial algorithm for the
two-machine problem of minimizing total late work and a pseudo-polynomial algorithm for
the corresponding weighted case have been given.
In this chapter, we investigate the application of simulated annealing to open shop
scheduling problems with different sum criteria. The most general problem considered in
this work deals with the minimization of total weighted tardiness subject to given release
dates. Preemptions of operations are forbidden. The remainder of the chapter is organized
as follows. In Section 2, we introduce the mathematical model used for describing feasible
solutions. In Section 3, we discuss the components of the simulated annealing algorithms
considered in our study. A detailed comparative study for the different types of problems is
presented in Section 4. In particular, we discuss the influence of the initial solution, the
parameters of the algorithms and the problem type in terms of n and m, release dates,
processing times, weights and due dates of the jobs and compare the results for short and
longer runs. Moreover, a comparison with a genetic algorithm is performed to test the
influence of the use of a population. Section 5 contains some conclusions and summarizing
recommendations.

2. Basic notions

Next, we describe the mathematical model for representing feasible solutions for the open
shop problem. In the following, we use the digraph G(MO, JO) with operations as vertices

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

53

and arcs between two immediately succeeding operations of a job or on a machine. If we
place the operations in a rectangular array, where the operations of job Ji are sequenced in
row i and the operations on machine Mj in column j and draw an arc between immediately
succeeding operations of the same job or on the same machine, we get the graph G(MO, JO)

= G(MO) ∪ G(JO), where G(MO) contains only horizontal arcs (describing the machine order

of the jobs) and G(JO) contains only vertical arcs (describing the job orders on the machines).
Example 1: Let the machine orders of the jobs be chosen as

and, moreover, let the job orders on the machines be as follows:

Figure 1 shows the graphs G(MO), G(JO) and G(MO, JO) (with the pair ij of job and machine
indices of the operations given inside the vertices).

Figure 1. G(MO), G(JO) and G(MO, JO)

A combination of machine orders and job orders (MO, JO) is feasible, if G(MO, JO) is acyclic.

We call such an acyclic digraph G(MO, JO) a sequence graph. Note that all above graphs

represent partial orders on the set of operations. Similarly as in (Bräsel (2006), Bräsel et al.

(1993), Werner & Winkler (1995)), we describe a sequence graph G(MO, JO) by its rank

matrix A = (aij), i.e., the entry aij = k means that a path to operation (i, j) with a maximal

number of operations includes k operations. Due to this property, equality aij = k implies that

there is no other operation with rank k in row i and column j, and the so-called sequence

property is satisfied: ‘For each aij = k > 1, the integer k − 1 occurs as entry in row i or column j

(or both).’ Now we assign the processing time tij as the weight to operation (i, j) in G(MO,

JO). The computation of a longest path to the vertex (i, j) with (i, j) included in an acyclic

digraph G(MO, JO), i.e. a path for which the sum of the vertex weights is maximal, gives the

completion time cij of operation (i, j) in the semiactive schedule C = (cij). We remind that a

schedule is called semiactive if no operation can start earlier without changing the

underlying sequence graph.
Example 2: Consider an open shop problem with n = 3 jobs and m = 3 machines. Let the release dates
of the jobs be given as follows: r1 = 3, r2 = 1, r3 = 6. The job weights are w1 = 1,w2 = 4,w3 = 2.
Moreover, the due dates of the jobs are given as follows: d1 = 10, d2 = 13, d3 = 18. The matrix T of the
processing times of the operations is given as

www.intechopen.com

 Simulated Annealing

54

(note that job J1 has to be processed only on machines M1 and M3). Assume that the job and machine
orders are chosen as in Example 1. The resulting graph G(MO, JO) corresponds to the rank matrix

For this instance, we obtain the following schedule C from the given matrix of processing times T =
(tij) and the rank matrix A = (aij):

Thus, we obtain the completion times C1 = 12,C2 = 16 and C3 = 17. For the optimization criterion
F = ΣwiTi, we get the objective function value

It can be noted that the advantage of the use of the rank matrix in contrast to the usual

description of a solution by a permutation (i.e. sequence) of the operations is the exclusion

of redundancy: different rank matrices describe different solutions while different operation

sequences may describe the same solution. For example, both the permutations

and

represent the same sequence graph given as G(MO, JO) in Fig. 1. Considering e.g. the
operations to be processed on machine M3, we have in both permutations OP1 and OP2 the
same sequence

((1, 3), (3, 3), (2, 3)),

i.e. both permutations represent the same chosen job order on M3 : J1 → J3 → J2. This is also

true for the remaining job orders and all machine orders of the jobs. Moreover, there exist at

least 3! · 2! · 2! · 1! = 24 permutations of the operations which represent the same job and

machine orders as the rank matrix A since there are three operations with rank 1, two

operations with rank 2, two operations with rank 3 and one operation with rank 4 in A. In

general, the problem of counting possible extensions of a partial order (as it is given e.g. by a

rank matrix of a sequence graph) is #P-complete (see Brightwell & Winkler (1991)).

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

55

3. Simulated annealing algorithms

In this chapter, we focus on the application of simulated annealing algorithms for solving
open shop problems with different sum criteria. One of the major goals of this study consists
in finding similarities and differences in the recommendations for the parameters of the
algorithms for the different types of problems.
It is well-known that simulated annealing is an enhanced version of local search. Annealing
refers to the process when physical substances are raised to a high energy level and then
gradually cooled until some solid state is reached. The goal of this process is to reach the
lowest energy state. In this process physical substances usually move from higher energy
states to lower ones if the cooling process is sufficiently slow. However, there is some
probability at each stage of the cooling process that a transition to a higher energy state will
occur, but this probability of moving to a higher energy state decreases in this process.
In terms of our open shop model, a basic simulated annealing algorithm starts with
generating an initial solution (rank matrix) A. Then a neighbor (rank matrix) A* of rank
matrix A is generated and the difference Δ= F(A*)−F(A) in the objective function values of
both schedules is calculated. If Δ < 0, the neighbor A* is accepted as the new starting
solution in the next iteration since it has a better function value. If the objective function
value does not decrease (i.e. Δ ≥ 0), the generated neighbor may also be accepted with a
probability exp(−Δ / T), where T is a control parameter called temperature. This temperature
is periodically reduced by a cooling scheme every EL iterations, where EL is a preset
parameter called the epoch length. As a stopping criterion, one may use e.g. a given number
of iterations, a time limit or a given number of iterations without an improvement of the
best objective function value. In the first two cases, one must adjust the cooling scheme in
such a way that the algorithm stops with a sufficiently small temperature. In our tests, we
investigate in particular the influence of the chosen neighborhood and the cooling scheme.

3.1 Neighborhoods
First, we briefly discuss the generation of neighbors of a current solution described by the
rank matrix A of a sequence graph G(MO, JO). In the case of a job shop problem, often a
neighbor is generated by interchanging two adjacent jobs in exactly one machine order (this
means that the ranks in the current rank matrix are changed in such a way that in exactly
one machine order two adjacent jobs have been interchanged). We denote this
neighborhood as machine oriented API neighborhood, abbreviated as API(MO). In an open
shop problem we can, due to symmetry, also consider a neighborhood based on adjacent
pairwise interchanges in the job order on a machine, abbreviated as API(JO). In our
algorithms, we use the union of both neighborhoods, abbreviated as API. This means that,
in order to generate a neighbor, the rank matrix is modified such that exactly in one job or
machine order, two adjacent operations are interchanged. Thus, in order to generate a
neighbor, an operation (i, j) is randomly selected and then it is interchanged with the
predecessor or successor operation on machine Mj or of job Ji. One of these (at most) four
possibilities is randomly chosen. If the pairwise interchange leads to a feasible schedule, it is
accepted as the generated neighbor, otherwise another second operation is chosen to
perform an adjacent pairwise interchange in a job or machine order. Note that the adjacent
pairwise interchange always leads to a feasible solution if the ranks of the two chosen
operations differ only by one. As a consequence, if the first operation has been chosen, one
of the at most four possibilities for generating a neighbor in the API neighborhood always
leads to a feasible solution which follows from the sequence property stated in Section 2.

www.intechopen.com

 Simulated Annealing

56

Moreover, we consider the neighborhood k-API, in which a neighbor is generated from the
current sequence graph G(MO, JO), respectively the corresponding rank matrix A, by
generating consecutively up to k neighbors in the API neighborhood (i.e. a path containing
up to k arcs in the resulting neighborhood graph is generated). When generating a neighbor,

the number s∈{1, 2, . . . , k} of interchanges of two adjacent operations of a job or on a
machine is randomly chosen. Note also that the neighborhood used in Liaw (1999) is a
subneighborhood of the 3-API neighborhood, where one or up to four neighbors with
specific properties have been generated per iteration.
As a generalization of the shift neighborhood for permutation problems we use a
neighborhood SHIFT, where exactly one operation is changed in the relative order of
operations, namely in such a way that either in the job order on one machine or in the
machine order of one job exactly one operation is shifted left or right. In order to generate a
neighbor, an operation (i, j) is randomly chosen. Then another operation belonging to the
same job or to be processed on the same machine is selected. Consider the first case (the
second one is analogue), and let (i, k) be the other chosen operation. If the rank aik is smaller
than aij , the rank aij is modified such that operation (i, j) appears immediately before
operation (i, k) (it corresponds to a left shift of machine Mj in the machine order of job Ji). If
the rank aik is larger than aij , the rank aij is modified such that operation (i, j) appears
immediately after operation (i, k) (it corresponds to a right shift of machine Mj in the
machine order of job Ji). Notice that usually the ranks of some other operations have to be
modified in order to maintain all established precedence relations. If the chosen shift leads
to an infeasible solution, this shift is not performed, and two other operations for
performing a shift are randomly chosen.
Another neighborhood considered is a restricted SHIFT neighborhood denoted as crit-
SHIFT. Here only such neighbors in the SHIFT neighborhood are considered which satisfy a
necessary condition for an improvement of the makespan value, namely a critical path (i.e. a
longest path among all paths ending in a sink of the corresponding sequence graph) in the
starting solution is ‘destroyed’, and there does not exist a path in the graph describing the
generated neighbor which contains the same vertices as this critical path of the current
starting solution. This neighborhood is based on the so-called block approach originally
introduced for shop scheduling problems with makespan minimization. Clearly, the crit-
SHIFT neighborhood is a subneighborhood of the complete SHIFT neighborhood.
In our experiments, we always randomly generate one neighbor in the chosen neighborhood
in each iteration. In particular, we do not consider such variants which investigate in one
iteration all or several neighbors of the current starting solution in a particular
neighborhood and select the best neighbor as the generated one to which the acceptance
criterion of simulated annealing is applied.
Example 3: We illustrate the API, SHIFT and crit-SHIFT neighborhoods discussed above by the
following example with n = 3 and m = 4. Let the current sequence graph be described by the rank
matrix

Assume that operation (3, 3) with a33 = 5 (given in bold face above) has been chosen randomly for
generating a neighbor in the API neighborhood. This operation (3, 3) is contained

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

57

a) in the machine order of job J3 : M4 →M2 → M1 → M3 and
b) in the job order on machine M3 : J3 → J2 → J1.
Using this operation (3, 3), one can generate two neighbors in the API neighborhood (note that we
cannot generate four neighbors since machine M3 is the last one in the machine order of J3 and J3 is the
first job in the job order on machine M3). If we interchange the machines M1 and M3 in the machine
order of job J3 (see a) above), we get the rank matrix

as the generated neighbor in the API neighborhood. If we interchange the jobs J3 and J2 in the job order
on machine M3 (see b) above), we get the rank matrix

as the generated neighbor.
Next, we consider the generation of a neighbor in the SHIFT neighborhood. Let again (3, 3) be the
operation chosen first and assume that operation (3, 2) is selected as the second operation. Operation
(3, 2) is performed earlier and belongs to job J3 too. This means that operation (3, 3) will be shifted left
in the machine order of job J3 so that it is rescheduled directly before operation (3, 2). This gives the
rank matrix

of the generated neighbor (notice that the entries of some operations have to be changed in order to
maintain all precedence relations). Assume now that operation (1, 3) is chosen as the second
operation. This operation is performed later than (3, 3) on the same machine which means that
operation (3, 3) is shifted right in the job order on machine M3 so that it is rescheduled directly after
operation (1, 3). This gives the rank matrix

of the generated neighbor. So both rank matrices A3 and A4 describe feasible neighbors of rank matrix
A in the SHIFT neighborhood.
Now assume that the processing times of all operations are equal to one. In this case, the makespan
value of rank matrix A is equal to 7, and a critical path contains e.g. the vertices

(note that the critical path is not uniquely determined for this instance). In this case, both rank
matrices A3 and A4 are also a neighbor of rank matrix A in the crit-SHIFT neighborhood (because in

www.intechopen.com

 Simulated Annealing

58

both cases operation (3, 3) is shifted to a position ‘outside’ the chosen critical path). In fact, both
neighbors lead indeed to an improvement of the makespan value: Cmax(A3) = 5 and Cmax(A4) = 6.

Considering e.g. the objective function F =
i

C∑ and assuming that all release dates are equal to

zero, the starting solution described by A has the function value F = 7 + 6 + 5 = 18, and both
generated neighbors lead to an improvement of the objective function value: F(A3) = 5+4+5 = 14 and
F(A4) = 5 + 4 + 6 = 15.

3.2 Cooling schemes
Typical cooling schemes used in a simulated annealing algorithm are a geometric, a Lundy-
Mees and a linear reduction scheme. The three cooling schemes have been tested for open
shop problems with mean flow time minimization in Andresen et al. (2008). It has been
found that often the geometric scheme is slightly superior. In most other applications to
scheduling problems, a geometric cooling scheme is also preferred. Therefore, in the
following we test exclusively geometric schemes.
The geometric cooling scheme reduces the current temperature Told to the new temperature
Tnew in the next epoch according to

where 0 < α < 1.
In our experiments we fix the initial temperature T0, the epoch length EL and set the

temperature reduction factor α in such a way that the final temperature is close to zero (we

always use Tend = 0.01 as the final temperature) taking into account that in our study, the

maximal number of generated solutions is settled in advance and therefore, the maximal

number of epochs with a constant temperature is fixed. Based on the experiments in

Andresen et al. (2008), we fix the epoch length as EL = 100.

In addition to the usual procedure of one cooling cycle, we also consider variants of

simulated annealing with several cooling cycles in one run, where the temperature

reduction is done faster within one run such that, if the final temperature is reached, the

procedure is restarted again with the initial temperature. This requires that the (maximal)

number of solutions to be generated in one run is settled in advance. The number CC

denotes the number of cooling cycles in one run of the algorithm.

4. Computational results

In this section, we present the computational results with the tested algorithms. First, we

describe the generation of the open shop instances in Section 4.1. Then we give some

comments on the generation of the initial solution in Section 4.2. In Section 4.3, we describe

the design of the comparative study. A detailed comparison of the simulated annealing

algorithms is made in Section 4.4. Finally, we compare the fast simulated annealing

algorithms with genetic algorithms from Andresen et al. (2008) in Section 4.5.

4.1 Generation of instances

For the comparative study, we consider all pairs (n,m), with n ∈ {10, 15, 20, 30} and m ∈ {10,
15, 20, 30} yielding a total of 16 combinations of m and n. In particular, there are four pairs
(n,m) with n = m, six pairs with n > m and six pairs with n < m.

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

59

For each pair (n,m), we generated several problem types differing in the job weights, the
processing times, the release dates and the due dates.
For the job weights, we considered the following two variants:
w1: All weights are equal to one: wi = 1 for i = 1, 2, . . . , n.
w2: The weights are uniformly distributed integers from the interval [1, 10].
For the processing times of the operations, we also consider two variants:
t1: The processing times are uniformly distributed integers from the interval [1, 100].
t2: The processing times are uniformly distributed integers from the interval [35, 66].
For the above two cases, we have chosen two uniform distributions having the same
expectation value of 50.5, but in the second case the standard deviation is substantially
smaller, namely a bit less than one third of the standard deviation in the first case.
For the release dates, we consider two different variants:
r1: All release dates are equal to zero: ri = 0 for i = 1, 2, . . . , n.
r2: The release dates are uniformly distributed integers from the interval [0, rmax], where

In case r2, the value of rmax has been settled in such a way that it is equal to the half of the
average total processing time of a job.
For the due dates of the jobs, we considered the following three variants:
d1: The due dates of all jobs are equal to zero: di = 0 for i = 1, 2, . . . , n (in this case, we have

 the objective function
ii

C∑w or its special case
i

C∑).

d2: The due dates of the jobs are generated as follows:

with the tightness factor TF = 1.0 for problems with n ≤ m and TF = 1.25 for the
problems with n > m.

d3: The due dates of the jobs are generated as follows:

with the tightness factor TF = 1.1 for the problems with n ≤ m and TF = 1.5 for the
problems with n > m.

While for the second variant d2 due dates are more tight, they are more lose for the third
variant d3. We have found that problems with n ≤ m and TF ≥ 1.2 tend to become rather easy
in the sense that often the best of the constructive procedures has an objective function value
of zero which means that the optimal solution has already been found. On the other hand,
larger tightness factors are of interest for the problems with n > m. So we decided to use
different tightness factors for the problem types with n ≤ m and n > m under consideration.
Each problem type is described by a 4-tuple (w,t,r,d), For instance, the 4-tuple (w1,t1,r1,d1)

characterizes the open shop problem
i

O C∑ of minimizing mean flow time when all

www.intechopen.com

 Simulated Annealing

60

release dates are equal to zero and processing times are taken from the interval [1, 100] (this

was the only problem type investigated in Andresen et al. (2008)). In our tests, we

considered problems of all possible 4-tuples. This gives altogether 23 · 3 = 24 different types

of problems. For each of these types and any of the 16 pairs (n,m), we generated 20 instances,

giving a total of 24 · 16 · 20 = 7, 680 instances.

4.2 Generation of the initial solution
Often initial solutions for shop scheduling problems are obtained by generating active or
nondelay schedules. A schedule is called active if no operation can be started earlier without
changing the underlying sequence graph and delaying some other operation. A schedule is
called nondelay if no machine is left idle provided that it is possible to process some job.
Obviously, any nondelay schedule is an active schedule, and any active schedule is a
semiactive one. Similarly as in Bräsel et al. (2008) for mean flow time minimization, we have
found in initial tests that nondelay schedules are superior to active schedules for the
problems under consideration. Therefore, we exclusively used the generation of nondelay
schedules as fast constructive procedures.
The algorithms for constructing a nondelay schedule repeatedly append operations to a
partial schedule. Starting with an empty schedule (which is obviously a nondelay one),
operations are appended as follows: we determine the minimal head r of all unscheduled
operations. At time r, there exist both a free machine and an available job. To maintain the
nondelay property of the schedule, we have to append an operation which can start at time
r. Among all operations (i, j) with rij = r, choose one according to some priority dispatching
rule.
In our tests, we have used the following priority dispatching rules for generating a nondelay
schedule:

• RND (an operation is randomly selected)

• FCFS (first come first served, i.e. the operation that entered the queue first is chosen),

• SPT (shortest processing time),

• WSPT (weighted shortest processing time, i.e. the operation with smallest quotient tij/wi

is chosen) and

• LPT (longest processing time),

• EDD (earliest due date)

4.3 Design of the comparative study
For each of the instances generated as described in Section 4.1, we first tested the different
simulated annealing variants. In particular, we have used the following simulated annealing
algorithms, differing in the construction of the initial solution, the stopping criterion, the
neighborhood and the cooling scheme.
Initial Solution: We consider one variant with a weak initial solution and one variant with a
better initial solution:
 I1: The initial solution is determined by the generation of a nondelay schedule according to

the rule RND.
 I2: The initial solution is determined as the best nondelay schedule obtained by the

application of all priority dispatching rules mentioned in Section 4.2.
Stopping criterion: We consider two variants with an a priori fixed number of iterations (i.e.
the number of generated solutions) and additionally one variant, where the algorithm stops

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

61

if no improvement of the best function value has been obtained for a certain number of
iterations. In particular, we use the following stopping criteria:
S1: The algorithm performs 30,000 iterations.
S2: The algorithm performs 200,000 iterations.
S3: The algorithm performs at most 200,000 iteration but stops, if no improvement of the

best objective function value has been obtained for 10,000 iterations.
Neighborhoods: The simulated annealing algorithm uses one of the four neighborhoods
discussed in Section 3:
N1: The algorithm uses the API neighborhood.
N2: The algorithm uses the 3-API neighborhood.
N3: The algorithm uses the SHIFT neighborhood.
N4: The algorithm uses the crit-SHIFT neighborhood.
Cooling Scheme: The geometric cooling scheme tested in our algorithms is characterized by
the initial temperature and the number of cooling cycles. For the initial temperature, we
used the following two variants:
IT1: The initial temperature is equal to 2.
IT2: The initial temperature is equal to 15.
For the number of cooling cycles, we considered the following two variants:
CC1: The number of cooling cycles is equal to 1.
CC2: The number of cooling cycles is equal to 5.
In our tests, we considered any possible combination of an initial temperature and the
number of cooling cycles, yielding four different cooling schemes.
Since we fixed the epoch length as EL = 100, this means that for variant CC1, the number of
epochs is equal to 300 for stopping criterion S1. Moreover, since we fixed the final
temperature as Tend = 0.01, the reduction factor α in the geometric scheme is equal to
α = 0.983 for an initial temperature of 2 corresponding to IT1 and α = 0.976 for an initial
temperature of 15 corresponding to IT2. For variant CC2, the number of epochs per cooling
cycle is equal to 60. As a consequence, in each run the reduction factor α is equal to α = 0.916
for an initial temperature of 2 and α = 0.887 for an initial temperature of 15.
For the long runs with stopping criterion S2, the number of epochs is 2,000 (for S3, the
maximal number of epochs is 2,000). Therefore, for variant CC1, the reduction factor α is
equal to α = 0.998 for an initial temperature of 2 and α = 0.997 for an initial temperature of
15. For variant CC2, the number of epochs per cooling cycle is equal to 400. As a
consequence, the reduction factor α is equal to α = 0.987 for an initial temperature of 2 and
α = 0.982 for an initial temperature of 15.
A particular simulated annealing variant is described by a 5-tuple. For instance, algorithm
(I2,S2,N3,IT1,CC2) means that the best constructive solution is taken as initial solution,
200,000 iterations are performed, the SHIFT neighborhood is used and the cooling scheme is
characterized by an initial temperature of 2 and five cooling cycles. We have run simulated
annealing for any possible combination of a stopping criterion, use of a particular initial
solution, a neighborhood and a cooling scheme. This yields 3 · 2 · 4 · 4 = 96 different
simulated annealing algorithms.
Concerning computational times we only mention that for the large problems with n = m =
30, the average computational time per instance for a variant with stopping criterion S2 is
198.3 s on an AMD Athlon XP 3200+. For smaller problems with n = 10 and m = 20, this
average computational time for a long run per instance is 19.8 s while for the corresponding
problems with n = 20 and m = 10, this average time is 22.2 s. We also note that one computer
of this type would require about 4,250 hours to perform all runs done in our study.

www.intechopen.com

 Simulated Annealing

62

4.4 Comparative study of simulated annealing
Before comparing the simulated annealing variants, we give a few comments on the
performance of the constructive algorithms. For n < m, we have found that the LPT rule is
clearly the best algorithm. It is followed by the rules RND, SPT and WSPT which yield
solutions of approximately the same quality. In particular, the rather good quality of the
RND rule is surprising. This rule is clearly better than the ECT and FCFS rules which are the
weakest constructive algorithms for problems with n < m. Problems with d3 tend to become
easy. In this case, the majority of the dispatching rules yield the best constructive solutions,
and many objective function values are equal or very close to zero. For the problems with n
> m, the LPT rule works bad. The best results have been obtained with the EDD, WSPT and
FCFS rules. If n = 30 and m = 10, the WSPT rule works good for problems with w2.
However, for problems with w1, the FCFS rule is clearly the best for problems with d1 and
the EDD rule is superior for the problems with d2 and d3. The observed trends are most
obvious for a large ratio of n/m (although, if the ratio n/m decreases, the observations are
similar but not so strong). For problems with n = m, all dispatching rules contribute best
values. In general, there is an overlapping of the observations for the problems with n < m
and n > m. We observed that the EDD rule is good for problems with r1 and d3 while the
LPT rule works well for problems with r2.
For evaluating the 96 simulated annealing variants, we use a performance index defined as
follows. Let FA be the heuristic function value obtained for a particular instance by algorithm
A, FCON be the best function value obtained by some of the constructive procedures
mentioned in Section 4.2, and FBEST be the best function value obtained by one or several of
the 96 tested simulated annealing variants. In the case of FCON > 0, the performance index PI
of algorithm A for this particular instance is given by

If FCON = 0, we define the performance indices of all simulated annealing algorithms with the
corresponding constructive initial solution to be equal to 100. Moreover, let PI(k) be the
percentage of the instances, for which a particular algorithm has obtained a performance
index of at least k. That is, PI(95) = 80 means that the algorithm under consideration has
obtained a performance index greater than or equal to 95 for 80 % of the instances. In the
following evaluations, we consider the performance indices PI(95) (which stands for an
excellent performance) and PI(75) (which stands for a good performance of the particular
algorithm).
First, we give some general observations from our study. Then we discuss separately the
results for the problems with n < m, n = m and n > m in more detail.
General Observations:

As a general observation we have found that the ratio of n and m influences the hardness of
the problems. Among the problem data, the range of the processing times and the job
weights have in particular an influence on the selection of an appropriate algorithm or the
quality of the results, while release dates and due dates have only minor influence.
Therefore, the recommendations in the following sections do not strongly depend on
different due dates and release dates. Hence, at most four algorithms (for any combination
of weights and processing times) are suggested for every stopping criterion S1, S2 and S3,

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

63

respectively. On the other side, the range of due dates influences the range of the objective
function values and their possible percentage improvements.
The use of the best constructive algorithm leads to better results with the simulated
annealing algorithms than the use of only a randomly generated initial solution. The choice
of an appropriate neighborhood turns out to be substantial for the quality of the results. An
appropriate initial temperature is at least for certain problem types important. In particular,
some problems with unit weights require a low initial temperature when using short runs
while for most problems with w2, the results with the different initial temperatures do not
differ very much. From an overall point of view, the number of cooling cycles per run has
only a small influence on the quality of the results. In general, algorithms with variant CC2
turn out to be a bit superior to those with CC1.
If one looks for an overall variant that performs well, we can recommend the algorithms
with a good initial solution, the use of the SHIFT neighborhood and a cooling scheme with a
low initial temperature and one or five cooling cycles.
Problems with n < m:

In Table 1, we summarize some results for the problems with n < m. The rows refer to the 24
different problem types described by a 4-tuple (w,t,r,d). In column 2, we present the average
objective function value FCON (rounded to integers) of the best constructive algorithm taken
over all instances of the six pairs (n,m) with n < m. In column 3, the average percentage
improvement PERC of the best function value obtained by the 96 simulated annealing
variants over the function value of the initial solution is given. In the remaining columns, we
present first the average performance index (columns AVG) of the corresponding algorithm
and then the values PI(95) and PI(75) (columns 95/75) for the recommended variants with
stopping criterion S1 (Alg 1), criterion S2 (Alg 2) and criterion S3 (Alg 3), respectively. In
particular, based on the experiments and the discussion below, we have chosen the
following algorithms:
Alg 1: algorithm (I2,S1,N3,IT1,CC2) for problems with t1; algorithm (I2,S1,N1,IT2,CC2) for

problems with t2;
Alg 2: algorithm (I2,S2,N3,IT1,CC1) for problems with w1; algorithm (I2,S2,N3,IT2,CC2) for

problems with w2;
Alg 3: algorithm (I2,S3,N3,IT1,CC2) for problems with t1; algorithm (I2,S3,N1,IT1,CC1) for

problems with w1 and t2; algorithm (I2,S3,N1,IT2,CC2) for problems with w2 and t2.
From Table 1 we see that there is a large range of percentage improvements over the
constructive algorithm for the particular types of problems. For problems with d1 (i.e.
minimization of mean flow time or its weighted version), the average percentage
improvements are very small (always less than 1 %). This corresponds to the observation for
problem type (w1,t1,r1,d1) in Andresen et al. (2008), where it has been found that the
solutions obtained by constructive algorithms are already almost optimal and often even a
lower bound for the corresponding preemptive problem has been reached. On the other
hand, problems with d3 tend to be easy in the sense that the initial solution has already a
function value close to zero. Note that for these problems, the performance indices of Alg 1 -
Alg 3 are strongly influenced by the large number of instances with FCON = 0, where the
performance index is 100 per definition. For problems with d2, substantial average
percentage improvements over the initial solution have been obtained. For these problems,
it is remarkable that rather small objective function values have been obtained by the best
simulated annealing algorithms although the tightness factor TF = 1 leads to tight due dates.

www.intechopen.com

 Simulated Annealing

64

As a consequence, there are only short waiting times of the jobs in the best solutions found.
Among all particular combinations of a problem type (w,t,r,d) and a pair (n,m), we observe
that the absolute improvements of the average function values obtained by the best
simulated annealing variant over the average values of the initial solutions are up to 130
units for problems with w1 and up to 800 units for problems with w2. For problems with w1
and d1, they are typically around 50 units. However, from Andresen et al. (2008) it follows
that often the heuristic solution is equal or close to a lower bound for the optimal value of a
problem of type (w1,t1,r1,d1).

Table 1. Results for problems with n < m

Moreover, the use of the SHIFT neighborhood is clearly superior for the problems with t1. In
contrast, for most problem types with t2, both the API and 3-API neighborhoods are
superior to the SHIFT neighborhood when using shorter runs with stopping criteria S1 and
S3, and this tendency increases with the problem size. In addition, the API neighborhood is
slightly superior to the 3-API neighborhood. We observed that the superiority of the SHIFT
neighborhood in comparison with the two API-based neighborhoods is larger for problems
with t1 than the superiority of the API-based neighborhoods over the SHIFT neighborhood

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

65

for those with t2 for short runs. However, the SHIFT neighborhood becomes the single best
for the long runs with stopping criterion S2. The variants with stopping criterion S2 yield
the best results, often followed by the algorithms with S1 and finally those with S3 (an
explanation is given in the next paragraph). Variants with an initial temperature IT1 tend to
be superior to those with the initial temperature IT2, in particular for problems with w1, t1,
for which they are substantially better (for an arbitrary stopping criterion). Moreover, for
most problems algorithms with five cooling cycles work slightly better than variants using
only one cooling cycle. However, for the long runs with stopping criterion S2, the use of one
cooling cycle is slightly better for the problems with w1.
Next, we discuss the number of iterations executed in the case of stopping criterion S3. First,
taking the average number of generated solutions over all problems with n < m, this number
is up to 25 % for algorithms with N3 and only up to 12 % for algorithms with N1, N2 and
N4. In particular, for neighborhood N4 the algorithm stops very quickly. For problems with
w1, even for neighborhood N3 the algorithm stops after 5 % when using the larger initial
temperature IT2 and CC1. This means that for an initial temperature of 15, usually no
improvements over the function value of the initial solution are obtained. The percentage of
generated solutions is also larger for problems with t1 in comparison with the problems
with t2. The largest percentage of generated solutions was obtained for problem type
(w2,t1,r1,d1) as well as n = 20 and m = 30 using N3, IT1, CC2 and a random initial solution,
where 48 % of the iterations were executed. Comparing stopping criteria S1 and S3, we
observe that only for the SHIFT neighborhood usually more than 30,000 solutions were
generated for S3 while for the other neighborhoods, typically only around 20,000 solutions
have been generated.
Problems with n = m:

Some results for the problems with n = m are given in Table 2. The meaning of the rows and
columns is the same as in Table 1. Based on the experiments and the discussion below, the
following algorithms for the stopping criteria S1, S2 and S3, respectively, are included in
Table 2:
Alg 1: algorithm (I2,S1,N1,IT2,CC2) for problems with w1 and t2; algorithm (I2,S1,N3,IT1,

CC2) for all other problems;
Alg 2: algorithm (I2,S2,N3,IT1,CC1) for problems with w1, algorithm (I2,S2,N3,IT1,CC2) for

problems with w2 and t1; algorithm (I2,S2,N3,IT2,CC2) for problems with w2 and t2.
Alg 3: algorithm (I2,S3,N1,IT2,CC1) for problems with t2; algorithm (I2,S3,N3,IT1,CC2) for

problems with w1 and t1; algorithm (I2,S3,N3,IT1,CC1) for problems with w2 and t1.
For the problems with w1 and d1, the average percentage improvements are smaller than 1
%. These percentage improvements are larger for problems with w2 and t2. Here they are
up to 2.53 % for problem type (w2,t2,r1,d1) and n = m = 10. For problem type (w1,t2,r2,d3),
average percentage improvements of more than 90 % have been obtained and the final
average objective function values for the instances of the particular pairs (n,m) are between 0
and 10 so that many problems have been solved to optimality. When comparing the average
function values of the initial solutions with the average values by the best simulated
annealing solutions, the absolute improvements are up to 200 units for problems with w1
and up to 1,500 units for the problems with w2.
Among the neighborhoods, the SHIFT neighborhood is clearly on the first place followed by
the 3-API neighborhood (which is, however, substantially worse) when considering the
results for all pairs (n,m). The crit-SHIFT neighborhood works extremely weak. The use of a

www.intechopen.com

 Simulated Annealing

66

small initial temperature is slightly superior. In particular, for the long runs with
neighborhood N3 and stopping criterion S2, often the large initial temperature combined
with one cooling cycle works weak for problems with w1. In general, the use of five cooling
cycles is slightly superior in most cases. As for the problems with n < m, for the long runs
with stopping criterion S2, the use of one cooling cycle is better for the problems with w1
while the use of five cooling cycles is better for w2.

Table 2. Results for problems with n = m

When looking at the instances of the particular pairs (n,m), we can note that there is a
tendency that with an increasing number of jobs, the API neighborhood becomes more and
more competitive to the SHIFT neighborhood. For the problems with n = m = 20, the API
neighborhood becomes superior for the problems with w1 when using short runs. For the
problems with n = m = 30, the API neighborhood is also superior for most problem types
when using short runs and even for problems with w1 when using long runs. This

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

67

corresponds to the observation in Andresen et al. (2008), where the API neighborhood
became superior for the short runs with problem type (w1,t1,r1,d1) and n ≥ 20.
Moreover, for most problems with w1 and t2, it turned out that in the case of short runs
with stopping criterion S1, the recommended variant (I2,S1,N1,IT2,CC2) works not so good
for small problems with n = 10 while the use of the API neighborhood is clearly superior for
the larger problems with n ≥ 20.
In addition, the variant (I2,S3,N1,IT2,CC1) was recommended for problems with w2 and t2
from an overall point of view when using S3. However, for these problems the performance
depends also on the existence of release dates. In general, the API neighborhood is better for
the problems with r1 while the SHIFT neighborhood is better for the problems with r2 when
using S3 (the latter differs from the recommendation for Alg 3 made from an overall point of
view for the corresponding group of problem types). Nevertheless, in contrast to the above
comment, for the small problems with n = m = 10 and r1, the SHIFT neighborhood is
superior while for the large problems with n ≥ 20 and r2, the API neighborhood is clearly
superior. This coincides with the general observation that the SHIFT neighborhood is often
substantially better for small problems while the API neighborhood becomes better for the
large problems.
For stopping criterion S3, the number of performed iterations slightly increases with the
problem size. For problems with n = m = 20, up to 44 % of the iterations have been
performed when using the SHIFT neighborhood. The largest number of iterations were
performed for problems with t1. However, these numbers are substantially smaller for the
other neighborhoods. In particular, for the small problems with n = m = 10, the number of
performed iterations is roughly only the half of those for the large problems but in general,
these percentages for the large problems are still rather low. For a substantial number of
problems with d3, an objective function value of zero has been obtained for the long runs
with the SHIFT neighborhood.
Problems with n > m:

Some results for the problems with n > m are summarized in Table 3. The meaning of the
rows and columns is the same as in Table 1. Based on the experiments and the discussion
below, we have chosen the following algorithms for the stopping criteria S1, S2 and S3,
respectively:
Alg 1: algorithm (I2,S1,N3,IT2,CC2) for problems with w2 and t1, algorithm (I2,S1,N3,IT1,

CC1) for all other problems;
Alg 2: (I2,S2,N3,IT2,CC2) for problems with w2; algorithm (I2,S2,N3,IT1,CC2) for problems

with w1 and t1, algorithm (I2,S2,N3,IT1,CC1) for problems with w1 and t2;
Alg 3: algorithm (I2,S3,N3,IT1,CC1) for problems with w1 and t2 as well as w2 and t1;

algorithm (I2,S3,N3,IT1,CC2) for all other problems.
For the problems with d2 and d3, the average percentage improvements are much smaller
than for the problems with n ≤ m. In particular, for the problems with n = 30 and m = 10,
these percentages are less than 1.4 % for the problems with w1. For the corresponding
problems with w2, these average percentages are between 3.2 and 4.8 %. In terms of the
objective function values, the absolute improvements of the function values are larger than
for the problems with n ≤ m. More precisely, the absolute improvement of the average
function value obtained by the best simulated annealing variant over the average value of
the initial solution among all particular combinations of a problem type (w,t,r,d) and a pair
(n,m) is up to 230 units for problems with w1 and up to 2,800 units for problems with w2. In

www.intechopen.com

 Simulated Annealing

68

particular, for problem type (w1,t2,r2,d3) and the instances with n = 30 and m = 20, the
average function value of the initial solution is 233.5, but the average function value of the
best simulated annealing solution is only 3.4.
In general, it can be observed that the performance indices of the algorithms using the
SHIFT neighborhood and stopping criterion S2 are consistently rather large. One can also
note that long runs with the API-based and crit-SHIFT neighborhoods do not reach the
quality of short runs with the SHIFT neighborhood. As an exception, the crit-SHIFT
neighborhood works (surprisingly) good for the problems with n = 15 and m = 10 as well as
n = 30 and m = 20 for the problems with d3 (sometimes even better than the SHIFT
neighborhood). Variants with a low initial temperature ar mostly superior, and this
superiority is stronger than for the problems with n ≤ m. This becomes particularly obvious
for the problems with w1. For the short runs with stopping criteria S1 and S3, often the use
of one cooling cycle can be recommended.

Table 3: Results for problems with n > m

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

69

When looking at the instances of the particular pairs (n,m), we observe for the problems
with n = 30 and m = 20, that the API neighborhood and also the 3-API neighborhood become
superior to the SHIFT neighborhood for short runs. This tendency is stronger for the
problems with w1. We note that this also corresponds to the observation in Andresen et al.
(2008), where the API neighborhood became superior for problems of the type (w1,t1,r1,d1)
with n > m ≥ 20. One can conjecture that such a trend becomes even stronger for larger
problems not considered in this study (see also Andresen et al. (2008)). For the long runs
with S2, the SHIFT neighborhood is still superior to the API neighborhood for almost all
problem types with n = 30 and m = 20. This observation is particularly obvious for the
problems with w2. An exception are problems of the types (w1,t2,r1,d3) and (w2,t2,r1,d3),
where both the API and the 3-API neighborhoods are clearly superior to the SHIFT
neighborhood. For stopping criterion S3, sometimes the SHIFT and in other cases the API
neighborhood works better. On the other side, for problems with n = 30 and m = 15 and
short runs with S1, the API neighborhood is only superior for some problem types with w1
and t2.
When using stopping criterion S3, the largest number of performed iterations can be
observed for algorithms with the SHIFT neighborhood and a randomly generated initial
solution when n = 30 (the largest numbers of iterations have been executed for problems
with w2 and t1). In this case, up to more than 90 % of the maximal number of generations
have been generated. On the other side, in the case of a good initial solution the percentage
of performed iterations is mostly less than 30 %, and for the API-based neighborhoods both
with a weak and a good initial solution, these percentages are always less than 30 %, often
even substantially less. Nevertheless, on average, only for these problems with n > m, the
performance indices of the recommended algorithms with S3 are better than those of the
recommended algorithms with S1.
From an overall point of view it turned out that problems with n > m are the hardest ones, in
particular those with a large ratio n/m.

4.5 Comparison with a genetic algorithm
Genetic algorithms belong to the class of artificial intelligence techniques and they are based
on Darwin’s theory about ‘survival of the fittest and natural selection’. This type of
algorithms has been developed by Holland (1975), and one of the first genetic algorithms for
scheduling problems has been given by Werner (1984). A genetic algorithm is characterized
by a parallel search of the state space by keeping a set of possible solutions under
consideration, called a population. A new generation is obtained from the current
population by applying genetic operators such as mutation and crossover to produce new
offspring. The application of a genetic algorithm requires an encoding scheme for a solution
(also denoted as an individual), the choice of genetic operators, a selection mechanism and
the determination of genetic parameters such as the population size and probabilities of
applying the genetic operators.
In our tests, we use the genetic algorithm tested in Andresen et al. (2008) on the mean flow
time open shop scheduling problem. For a more detailed description of this algorithm, the
reader is referred to Andresen et al. (2008). Here, we use the recommended parameters, in
particular we use a mutation probability of 0.8 and a crossover probability of 0.2. The initial
population includes the best constructive solution of the algorithms described in Section 4.2
as one solution. We consider three variants of this genetic algorithm, denoted by

www.intechopen.com

 Simulated Annealing

70

GA(popsize), differing only in the population size popsize. In particular, we apply the variants
GA(10),GA(50) and GA(100).
We mainly compare the genetic algorithm with the short runs of simulated annealing
(stopping criterion S1). In Andresen et al. (2008), both the simulated annealing and the
genetic algorithms generated 30,000 solutions. However, the genetic algorithms needed
substantially larger computational times. In the following, for the genetic algorithms we
allow a time limit of two times the required average running times for the simulated
annealing algorithms with 30,000 generated solutions (estimated in advance).
For evaluating the genetic algorithms, we also use the performance index PI introduced in
Section 4.4. However, since we refer to the best value obtained by some simulated annealing
variant, the performance index can be greater than 100 for a particular instance, if a genetic
algorithm generates a better solution than the best one obtained among all simulated
annealing variants.
In Table 4, we present the average performance indices of the three genetic algorithms for

the 24 problem types, where again all pairs (n,m) of the corresponding relation between n

and m are considered. For n < m, it can be seen that in most cases a large population size of

100 is superior. Algorithm GA(10) is better than the recommended variant Alg 1 (but we

remind that the time limit for the genetic algorithms is roughly twice the time limit for Alg

1). However, on average, the performance of the long simulated annealing algorithms is not

reached. Moreover, the performance indices of the genetic algorithms depend on the

problem size. Sometimes the genetic algorithm reaches clearly a better performance (even

than the long runs of simulated annealing with stopping criterion S2). The largest

performance indices have been obtained as 143 for problem type (w2,t2,r2,d1) and as 137 for

problem type (w2,t2,r1,d2) for the problems with n = 10 and m = 15 both with algorithm

GA(100). On the other side, the performance index of algorithm GA(100) for the problems

with n = 20 and m = 30 and type (w1,t1,r1,d1) is only 14.

For n = m, it can be observed that an average performance index of more than 100 has been
obtained for 10 problem types both by algorithms GA(50) and GA(100). However, a large
range of the performance indices can be observed. The smallest index of algorithm GA(100),
namely 33, has been obtained for problem type (w1,t1,r1,d3) for the instances with n = m =
30. Concerning the large performance indices for problem type (w2,t2,r2,d2), we note that
these two values for the algorithms GA(50) and GA(100) are strongly influenced by one
outlier instance, where simulated annealing works bad and the function value of the initial
solution is only improved by two units with the best simulated annealing algorithm while
the genetic algorithm with a large population size can improve the function value by some
hundreds of units. (On the other side, there are also instances for this type, where simulated
annealing is better then the best genetic algorithm by several hundreds of units.) In a weaker
form, this also holds for problem type (w2,t2,r2,d1). Excluding these outlier instances, the
results of the genetic algorithms improve with the population size and particularly
algorithm GA(100) can be recommended for problems with n = m. However, from an overall
point of view, all three genetic algorithms are superior to fast simulated annealing runs (see
also Andresen et al. (2008) for mean flow time minimization).
A different behavior can be obtained for the problems with n > m. For these problems, the
quality of the solutions of the genetic algorithm decreases with increasing population size in
terms of the performance index. Moreover, the performance indices of the genetic
algorithms are smaller than those obtained for fast simulated annealing algorithms (and

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

71

they are substantially smaller than those for the best simulated annealing algorithms). For
the best genetic algorithm GA(10), the largest performance index for the problems with d1
and d2 is 84 for problem type (w2,t2,r1,d2) for the instances with n = 15 and m = 10 (note
that some of the problems with d3 are easy so that larger indices have been obtained) while
small performance indices have been obtained in particular for the problems with n = 30.

Table 4. Results of the genetic algorithms

More precisely, even for the best genetic algorithm GA(10), for the problems with n = 30 and

m = 20 a smallest performance index of 15 is obtained for problem type (w1,t2,r2,d2), for the

problems with n = 30 and m = 15 the smallest index is 21 for problem type (w1,t1,r1,d3) and

for the problems with n = 30 and m = 10 the smallest index is 29 for problem type

(w1,t2,r1,d3). In general, among all 72 combinations of a problem type and one of the pairs

www.intechopen.com

 Simulated Annealing

72

(n,m) with n = 30, the indices of algorithm GA(10) are smaller than 40 for 48 of the 72 cases,

among them 32 cases with w1. Moreover, the smallest performance index of algorithm

GA(100) is even only 3 for the problems with n = 30 and m = 15 and type (w1,t1,r1,d2). The

superiority of good simulated annealing variants becomes stronger for problems with an

increasing number of jobs.

The results of the comparison of simulated annealing and genetic algorithms correspond to

those obtained in Andresen et al. (2008) for problem type (w1,t1,r1,d1), where genetic

algorithms are competitive for problems with n ≤ m while simulated annealing was clearly

better for instances with n > m and a large ratio of n/m.

5. Concluding remarks

Often in the literature, a particular type of a problem is considered (e.g. processing times are

uniformly distributed in the interval [1, 100]) and then the parameters of a simulated

annealing algorithm are tuned for this concrete situation. The use of such an algorithm is

then recommended for arbitrary instances of the problem under consideration. However, in

general it is not a priori clear that this particular tuning is also recommendable for other

types of instances of the problem when, for instance, processing times have a substantially

different range, due dates are set in another way, or job weights are very different, etc. One

of the major goals of this study was to find out which parameters of open shop problems

with the minimization of total weighted tardiness have a strong influence and which have a

smaller influence on the selection of an appropriate simulated annealing algorithm.

From our computational study for problems with up to 30 jobs and 30 machines, we can

give the following conclusions and recommendations:

• The concrete data of the problems have a substantial influence on the design of an
appropriate simulated annealing algorithm. While for makespan minimization in an
open shop only square problems with n = m have been considered in the literature
(because they are the hardest problems), the ratio of n and m has an influence on the
performance of particular simulated annealing and genetic algorithms for problems
with sum criteria. As in Andresen et al. (2008), we have evaluated the results separately
for the cases n < m, n = m and n > m.

• For problems with n ≤ m including positive due dates, only instances with a tightness

factor up to approximately 1.1 are of interest. Even for the problems with a tightness

factor between 1.0 and 1.1, the final function values are rather small and therefore, the

corresponding solutions are close to the optimal ones. For larger tightness factors,

problems are very easy in the sense that already simple dispatching rules construct

solutions with a function value equal or close to zero. For problems with n > m,

instances with larger tightness factors are of interest. If n = 30 and m = 10 and due dates

according to d3 are considered, the objective function values of the best solution are still

around 10,000 for the problems with w1 and around 30,000 for the problems with w2.

• In terms of the objective function value, the absolute improvements of the average

function values of the final solution over the average values of the initial solutions are

usually larger for the problems with n > m (where these improvements are even up to

2,800 units) while for problems with n < m, these improvements are smaller (always less

than 130 units for all problem types and pairs (n,m)). It appears that problems with n <

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

73

m are easier to solve while problems with n > m are the hardest ones. This coincides

with the observations made in Andresen et al. (2008), where it has been found for the

problems of type (w1,t1,r1,d1) that the objective function values of the heuristic

solutions are close to a lower bound for problems with n < m. If we consider percentage

improvements of the objective function values, they are higher for the problems with d2

and d3 (where the function values of the initial solutions are considerably smaller).

• In general, the choice of a good initial solution strongly influences the quality of the

iterative solution finally obtained. One possibility is to generate nondelay schedules by

priority dispatching rules. Among the six rules used in our study, the LPT rule can be

recommended for problems with n < m, the WSPT, EDD and FCFS rules are good for

particular types of problems with n > m, and for problems with n = m, all the six rules

considered in our study contribute good initial solutions. This confirms and generalizes

the results from Bräsel et al. (2008). Since these algorithms are very fast, the application

of several rules and the selection of the best solution can be recommended to generate

appropriate initial solutions.

• The choice of an appropriate neighborhood has probably the largest influence on the

quality of a simulated annealing algorithm. For most problem types considered in this

study, the use of the SHIFT neighborhood is strongly recommended and superior to

API-based neighborhoods. An exception are the following situations when using short

runs with stopping criterion S1 or S3. For problems with n < m and t2, the results both

with the API- and the 3-API neighborhoods are better than with the SHIFT

neighborhood. In addition, for large problems with n ≥ m ≥ 20, the API neighborhood

and also the 3-API neighborhood become superior for more and more problem types.

On the other side, for long runs with stopping criterion S2, the API neighborhood

becomes superior to the SHIFT neighborhood only for the large square problems with n

= m = 30, in particular for the problems with w1 and also for most problems with w2

and d3. Moreover, the algorithms using the crit-SHIFT neighborhood are not

competitive for almost all problems.

• The selection of an appropriate simulated annealing algorithm does not essentially

depend on the concrete pair (n,m) within each of the three groups n < m, n = m and n >

m with the exceptions discussed in the previous item. However, the observed trends for

the problems with n < m are stronger if n/m is small, and the trends for the problems

with n > m are stronger if n/m is large. On the other side, if n/m is close to one, the

observations are more similar to the case n = m. This corresponds to the results in

Andresen et al. (2008) for problems with minimizing mean flow time.

• For some problems it is essential to start with an extremely small temperature. This is

particularly true for problems with w1, especially for short runs. On the other side, the

choice of an appropriate initial temperature is not so important for the problems with

w2. In particular, for the long runs with stopping criterion S2, the use of a small initial

temperature is advantageous for problems with w1 while for problems with w2,

variants with a larger initial temperature become more competitive. Moreover, the use

of a low initial temperature is superior for most problems with n > m as well as for the

problems with w1, t1, arbitrary values of n and m and arbitrary stopping criterion.

www.intechopen.com

 Simulated Annealing

74

• The number of cooling cycles does not have a substantial influence on the quality of the

simulated annealing algorithms. Among the recommended algorithms, there are

variants with one and five cooling cycles. From an overall point of view, the use of five

cooling cycles leads to slightly better results, in particular for the problems with n ≤ m.

• As one can expect, the long runs with stopping criterion S2 obtain the best results.

However, when using long runs with the API and 3-API neighborhoods, for most

problem types the results are nevertheless worse than in the case of short runs with the

SHIFT neighborhood. This is partially opposite for problems with n < m and t2.

Variants with the flexible stopping criterion S3 are not superior to short runs with

stopping criterion S1 for the majority of problem types. An exception are most types of

the hard problems with n > m, in particular problems with w2.

• From an overall point of view, a variant using a good initial solution and the SHIFT

neighborhood with a small initial temperature of two and one or five cooling cycles can

be recommended among the simulated annealing algorithms for problems with up to

30 jobs and 30 machines. However, as mentioned above, for the problems with n ≥ m ≥

20, the API neighborhood becomes better. It can be conjectured that this trend becomes

even stronger for problems with n ≥ m as the number of machines increases further.

• When comparing fast simulated annealing and the genetic algorithms used in our

study, we have to distinguish the cases n ≤ m and n > m. While for problems with n ≤ m

the genetic algorithm with a large population size often gets a better solution than short

and sometimes even the best simulated annealing algorithm, this is not true for the

problems with n > m. Here a good fast simulated annealing algorithm is usually

superior to the best genetic algorithm (and the genetic algorithms perform extremely

poor in comparison to the long simulated annealing algorithms).

The algorithms presented in this paper are included into the program package LiSA - A

Library of Scheduling Algorithms, version 3.0 (see http://lisa.math.uni-magdeburg.de). For

a free use of the algorithms discussed in this paper and the whole package, the interested

reader can contact the LiSA team under the above website. A table with the seeds for

generating the open shop instances used in this paper can also be obtained.

6. References

Achugbue, J.O.; Chin, F.Y.: Scheduling the Open Shop to Minimize Mean Flow Time, SIAM
J. on Computing, Vol. 11, 1982, 709 - 720.

Andresen, M.; Bräsel, H.; Mörig, M.; Tusch, J.; Werner, F.; Willenius, P.: Simulated
Annealing and Genetic Algorithms for Minimizing Mean Flow Time in an Open
Shop, Math. Comp. Modelling (to appear, doi 10.1016/j.mcm.2008.01.002).

Blazewicz, J.; Pesch, E.; Sterna, M.; Werner, F.: Open Shop Scheduling with Late Work
Criteria, Discrete Appl. Math., Vol. 134, 2004, 1 - 24.

Bräsel, H.: Matrices in Shop Scheduling Problems, in: Perspectives on Operations Research -
Essays in Honor of Klaus Neumann (ed. by M. Morlock, C. Schwindt, N.
Trautmann and J. Zimmermann), Deutscher Universitäts-Verlag, Wiesbaden, 2006,
17 - 43.

www.intechopen.com

Using Simulated Annealing for Open Shop Scheduling with Sum Criteria

75

Bräsel, H.; Herms, A.; Mörig, M.; Tautenhahn, T.; Tusch, J.; Werner, F.: Heuristic
Constructive Algorithms for Open Shop Scheduling to Minimize Mean Flow Time,
European J. Oper. Res., Vol. 189, 2008, 856 - 870.

Bräsel, H.; Tautenhahn, T.; Werner, F.: Constructive Heuristic Algorithms for the Open-Shop
Problem, Computing, Vol. 51, 1993, 95 - 110.

Brightwell, G.; Winkler, P.: Counting Linear Extensions, Order, Vol. 8, 1991, 225 - 242.
Bräsel, H.; Hennes, H.: On the Open-Shop Problem with Preemption and Minimizing the

Average Completion Time, European J. Oper. Res., Vol. 157, 2004, 607 - 619.
Brucker, P.; Hurink, J.; Jurisch, B.; Wöstmann, B.: A Branch-and-Bound Algorithm for the

Open-Shop Problem, Discrete Appl. Math., Vol. 76, 1997, 43 - 59.
Du, J.; Leung, J.Y.T.: Minimizing Mean Flow Time in Two-Machine Open-Shops and Flow-

Shops, Journal of Algorithms, Vol. 14, 1990, 24 - 44.
Gueret, C.; Prins, C.: A New Lower Bound for the Open-Shop Problem, Annals Oper. Res.,

Vol. 92, 1999, 165 - 183.
Holland, J.A.: Adaptation in Natural and Artificial Systems, Ann Arbor, University of

Michigan, 1975.
Kubiak, W.; Sriskandarajah, C.; Zaras, K.: A Note on the Complexity of Open Shop

Scheduling Problems, INFOR, Vol. 29, 1991, 284 - 294.
Laborie, P.: Complete MCS-Based Search, Application to Resource Constrained Project

Scheduling, Proceedings of International Joint Conference on Artificial Intelligence,
Vol. 19, 2005, 181 - 186.

Liaw, C.-F.: Applying Simulated Annealing to the Open Shop Scheduling Problem, IEE
Transactions, Vol. 31, 1999, 457 - 465.

Liaw, C.-F.: Scheduling Two-Machine Preemptive Open Shop Shops to Minimize Total
Completion Time, Comput. Oper. Res., Vol. 31, 2004, 1349 - 1363.

Liaw, C.-F.: Scheduling Preemptive Open Shops to Minimize Total Tardiness, European J.
Oper. Res., Vol. 162, 2005, 175 - 183.

Liaw, C.-F.; Cheng, C.-Y.; Chen, M.: The Total Completion Time Open Shop Scheduling
Problem with a Given Sequence of Jobs on One Machine, Comput. Oper. Res., Vol.
29, 2002, 1251 - 1266.

Liu, C.Y.; Bulfin, R.L.: On the Complexity of Preemptive Open-Shop Scheduling Problems,
Oper. Res. Lett., Vol. 4, 1985, 71 - 74.

Liu, C.Y.; Bulfin, R.L.: Scheduling Ordered Open Shops, Comput. Oper. Res., Vol. 14, 1987,
257 - 264.

Prins, C.: An Overview of Scheduling Problems Arising in Satellite Communications,
Journal Oper. Res. Soc., Vol. 40, 1994, 611 - 623.

Queyranne, M.; Sviridenko, M.: New and Improved Algorithms for Minsum Shop
Scheduling, Proceedings of the 11th annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco/ USA, 2000, 871 - 878.

Queyranne, M.; Sviridenko, M.: Approximation Algorithms for Shop Scheduling Problems
with Minsum Objective, Journal of Scheduling, Vol. 5, 2002, 287 - 305.

Taillard, E.: Benchmarks for Basic Scheduling Problems, European J. Oper. Res., Vol. 64,
1993, 278 - 285.

Tamura, N.; Taga, A.; Kitagawa, S.; Banbara, M.: Compiling Finite Linear CSP into SAT,
Proceeding of the 12th International Conference on Principles and Practice of

www.intechopen.com

 Simulated Annealing

76

Constraint Programming (CP’06), Lecture Notes in Computer Science, Vol. 4204,
Springer, 2006, 590 - 603.

Werner, F.: On the Solution of Special Sequencing Problems, Ph.D. Thesis, TU Magdeburg,
1984 (in German).

Werner, F.; Winkler, A.: Insertion Techniques for the Heuristic Solution of the Job Shop
Problem, Discrete Appl. Math., Vol. 50, 1995, 191 - 211.

Yang, Q; Sun, J.; Zhang, J.; Wang C. : A Hybrid Discrete Particle Swarm Algorithm for
Open-Shop Problems, Lecture Notes in Computer Science, Vol. 4247, 2006, 158 -
165.

www.intechopen.com

Simulated Annealing

Edited by Cher Ming Tan

ISBN 978-953-7619-07-7

Hard cover, 420 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides the readers with the knowledge of Simulated Annealing and its vast applications in the

various branches of engineering. We encourage readers to explore the application of Simulated Annealing in

their work for the task of optimization.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michael Andresen, Heidemarie Bräsel, Mathias Plauschin and Frank Werner (2008). Using Simulated

Annealing for Open Shop Scheduling with Sum Criteria, Simulated Annealing, Cher Ming Tan (Ed.), ISBN: 978-

953-7619-07-7, InTech, Available from:

http://www.intechopen.com/books/simulated_annealing/using_simulated_annealing_for_open_shop_schedulin

g_with_sum_criteria

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

