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1. Introduction  

In this chapter, the application of Simulated Annealing (SA) algorithm in real time 
multiagent coordination problem is described. A Multiagent System  (MAS) consists of a 
group of agents that interact with each other. Research in MAS aims to provide theories and 
techniques for agents’ behavior management. The focus of this chapter is on fully 
cooperative MAS, where all the agents share a common long-term goal. Examples include a 
team of robots who play football against another team or a group of rescue robots that, after 
an earthquake, must safely rescue the victims as soon as possible. The challenging issue in 
such systems is Coordination: the policy to insure that the individual action of each agent 
can generate the optimal joint action as a whole.  
Coordination in MAS has been explored from many aspects such as game theory (Osborne 
& Rubinstein , 1999), communications (Carrier & Gelernter, 1989), social conversions 
(Boutilier, 1996 ) and learning(Tan, 1997). Unfortunately these approaches have some flaws. 
First, in the worst case, these approaches degrade to a naïve solution which searches the 
whole joint action space whose size grows exponentially with the number of agents ( It is 
called “curse of dimensionality”). Therefore, they do not scale well for large systems. 
Second, many of the approaches report an answer only when all the possible statuses have 
been considered. This is not suitable for real time case. In many real time scenarios such as 

robot football, rescue robots, etc.，it is often needed that decision making algorithm returns 
a well enough answer at any time.  
Recently, there is some work on how to decrease the joint action space by coordination graph 
(CG) (Guestrin & Venkataraman , 2002). The insight in CG is that in MAS only a small part 
of agents need to coordinate their actions while others can still act individually. Thus, the 
global joint payoff function, the representation of the global joint coordination dependencies 
among all agents, is approximated as a sum of local payoff functions, each of which 
represents the local coordination dependencies between a small sub-group of the agents. 
Then, the agents use a variable elimination (VE) algorithm to determine their optimal joint 
action. Unfortunately, the worst time complexity of VE grows exponentially with the 
number of agents. Moreover, VE only reports results when the whole algorithm terminates, 
therefore it is unsuitable for real-time systems. Max-plus (MP) algorithm is proposed as an O
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approximate alternative to VE (Kok & Vlassis, 2005). MP can converge to the optimal 
solution for tree-structured graphs and also find near optimal solutions in graphs with 
cycles, but it limits the local payoff functions to contain at most 2 agents.  
In this chapter, An Simulate Annealing (SA) based algorithms to address aforementioned 
coordination problem is presented. This approach has two main benefits. First, the time 
taken by the algorithm grows polynomial with the number of agents. Second, the algorithm 
can report a near-optimal answer at any time. 
The chapter is organized as follows. Section 2 describes the problem setting and 
representative work on how to solve multiagent decision problem, especially on Variable 
Elimination (VE) approach. Section 3 introduces the general steps and key elements of SA 
algorithms, which is employed in later sections. Section 4 gives how to effectively find a 
satisfactory answer in any time for multiagent decision problem by SA algorithm. In Section 
5, the performance of SA algorithm on multiagent decision problem is evaluated by 
comparing it with comparable approaches followed by conclusion and future work. 

2. Problem setting and variable elimination approach 

Multiagent decision making problem can be formally describe as follows. 
Given a group of agents G={G1,G2,…,Gn}, they are interacting with each other together during a long 
time sequence {t1,t2,…,tn} to reach final goal . At each time ti, each agent Gi selects an individual 
action ai from his own action set Ai (Thus the joint policy space is A=×Ai ) based on payoff function 
v(a) and goes into next time ti+1. At each time, the decision making problem is to find the optimal 
joint action a* that maximize the global payoff function v(a). That is to say, a*=maxarga v(a). 
To overcome the curse of dimensionality, the global joint payoff function is decomposed 
into a linear combination of s set of local payoff functions, each of which is only related to a 
small number of agents. For example, in RoboCup, only the players that are close to each 
other have to coordinate their actions to perform a pass or a defend. In some situations, this 
approach can get a very compact representation for coordination dependencies among 
agents. Furthermore, such representation can be mapped onto a coordination graph G=(V,E) 
according to the following rules: each agent is mapped to a node in V, and each 
coordination dependency is mapped to an edge in E. Then Variable Elimination (VE) can be 
used on G to determine the optimal joint actions.  
Variable Elimination is also called bucket elimination. It is first used for reasoning in Bayes 
network. It can also be effectively used to solve the multiagent decision making problem. 
The technical steps include two passes. In the first pass, by enumerating all the possible 
combinatorial joint actions of his neighborhood, each agent conditionally computes his own 
optimal action and sends the result to the entire neighborhood. Then, the agent will be 
eliminated from the system. This process will continue until only one agent remains in the 
system. In the second pass, all agents do the entire process in reverse elimination order. In 
the process every agent can find his own optimal decision based on his neighborhood 
agent’s behavior. An example is taken to illustrate the execution of VE algorithm. Suppose 
that the system has 4 agents with each one having 4 different actions, then the number of 
joint actions is 44=256, and global joint payoff function can be decomposed as: 

 V(a)=v1(a1,a2)+v2(a2,a4)+v3(a1,a3)  (1) 

Fig.1 shows the initial corresponding coordination graph. The key idea in VE is that, rather 
than enumerating all possible joint actions and summing up all functions to do 
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maximization, each time only one variable is optimized. The example begins with 
optimization for agent 1. Agent 1 collects all local payoff functions including its own, i.e., v1 
and v3 then does maximization. Hence, it can be obtained that 

 maxa v(a)=
432 ,,max aaa {v2(a2,a4)+ 1max a [v1(a1,a2)+v3(a1,a3)]}  (2) 

After enumeration of possible action combinations of his neighbors, i.e., agent 2 and agent 3, 
agent 1 conditionally returns his best response and yield a new function e1(a2,a3) = 
maxa1[v1(a1,a2)+v3(a1,a3)]. Its value at the point a2, a3 is the value of the internal max 
expression in equation (2). At this time, agent 1 is eliminated from G. The global joint payoff 
function is rewritten as: 

  maxav(a)= 
432 ,,max aaa {v2(a2,a4)+e1(a2,a3)} (3) 

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting v2(a2,a4) 
 

 

Fig.1. Initial coordination graph 

and e1(a2,a3), agent 2 produces a conditional strategy based on the possible actions of agent 3 
and agent 4, and returns his choice, i.e., e2(a3,a4) = maxa2 {v2(a2,a4)+e1(a2,a3)} to the system, 
then is eliminated. The global payoff function only contains 2 agents now:   

 maxav(a)= 
43,max aa {e2(a3,a4)}  (4) 

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports his own 

choice and gives a conditional payoff e3(a4)= 
3

max
a

e2(a3,a4). Finally, the only remaining 

agent 4 can simply choose his optimal action: a4*=
4

arg max
a

e3(a4). 

In the second pass, all agents do the entire process in reverse elimination order. To fulfill 

agent 4's optimal action a4*, agent 3 must select a3*=
3

arg max
a

e3(a4*). Then agent 2 can make 

a decision a2*=
2

arg max
a

e2 (a3*,a4*). Finally, agent 1 does a1*=
1

arg max
a

e1 (a2*,a3*) to choose 

his optimal action appropriately. The whole procedure needs only 4×4+4×4+4=36 iterations 
which is much smaller than 256 iterations of the whole joint action space. 
The outcome of VE is independent of the elimination order and always gives the optimal 
joint action (Guestrin, 2003). However, the running speed of VE is depended on the 
elimination order and exponential in the induced width of the coordination graph (Guestrin 

G1

G2 G3

G4 
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& Venkataraman, 2002) (Dechter,1999). Finding the optimal elimination order for VE is a 
well known NP-complete problem (Arnborg et al., 1987). Thus, in some cases and especially 
in the worse case, the time consumed by VE grows exponentially with the number of agents. 
Furthermore, VE can not give any useful results until the termination of the complete 
algorithm. Therefore, it is not suitable for real time multiagent decision making scenario. So 
in the following graph how to use simulated annealing (SA) approach to circumvent such 
limitations is addressed in detail. 

3. Simulated annealing algorithms 

The simulated annealing algorithm (also called as monte carlo annealing or probabilistic 
hill-climber), inspired by statistical mechanics, is very popular for combinatorial 
optimization. In this area efficient methods are developed to find minimal or maximal 
values for a function of a number of independent variables. The simulated annealing 
process executes by ‘melting’ the system being optimized at a high effective temperature at 
first, and then lowering the temperature by slow stages until the system ‘freezes’ and no 
further change occurs. In the following subsection the generic procedure to solve 
combinatorial optimization is introduced first, and then the essential factors in designing SA 
algorithm are analyzed. 

3.1 Generic procedure to solve combinatorial optimization by SA 

Given a generic function to be optimized f: (x1,x2,…,xj,…xn)→R+, where xj∈S ( here S is the 

domain) is a component of vector X and N(xj)∈ S is the neighborhood of xj. To find the 
maximal or minimal result, SA algorithm executes as the following 4 steps. 
1. Initial temperature Tmax and initial answer X (0) is given. 
2. Based on X (i), a new resultant X’ which contains a certain newly produced component 

x’ ∈N(x(j)) is obtained. 
3. Whether X’ will be accepted as a new answer X (i+1) depends on the probability 

 P(X(i)→X’)=
( ') ( ( ))

1                              if ( ') ( ( ))

          otherwisei

f X f X i

T

f X f X i

e

−
−

<⎧
⎪
⎨
⎪⎩

  (5) 

In other words, If f (X’) is less than f (X(i)) then X(i+1)=X’, otherwise X’ will be accepted as X 

(i+1) with the probability of 

'

i

f(X ) f(X(i))

Te

−

−

. If X’ is rejected, the control flow goes to step 2 

again until an acceptable X (i+1) is found. 
4. Step 2 and 3 is repeated until a final status defined before reached.  
It can be seen that the process of SA is a discrete status sequence. At each temperature Ti, its 
new status X (i+1) only depends on X (i) and has no relevance with X (i-1), X (i-2)…, X (0). 
Thus it is a Markov process. 

3.2 Essential factors for designing simulated annealing algorithm 
When a simulated annealing algorithm is designed, six essential factors should be taken into 
consideration. 

www.intechopen.com



Real Time Multiagent Decision Making by Simulated Annealing 

 

81 

3.2.1 Neighbor function (status production function) 
A neighbor function is used to generate a new candidate answer based on current status. 
When a neighbor function is designed, it should ensure that all the candidate answers in the 
state space can be reachable. In general, designing a neighbor function focuses on two key 
aspects, which are the rule of producing candidate answers and the distribution of 
candidate answers. The former determines how to produce a candidate answer based on 
current answer. The latter determines the probability of newly produced different candidate 
answers. Usually production rule of neighbor function is devised according to concrete 
problem and distribution of candidate answers takes uniform distribution, normal 
distribution, exponential distribution and Cauchy distribution .etc.   

3.2.2 Status transition probability (acceptance probability)  
Status transition probability is the likelihood that one feasible answer, denoted as xold, 
transits to another feasible answer, denoted as xnew . In other words, it is the chance that a 
new feasible answer will be accepted as current answer. As a rule, the status transition 
probability observes the followings. 
1. At the same temperature, the chance to accept the candidate answer which will 

decrease   objective function value is larger than that which will increase objective 
function value. 

2. As the temperature declines, the chance to accept the answers that will decrease 
objective function value should gradually become smaller and smaller. 

3. As the temperature is approaching zero, only the answers that make objective function 
value decrease can be accepted. 

In most of the cases, Metropolis rule as equation (5) is used. 

3.2.3 Cooling function  
Cooling function determines how the simulated annealing proceeds from a high 
temperature Tmax to lower temperature by stages. If the temperature decreases slow enough, 
the objective function value can concentrate on the global minima or maxima with an 
expensive cost. If the temperature decreases too fast, the global minima or maxima will not 
be reachable. Let T (t)  be the temperature at time t. The classical cooling function usually 
takes T (t) = Tmax/lg(1+t) and the fast cooling function usually takes T(t) = Tmax/(1+t).  These 
two types of cooling function can gurantee the algorithm converge to the global minima or 
maxima.  

3.2.4 Initial temperature  
Many experiments show that the higher the initial temperature T(0) is, the greater the 
chance of obtaining high quality final answer is. But the time consumed is also longer. 
Therefore, to get a better initial temperature Tmax, both optimization effectiveness and 
efficiency should be taken into consideration. Usually, the following several approaches can 
be applied. 
1. At first, a group of statuses is obtained by uniform sampling. Then, the initial 

temperature Tmax is defined as the variance of all the statuses’ objective function values. 
2. At first, a group of statuses is random obtained. Then, the biggest difference of objective 

function values, denoted as |△max| , is obtained by comparing every two statues. 
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Finally, the initial temperature Tmax is determined by a function which takes |△max| as 
parameter.  

3. The initial temperature Tmax is determined based on engineering experience for some 
specific problems. 

3.2.5 Metropolis sampling rule 
This rule is used to determine how many candidate answers will be produced at a certain 
temperature. The following policies are widely used. 
1. Test whether the average of object function values is stable or not. If so, the sampling 

will continue, otherwise the sampling will stop. 
2. Test whether objective function value difference in continuous steps is small enough. If 

so, the sampling will continue, otherwise, the sampling will stop. 
3. The sampling is constrained by fixed number of steps. 

3.2.6 Termination rule 
It is used to determine when the simulated annealing algorithm ends. It includes the 
following approaches. 
1. An ending temperature threshold is set. If the current temperature is below the 

threshold, the simulated annealing stops.  
2. The number of iteration is set. The simulated annealing process will proceed according 

to  the times of iterations.  
3. The simulated annealing will end if the objective values do not change in a series of 

continuous steps. 
4. The termination depends on whether the system entropy is stable or not. 

4. Multiagent decision making by simulated annealing algorithm 

It is natural to apply SA to multiagent decision making problem since the global payoff 
function needs to be optimized via a number of independent action variables of each agent. 
The process works as follows. First, the global payoff function is decomposed into a number 
of local terms.  Then, global payoff function will be rewritten as the linear combination of 
the local terms to avoid the curse of dimensionality. That is to say, given n agents, its global 
payoff function can be decomposed as follows: 

 v(a)= ...
i i ij i j i, j,k i j k

i G i, j G i, j,k

v (a )+ v (a ,a )+ + v (a ,a ,a )
∈ ∈
∑ ∑ ∑ +….  (6) 

Here vi(ai) represents the payoff that an agent contributes to the system when acting 
individually, e.g. dribbling with the ball. vij(i,j) denotes the payoff of a joint action between 
agent i and j, and vijk(ai,aj,ak) depicts another coordination action involving three agents, e.g. 
pass from i to j, then j to k . Coordination among more agents can be added similarly if 
needed. This decomposition approach is different from MP for the number of agents is not 
limited while MP does. In MP algorithm, the global joint payoff function can only be 

decomposed into 
i i ij i j

i G i, j G

v (a )+ v (a ,a )
∈ ∈
∑ ∑ . 

Now SA can be smoothly applied to solve the multiagent decision problem. The goal is to 

find the optimal joint action, i.e., a*= )(maxarg ava . The pseudo-code of SA is presented in 

www.intechopen.com



Real Time Multiagent Decision Making by Simulated Annealing 

 

83 

Alg.1. The SA algorithm is implemented in a centralized version and performed by the 
agents in parallel, without assuming the availability of communications. The idea behind 
the algorithm is very straightforward. In each iteration (called an independent try), the 
algorithm starts with a random choice of joint action for the agents, then loop over all the 
agents. Each agent optimizes the global payoff function with his own action while all of the 
other agents stay the same. If the agent’s local optimization can yield a better joint action 
than the initial one, the new solution is accepted. Otherwise, the new solution is accepted 

with a probability of
( / )

1

1 T
e
− Δ+

 . The looping continues until the temperature T decayed from 

Tmax to a predefined threshold Tmin. Then a new random starting position is selected and the 
whole process is repeated. When an agent should send action to the server, he returns his 
own action from the optimal joint action found so far. 
Basically, what the SA does is to seek the global maximum of the global joint payoff 
function. As a stochastic algorithm, although SA can not guarantee the convergence to 
optimal joint action, in a rather short time it can find an approximately optimal solution. It 
has the following attractive features. First, SA is an anytime algorithm that can report an 
answer at any time. Secondly, in each independent try, agent i only has to iterate his own 
actions instead of all combinatorial actions of his neighbors, thus makes the algorithm 
tractable. 
 

Algorithm 1. Pseudo-code of the simulated annealing algorithm 
Define: G ={G1,G2,…,Gn} the agents who want to coordinate their actions 
Define: v (a) the global joint payoff function  
Define: a* the optimal joint action so far  
Define: ai the action of agent i 
Define: ai* the optimal action of agent i found so far 
Define: a-i the actions of all agents but agent i 
 g←0 
 t←0 
 While t<MaxTries do 
  a = random joint action 
  T← Tmax 

   repeat 
   for each agent i in G do 

           a’=argmax
ia (a-i∪ai) 

          △←v(a’)-v(a) 

          if (△>0) then 
          a←a’ 
          else 

         a←a’ with probability 
)/(1

1
T

e
Δ−+

 

         end if 
         if v(a)>v(a*) then 
         a*←a 
         g←v(a*) 
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           choose ai* from a* 
           end if 
           if should send action to server then 
           send ai* to server 
           end if 
   end for 
   T←T.decay 
  until T<Tmin 

  t←t+1 
 end while 

5. Experiments 

In this section, the simulated annealing algorithm is evaluated by comparing it with other 
algorithms, especially with variable elimination algorithm. The following subsections include 
three parts. The first subsection describes the test bed of experiment since there is no 
standard benchmark to use. The remaining two subsections give the details of the 
experiment. It runs in two stages. In the first stage, the number of agents and the number of 
different actions per agent are fixed to test the scalability of the two algorithms when the 
number of neighbors per agent grows. In the second stage, the relative payoff SA returned 
and the optimal payoff produced by VE is compared to evaluate SA algorithm’s performance.  

5.1 Test bed setting 
Since there is no standard benchmark to evaluate multiagent decision algorithm, a random 
generator (RG) is used to generate all test sets. The inputs of RG include the number of 
agents |G|, the number of different actions per agent |A|, maximum number of neighbors 
per agent nrs, and the number of payoff functions each agent has nrρ. It is believed that these 
aspects should be sufficient to describe the difficulty of the coordination problem. The 
output of RG is a set of payoff functions. Each function is a value rule <ρ : υ>, which is first 
used by literature (Guestrin & Venkataraman , 2002) and proved suitable for many real-
world applications. The global joint payoff function is thus represented by the sum of value 
rules of all agents. A sample output of RG with |G| = 4, |A| = 4, nrs = 3, nrρ = 1 is shown in 
table 1. 
 

<ρ : υ> 

< a1 = 3 ∧ a3 = 3 ∧ a4 = 4 : 7.19085 > 

< a2 = 4∧a3 = 4 : 4.67774 > 

< a1 = 1 ∧a2 = 1 ∧ a3 = 2 ∧ a4 = 2 : 4.67774 > 

< a1 = 4 ∧ a3 = 2 ∧ a4 = 1 : 4.67774 > 

Table 1. Sample output of RG 

Here the integer value of ai is an action index and is mapped to a predefined action in real 
MAS such as dribbling, pass .etc. in a real RoboCup. The details will not be addressed here 
for the focus is concentrated on the performance of multiagent decision. The following two 
subsections give how to evaluate the performance of SA algorithms in details. All the 
programs are implemented in C++, and the results are generated on a 2.2GHz/512MB IBM 
notebook computer.  
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5.2 Scalability of SA algorithm 
In this stage, 120 coordination problems are generated and each one is assigned with 4 test 

sets based on different actions per agent. The aim of this experiment is to evaluate the 

scalability of SA algorithm. For the problem in each test set, the settings are as follows. The 

number of the agents is set to |G| = 15. Each agent has nrρ = 8 value rules with different 

number of neighbors. The payoff in each value rule is generated from a uniform random 

variable U [1, 10]. The number of neighbors k in each value rule is in the range k ∈ [1, nrs]. 

Each value has a chance of  
ne

Nr

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

/ 2 neNr
.  

When applying VE, the algorithm is speed up by eliminating the agent with the minimum 

number of neighbors. When running SA, MaxTries is set to 20, the highest temperature Tmax 

is 0.3, and lowest temperature Tmin is 0.05. The temperature decay of this algorithm is in 

proportion to nrs.  Therefore, if certain value rule contains a large number of agents, the SA 

algorithm will search deeply in an independent try, vice versa. To weaken the side effect of 

hardware and operating system the experiment is repeated 10 times and the average is 

adopted as the measure.  Fig. 2(a)–2(d) gives a clear picture of the timing results for the four 
 

(a)  Timing comparisons for VE and SA (4 
actions per agent). 

 
(b)  Timing comparisons for VE and SA (6 

actions per agent). 

(c)  Timing comparisons for VE and SA (8 
actions per agent). 

 
(d)  Timing comparisons for VE and SA (4 

actions per agent). 

Fig.2. Time consumed comparisons for both VE and SA  
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test sets. It can be easily seen that the running time of SA algorithm grows linearly as the 

number of the neighbors per agent increases. In contrast, the time of VE algorithm grows 

exponentially, since it must enumerate all neighbors’ possible combination actions in each 

iteration. 

Furthermore, when the average number of neighbors per agent is more than 3.5, VE can not 

always compute the optimal joint action so these tests are removed from the test sets. In 

sum, the SA algorithm outperforms the VE algorithm with respect to scalability and this is 

especially meaningful in multiagent decision scenario. 

5.3 Relative payoff comparison  
In the second stage, 6 coordination problems are generated. Each problem has its own 

settings such as number of agents, number of neighbors per agent .etc.. VE and SA are both 

employed to solve them. When SA is applied, instead of starting with a random choice for 

all agents, in ith independent try, the agent selects action according to the ith highest value 

rule if he is involved; otherwise the action is selected randomly. The MaxTries is set to 200, 

so that SA has enough time to run. Other settings are the same as the first stage.  

To give a clear comparison of VE and SA, the payoff axis is scaled so that the global 

maximum payoff is 1. The time axis is also scaled so that the whole time taken by VE to 

terminate is 1. Thus the points in the figure can be seen as the fraction of the payoff and the 

running time of VE. The results of SA will be scaled to its VE companion. The experiment is 

also repeated 10 times to weaken hardware and software’s side effect.  

The relative payoff found by the SA with respect to VE is plotted in Fig. 3(a)–3(f). It can be 

seen SA performed very well. It is obvious that the near optimal result is found in all tests. 

In loosely connected coordination problem with few actions, i.e., Fig. 3(a), SA converges to 

the maximum payoff with only the 60% time that VE takes. However, if the number of 

actions is big as Fig. 3(b), SA can not reach the optimal result although it can find near 

optimal solution (96% payoff) quickly. Further experiments show that if the joint action 

space is huge (more than 15 agents, and each agent has more than 10 actions) the acceptable 

probability should be increased to speed up the convergence to optimal result. This is 

because in such situations, a little higher acceptable probability can increase the chance of 

stochastic movement of SA. This technique help SA jump away from local optimizations 

and cover the joint action space as possible as it can. But the exact relationship between 

acceptable probability and the convergence speed is still not very clear. For the medium 

connected problems (Fig. 3(c)–3(d)), SA can compute the optimal policy with a little fraction 

of time (2%–6%) that variable elimination needs to solve the same problem. Fig. 3(e) and  

Fig. 2(f) give us a strong impression that SA can compute more than 98% payoff within the 

time ranges between 0.015% to 0.2% of the time VE takes in the densely connected problems.  

Other unpublished tests are also carried out. For example, SA is compared with max-plus 

algorithm informally. The experiment shows that when reaching the same relative payoff, 

the time difference between the two algorithms is at most 5%. Although SA algorithm is not 

much faster than max-plus,  it is still believed that SA approach is more appropriate for 

complex coordination problems, since in these problems the coordination dependencies in 

the value rule is often more than two, therefore max-plus can not be applied directly.  
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(a)  |G | = 14, nrs = 2, nrρ = 10, |A| = 5 

 
(b)  |G | = 14, nrs = 2, nrρ = 10, |A| = 10 

 
(c)  |G | = 12, nrs = 4, nrρ = 10, |A| = 4 

 
(d)  |G | = 12, nrs = 4, nrρ = 10, |A| = 8 

 
(e)  |G | = 10, nrs = 8, nrρ = 10, |A| = 4 

 
(f)  |G | = 10, nrs = 8, nrρ = 10, |A| = 8 

Fig. 3. Relative payoff found by SA with respect to VE. 

6. Conclusion  

In this chapter, SA algorithm is employed to solve real time multiagent decision making 
problem. Compared with exact method this chapter’s empirical evidences show that (1) this 
method is almost optimal with a small fraction of the time that VE takes to compute the 
policy of the same coordination problem; (2) the running time of SA grows linearly with the 
increasing number of neighbors per agent;( 3) it is an anytime algorithm which return result 
at any time. For above reasons, it is believed that SA is a feasible approach for action 
selection in large complex cooperative autonomous systems.  
As future research, an appropriate setting of the acceptable probability will be figured out, 
especially the decay rate in SA. Some recent work shows that neural network algorithm can 
produce a good decay rate for larger problems. Such techniques may be employed to solve 
multiagent decision making problem. Furthermore, whether reinforcement learning 
algorithms can be applied to automatically learn the payoff in each value rule is to be 
investigated  
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