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Solving the Probabilistic Travelling Salesman
Problem Based on Genetic Algorithm with
Queen Selection Scheme

Yu-Hsin Liu
Department of Civil Engineering, National Chi Nan University
Taiwan

1. Introduction

The probabilistic travelling salesman problem (PTSP) is an extension of the well-known
travelling salesman problem (TSP), which has been extensively studied in the field of
combinatorial optimization. The goal of the TSP is to find the minimum length of a tour to
all customers, given the distances between all pairs of customers whereas the objective of
the PTSP is to minimize the expected length of the a priori tour where each customer
requires a visit only with a given probability (Bertsimas, 1988; Bertsimas et al., 1990; Jaillet,
1985). The main difference between the PTSP and the TSP is that in the PTSP the probability
of each node being visited is between 0.0 and 1.0 while in TSP the probability of each node
being visited is 1.0. Due to the fact that the element of uncertainty not only exists, but also
significantly affects the system performance in many real-world transportation and logistics
applications, the results from the PTSP can provide insights into research in other
probabilistic combinatorial optimization problems. Moreover, the PTSP can also be used to
model many real-world applications in logistical and transportation planning, such as daily
pickup-delivery services with stochastic demand, job sequencing involving changeover cost,
design of retrieval sequences in a warehouse or in a cargo terminal operations, meals on
wheels in senior citizen services, trip-chaining activities, vehicle routing problem with
stochastic demand, and home delivery service under e-commerce (Bartholdi et al., 1983;
Bertsimas et al., 1995; Campbell, 2006; Jaillet, 1988; Tang & Miller-Hooks, 2004).

Early PTSP computational studies, dating from 1985, adopted heuristic approaches that
were modified from the TSP (e.g., nearest neighbor, savings approach, spacefilling curve,
radial sorting, 1-shift, and 2-opt exchanges) (Bartholdi & Platzman, 1988; Bertsimas, 1988;
Bertsimas & Howell, 1993; Jaillet, 1985, 1987; Rossi & Gavioli, 1987). With its less than
satisfactory performance in yielding solution quality, researchers in the recent years switch
to metaheuristic methods, such as ant colony optimization (Bianchi, 2006; Branke &
Guntsch, 2004), evolutionary algorithm (Liu et al., 2007), simulated annealing (Bowler et al.,
2003), threshold accepting (Tang & Miller-Hooks, 2004) and scatter search (Liu, 2006, 2007,
2008). Because the genetic algorithm (GA), a conceptual framework of the population-based
metaheuristic method, has been shown to yield promising outcomes for solving various
complicated optimization problems in the past three decades (Back et al., 1997; Davis, 1991;

Source: Travelling Salesman Problem, Book edited by: Federico Greco, ISBN 978-953-7619-10-7, pp. 202, September 2008,
I-Tech, Vienna, Austria
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158 Travelling Salesman Problem

Goldberg, 1989; Holland, 1992; Liu & Mahmassani, 2000), this study will propose an
optimization procedure based on GA framework for solving the PTSP.

Mainly, the author of this chapter proposes and tests a new search procedure for solving the
PTSP by incorporating the nearest neighbor algorithm, 1-shift and/or 2-opt exchanges for
local search, selection scheme, and edge recombination crossover (ERX) operator into
genetic algorithm (GA) framework. Specifically, the queen GA, a selection approach which
was proposed recently and yielded promising results (Balakrishnan et al., 2006; Stern et al.,
2006), will be tested against the traditional selection mechanisms (i.e., fitness-proportional,
tournament, rank-based and elitist selections) for its comparative effectiveness and
efficiency in solving the PTSP. Unlike traditional selection mechanisms used in GA which
selects both parents from the entire population based on their fitness values, the queen GA
creates a subgroup of better solutions (the queen cohort), and uses at least one of its
members in each performed crossover. To validate the effectiveness and efficiency of the
proposed algorithmic procedure, a set of heterogeneous (90 instances) and homogeneous
(270 instances) PTSP test instances as used in the previous studies (Liu, 2006, 2007, 2008;
Tang & Miller-Hooks, 2004) will be used as the base for comparison purpose.

The remainder of this chapter is organized as follows. In the next section, expressions for
exactly and approximately evaluating the a priori tour for the PTSP are introduced. The
details of the proposed algorithmic procedure for the PTSP are then described. The results
of the numerical experiments are presented and discussed in the next section, followed by
concluding comments.

2. Definition and evaluation of the PTSP

The PTSP is defined on a directed graph G := (V, E), where V := {0, vy, vy, ..., v} is the set of
nodes or vertices, E — V x V is the set of directed edges. Node 0 represents the depot with
the presence probability of 1.0. Each non-depot node v; is associated with a presence
probability p; that represents the possibility that node v; will be present in a given
realization. Given a directed graph G, the PTSP is to find an a priori Hamiltonian tour with
minimal expected length in G.

2.1 Exact evaluation for the a priori tour

Solving the PTSP mainly relies on computing the expected length of an a priori tour. The
computation of the expected length of a specific a priori PTSP tour 7, denoted as E[7],
depends on the relative location of nodes on that tour and the presence probability of each
node in a given instance. By explicitly considering all realizations based on the presence of
each individual node, the expected length of tour z can be calculated. For an n-node PTSP
instance, a tour 7 has 2" possible realizations. The probability of realization r;, p(r), can be
calculated based on the presence probability of each individual node. Let L[rj(7)] describe
the tour length of 7 for realization r; under the assumption that nodes not in r; are simply
skipped in the tour. The expected tour length can then be formally described as

E[r]= ip(r, LI (7)) )

The computation of expected length based on Equation (1) is inefficient, because the
computational complexity increases exponentially with an increasing number of nodes.
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Therefore, Jaillet & Odoni (1988) proposed an approach to exactly calculate E[7] in the
complexity of O(n3) for the PTSP.

n n+l

E[r]= > 1d e Peiy Peiy) H (=p.)} (2)

i=0 j=i+l k=i+1

dij represents the distance between nodes i and j; 7 (i) denotes the node that has been
assigned the i stop in tour r and p.(; is the probability of node z(i). 7(0) and 7 (n+1)
represent node 0, which is the depot.

2.2 Approximate evaluation for the a priori tour

Even though (2) yields a polynomial evaluation time for the PTSP, the resulting O(n3) time
for calculating E[7] is still very long, especially for metaheuristic methods which need to
repeatedly evaluate the objective function value E[7]. In this study, the proposed GA needs
to repeatedly compare two solutions (i.e., the new solution before and after local search
procedure, which is described in the next section) based on their values of E[7]. Therefore,
the depth approximation originally proposed by Branke & Guntsch (2004) was adopted.
The depth approximate evaluation of E[7] shown in (3) have been used to significantly
increase the computation efficiency under the scatter search framework (Liu, 2006).

min{n+1,i+1}

i-1
EAP[T] Z Z {dr(i)r(j)pr(i)pr(j) H (1- pz’(k))} ®)

i=1 j=i+l k=i+1

The only difference between (2) and (3) is the choice of truncation position 4 in (3). Equation
(3) will have the computational complexity of O(n42), instead of O(n3) in (2). It is easy to see
that (3) becomes more accurate when A increases. A larger value of A, however, requires
more computation efforts for the computation of (3). Equation (3) can perform a very good
approximation of E[7] with a smaller value of 4 when the value of p) gets larger, because

j-1

H (1-p, (k)) will yield a very small value and can be omitted. Nevertheless, Equation (3)
k=i+1
will need a larger value of A to perform a good approximation when the value of p is
small. The approximation usually yields some errors in comparison to the exact evaluation.
To overcome that, the two-stage comparison proposed by Liu (2008) intends to exactly
evaluate the E[7] value by using the depth approximation evaluation (Equation 3) in the first
stage and the exact evaluation (Equation 2) in the second stage. The detailed use of the
depth approximation evaluation shown in Equation (3) to accelerate the proposed algorithm
is referred to Liu (2008).

3. Solution algorithm

The proposed GA consists of four components as shown in Fig. 1. They are the initialization,
local search, selection scheme, and crossover. When starting to solve the PTSP (Generation 0,
g = 0), initial solutions are generated based on the nearest neighbor algorithm, which are
then improved by the local search. Then, a specific selection mechanism is called into place
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160 Travelling Salesman Problem

to further select solutions to be mated based on their solution quality (objective function
value). Pairs of solutions are used to generate the new solutions via edge recombination
crossover (ERX). The newly generated solutions are then improved using the local search.
The solutions are allowed to evolve through successive generations until a termination
criterion is met. The detailed description of the embedded components is illustrated in the
following sections.

Initialization Selection Scheme
—> Local Search >

(§=0) F only
F+T
F+E
F+T+E
Crossover <«— | Ronly
R+T

¢ R+E
Local Search R+T+E
Queen

No 4

g§=g+1

Stopping

criteria met?

The best solution
for the PTSP

Fig. 1. The general procedure of the genetic algorithm for the PTSP.

3.1 Initialization

This procedure is designed to generate m initial solutions (m = 15 in this study).
Considering a PTSP with n nodes (excluding the depot, node 0), the farthest node, ay, from
node 0 is selected first and randomly inserted into a location between (I_(n +1)/2J_4) and

(\_(n +1)/ 2J+ 4). The nearest neighbor algorithm is then used to build up the sequence of the

tour. After selecting node ay, the nearest node (a;) from ay is selected and inserted in front of
a9. The second nearest node (a2) from ay is selected and inserted behind ay. Then, among the
remaining nodes, the nearest node (a3) from a; is selected and inserted in front of a;, while
the nearest node (a4) from a;, is selected and inserted behind a,. The 1st initial solution (tour)
is thus built by following the above rule and expressed as follows.

<:> ...... ‘E"ﬂb"ﬂ"ﬂ"ﬂ’ ‘H}‘i’ ...... (:)

To create diverse solutions, the remaining initial solutions are generated using the above
rule with slight modifications. The only difference lies in whenever [ = 6, 12, 18, ..., instead
of using the nearest node from a,, a; is randomly chosen from the first or second nearest
node from a;..
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3.2 Local search

This component is used in an attempt to further enhance the solution generated via a local
search procedure. As the previous study has investigated the performance of diversified
local search strategy by stochastically selecting two different local search methods (i.e., 1-
shift and 2-opt exchanges) and found that combining 1-shift and 2-opt (1-shift/2opt) is the
most effective local search for the PTSP (Liu, 2008). Therefore, the 1-shift/2-opt is then
adopted to improve the solution generated in the proposed GA algorithm.

The procedures of 1-shift and 2-opt exchanges are briefly summarized as follows. Given an
a priori tour 7, its 1-shift neighborhood is the set of tours obtained by moving a node at
position i to position j with the intervening nodes being accordingly shifted backwards one
space. The 2-opt exchange is the set of tours obtained by reversing a section of 7.

The depth approximate evaluation of expected length of the a priori tour shown in (3) is then

used to increase the computational efficiency. For a specific tour 7, E/"[r]is always less

than the value of E[7] because of the truncation in calculating Efp[r] . Let 7 and 7, denote

the a priori tour before and after a specific local search method, respectively. It means that
no improvement has been found after the local search if £7"[z ] = E[n]. Equation (2) is

used to exactly evaluate the solution after the local search if F fp [z,]< E[n]. If the local

search yields a better E[7] value than the one from the original solution (i.e., E[7] < E[n)]),
the new solution (z;) will replace the original solution (7). If no improvement has been
found after the local search, no replacement will be made. The above procedure is repeated

Nys times for each solution (Nrs = 25 in this study).

3.3 Selection scheme

Selection scheme is the process of choosing the mating pairs from the current population
and to create the new solutions based on crossover operator. To investigate the performance
of the queen GA, four popularly used selection mechanisms are used as a benchmark in this
study: fitness-proportional, rank-based, tournament, and elitism selections.

3.3.1 Fitness-proportional selection (F)

Under the fitness-proportional selection method, the probability of selecting a particular
solution for reproduction is proportional to its own fitness (i.e., E[7]) relative to the average
fitness of the entire current generation. With this selection method, the best solution tends to
produce the largest amount of offspring and hence survive to future generations. This
procedure can be regarded as a “biased” roulette wheel where each string in the current
population occupies a roulette wheel slot sized in proportion to its fitness (Goldberg, 1989).
Selection can be done by simply spinning the weighted roulette wheel, and fitter strings will
have higher chances of being selected. This process can be simulated by the following

expression:
|
g = ZL% @)

where gi is the probability of selecting solution k to produce offspring, and m is the
population size. The f; is the fitness value of the k' solution in the current generation.
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Because the PTSP is a minimization problem, 1/f; is used as the appropriate weight for the
kth solution.

3.3.2 Rank-based selection (R)
Under the rank-based selection, the probability of selecting a particular solution for
reproduction is determined by the rank of its fitness. This process can be simulated by the

following expression:
y

1 Ty 5
t=1 T’t
where 7, is the rank of the fitness value for the kt" solution.

3.3.3 Tournament selection (T)

Tournament selection, inspired by the competition in nature among individuals for the right
to mate, picks two solutions using the proportional or rank-based selection from the
population and the fittest one is selected for reproduction (Goldberg, 1989; Davis, 1991).
Each solution can participate in an unlimited number of tournaments. The two winning
solutions in the tournament are then subjected to the crossover operators.

3.3.4 Elitism (E)

Under the elitism selection strategy, the top N, strings (N. is determined by the analyst) of
the current generation in terms of fitness value are kept and propagated to the next
generation (Davis, 1991). The remaining solutions in the next generation are then generated
based on the tournament selection method and the crossover operators. This procedure
guarantees that the best solution in the next generation is not worse than the one in the
current generation.

3.3.5 Queen GA

According to the concept of queen GA, the top Ny, solutions in terms of its fitness value of
the population are selected to be the members of queen. Then, one of the parents is chosen
from the queen members and the other parent is randomly selected from the whole
population excluding the already chosen member. These two selected parents are then
mated based on the crossover operator. The queen members are dynamically updated
based on the quality of the new solutions generated. A newly solution generated will
become a queen member if the new solution has a better objective function value than the
one with the worst objective value in the queen subset.

3.3.6 Experiment design of selection schemes

In addition to queen GA, eight schemes are designed by combining one or several selection
methods from four popularly used selection mechanisms mentioned previously (i.e., fitness-
proportional, rank-based, tournament, and elitism selection).  Explicitly, since the
tournament and elitism selections need to work with fitness-proportional (F) or rank-based
(R) selection, eight selection schemes are designed and used in the numerical experiment in
this study. They are fitness-proportional selection only (F), fitness-proportional and
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tournament selection (F+T), fitness-proportional and elitism selection (F+E), fitness-
proportional, tournament and elitism selection (F+T+E), rank-based selection only (R), rank-
based and tournament selection (R+T), rank-based and elitism selection (R+E), rank-based,
tournament and elitism selection (R+T+E).

3.4 Edge recombination crossover (ERX)

The main purpose of this component is to create new solutions using a given pair of
solutions generated by “selection”. Based on the results from previous studies (Liu et al,,
2007; Potvin, 1996), the edge recombination crossover (ERX) from genetic algorithms
performed best when compared to other crossover strategies for both in TSP and PTSP.
Therefore, ERX was adopted in this study.

ERX was proposed by Whitley et al. (1989) to solve the traditional TSP. A 5-node PTSP is
used as an example to describe the procedure of ERX. Assuming that two solutions (tours)
are chosen from the “selection”--(0, 4, 3, 1, 2, 0) and (0, 1, 2, 3, 4, 0), the edges connected to
each node are as follows. For node 0, the first solution indicates that node 0 connects to
nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4.
Therefore, node 0 connects to nodes 1, 2, and 4 by considering these two solutions.
Similarly, node 1 connects to nodes 0, 2, 3; node 2 connects to nodes 0, 1, 3; node 3 connects
to nodes 1, 2, 4; node 4 connects to nodes 0, 3. These are the initial edge lists for each node.
The operation of the ERX is described as follows. Assuming that node 0 is selected as the
starting node for the new solution, all edges incident to node 0 must be deleted from the
initial edge list. As described, from node 0 we can go to nodes 1, 2, or 4, while nodes 1 and 2
have two active edges and node 4 has only one active edge by deleting node 0 from the
initial edge list. The node with the fewest active edge, node 4, is picked as the node next to
node 0 in the new solution. Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is
further updated by deleting node 4. The updated edge list is node 1 (2, 3), node 2 (1, 3), and
node 3 (1, 2). From node 4, we can only go to node 3 (as node 0 is already deleted from the
list). Therefore, node 3 is chosen to be the node next to node 4 in the new solution. The new
solution generated is further improved by the local search.

3.5 The procedure after the first generation

The newly generated solutions from the ERX and local search are used to update the
population in terms of the objective function value. The above procedure is repeated until a
termination criterion is met. However, if there are no solutions to be updated for the
population in the current generation, the initialization is used to generate (m - m;) new
solutions in the next generation, but keeping m; high quality solutions (m; = 2, in this study).
In addition, if the previous three generations converge to the same best solution, the local
search is used to improve that “converged” solution by repeating Nis; times to exhaustively
search the neighborhood of that “converged” solution (Nrs; = 300, in this study).

4. Numerical experiments and results

There are two types of data sets, heterogeneous and homogeneous PTSP, used as numerical
experiments in this study to examine the performance of different selection schemes under
GA framework for the PTSP. First, 90 heterogeneous PTSP instances were generated by
Tang & Miller-Hooks (2004) with size n = 50, 75, and 100. Three groups of problem sets
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categorized by different intervals of customer presence probabilities were created for each
problem size (n = 50, 75, and 100). Presence probabilities of customer nodes were randomly
generated from a uniform distribution on intervals (0.0, 0.2], (0.0, 0.5], (0.0, 1.0], one for each
problem size. Second, there were 270 homogeneous PTSP instances generated by the author
and used in the previous study of Liu (2008) with size n = 50, 75, and 100 associated with
nine probability values (p = 0.1, 0.2, ..., 0.9). For both homogeneous and heterogeneous
PTSP, the presence probability of the depot (node 0) was assigned as 1.0. Ten different
problem instances were randomly generated for each presence probability of customer
nodes. For each instance, the coordinates of one depot and n customer nodes (x;, y;) were
generated based on a uniform distribution from [0, 100]2. The Euclidean distance for each

pair of nodes was calculated by using d;; = \/( X, — xj)z +(y, - ]/j)z )

To compare the effectiveness among nine different selection schemes under GA framework,
the preset maximum number of generations (Gu.x) was used as the termination criterion
(Gimax is set to be two times the number of nodes, i.e., Gyuux = 2n, in this study) for both
heterogeneous and homogeneous PTSP. The average solution quality is examined and
compared among nine different selection schemes. In this study, the proposed methods
were used to solve each problem instance 30 times to enhance the robustness of the results.
That is, the average statistics for the methods proposed in this study are based on a 300-run
average. The numerical results of heterogeneous and homogeneous PTSP are discussed in
Section 4.1 and 4.2, respectively.

4.1 Results of heterogeneous PTSP
4.1.1 Descriptive statistics of average E [7] values obtained by the heterogeneous
PTSP

Average E[7] values found from nine different selection schemes for the heterogeneous
PTSP are reported in Table 1. Definitions of terms used in the column headings are given as
follows. n denotes problem size, which is the number of customer nodes. p represents the
customer presence probability interval (0.0, p].

The best average value of E[ 7] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability interval
is shown in shaded. As shown in Table 1, the average E[7] values obtained by only using
fitness-proportional (F) or rank-based (R) selection strategy are consistently worse than the
ones obtained by the other seven selection strategies. The solution quality becomes much
better when adding tournament (T) and/or elitism strategies to fitness-proportional (F) or
rank-based (R) selection. It indicates that fitness-proportional (F) or rank-based (R) selection
should combine tournament (T) and/or elitism strategies to obtain acceptable outcomes.
Moreover, except for p = 0.5 when n = 50, the average E[7] values obtained by adding elitism
to fitness-proportional (F) selection strategy (F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (F+T). Furthermore, except
for p = 0.5, 1.0 when n = 50, the average E[7] values obtained by adding elitism to rank-based
(R) selection strategy (R+E) performs better than the ones obtained by adding tournament to
rank-based (R) selection strategy (R+T). It reveals that the average E[7] values obtained by
keeping the best solution(s) to the successive generations can generally perform better than
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the ones obtained by only applying tournament selection to fitness-proportional (F) or rank-
based (R) selection.

Finally, as shown in Table 1, the average E[7] values obtained by adding elitism to fitness-
proportional (F) or rank-based (R) selection strategy are similar to the ones obtained by
combining both elitism and tournament to fitness-proportional (F) or rank-based (R)
selection strategy. Overall, the queen, F+E, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[7] value for the heterogeneous PTSP than the other
four selection strategies.

n p F F+T F+E |F+T+E R R+T | R+E |R+T+E| Queen
50 0.2 225.110 | 224.854|224.839(224.832|224.868 | 224.838 [ 224.835|224.834 | 224.831
0.5 343.901 |341.585(341.675|341.426|341.935(341.347|341.504 | 341.331 | 341.499
1.0 459.504 |1450.583 (450.235]450.964 [452.853 |449.539|450.916 [451.383 |451.272
75 0.2 267.731 1266.071265.943|265.958266.239 [ 265.9701265.929| 265.959 | 265.958
0.5 415.129 |1404.257 [403.5261403.879 [406.728 | 403.782 |403.485| 403.748 | 403.705
1.0 555.256 |534.013|527.832(527.421|540.306529.276 | 527.300 | 527.295 | 526.765
100 0.2 304.779 |301.318300.859(300.873|301.791|301.084 [ 300.830 |300.825 300.837
0.5 480.752 [466.813463.747|462.578 [469.663 | 464.671|462.661 [463.381 |461.556
1.0 684.758 |649.5441626.749(625.105]660.210|641.668 | 625.056 | 624.490 | 624.144

Table 1. Computational Results for the Heterogeneous PTSP

4.1.2 Inferential statistics analysis of nine selection schemes for heterogeneous PTSP
Since the assumption of normal distribution is hardly met in minimization problems, the
permutation test (Basso et al., 2007), instead of parametric tests, is adopted for statistical
testing in the study. A Monte Carlo method with 10,000 permutations is used to obtain the
approximate p-value of the permutation test. A set of two-sample permutation tests is
conducted to investigate if any statistically significant differences exist between the best
average E[7] value obtained and the ones obtained by the other eight selection schemes.
Table 2 shows the p-values of the permutation tests, where a = 0.05 is considered statistically
significant in this study.

Several important findings are obtained. First, according to the results of the permutation
tests, the average E[r] values obtained by fitness-proportional (F) or rank-based (R)
selection strategy are significantly higher than the best ones obtained by the other seven
selection schemes for all of the tested cases. Second, the average E[7] values obtained by
Queen GA performs best in four out of the nine tested cases, and where they are not the best
performing scheme, the average E[7] values are not statistically significant different to the
best ones obtained by the other eight selection schemes, except for n = 50 and p = 1.0. Third,
for most of the test cases (21 out of 27 cases), the average E[7] values obtained by F+T+E,
R+E and R+T+E are not statistically significant different to the best ones obtained by these
nine selection schemes. Finally, generally speaking, the average E[r] values obtained by
F+T, F+E and R+T performs statistically worse than the best ones obtained by the nine
selection schemes for most of the test cases (20 out of 27 cases), except for n = 50 and p = 1.0,
where the average E[r] value obtained by R+T performs statistically better than the other
eight selection schemes.
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n p F F+T F+E |F+T+E R R+T | R+E |R+T+E| Queen
50 0.2 0.0000 | 0.0000 | 0.0040 | 1.0000 | 0.0000 | 0.0000 | 0.1044 | 0.7157 | —
0.5 0.0000 | 0.0056 | 0.0016 | 0.2814 | 0.0000 | 0.8413 | 0.0742 — 0.0574
1.0 0.0000 | 0.0001 | 0.0301 | 0.0003 | 0.0000 — 0.0037 | 0.0000 | 0.0009
75 0.2 0.0000 | 0.0000 [0.2865 | 0.1025 | 0.0000 | 0.0000 — 0.1026 | 0.1526
0.5 0.0000 | 0.0762 | 0.9371 | 0.4485 | 0.0000 | 0.4828 = 0.6295 | 0.6664
1.0 0.0000 | 0.0000 | 0.2261 | 0.3782 | 0.0000 | 0.0003 | 0.4642 | 0.4745 —
100 0.2 0.0000 | 0.0000 | 0.0046 | 0.0896 | 0.0000 | 0.0000 | 0.6137 — 0.3041
0.5 0.0000 | 0.0000 | 0.0000 | 0.0376 | 0.0000 | 0.0000 | 0.0259 | 0.0052 —
1.0 0.0000 | 0.0000 | 0.0036 | 0.1991 | 0.0000 | 0.0000 | 0.2004 | 0.6788 —

Table 2. p-value of Permutation test for the Heterogeneous PTSP

4.1.3 Comparison among the best performing scheme obtained in the study, the
Queen GA and previous studies

As indicated in the previous section, in eight out of the nine tested cases (except for n = 50
and p = 1.0), the Queen GA either performs best or its performance not statistically
significant different from the best ones obtained by the other eight selection schemes. The
Queen as well as the the best performing scheme obtained in the study are compared
against the previous studies in this section. The heterogeneous PTSP data generated by
Tang & Miller-Hooks (2004) has been investigated in several studies (Tang & Miller-Hooks,
2004; Liu, 2006, 2007, 2008). The best average E[7] values as well as the corresponding
average CPU time in these studies (Previous Best) are listed in Table 3. In Table 3, the
definitions of n and p are the same as in Table 1. E[7] denotes the average value of the
expected length of the a priori PTSP tour. CPU is the average CPU running time in seconds.
The “Previous Best” results for the heterogeneous PTSP data were obtained by Liu (2006,
2007, 2008), except for n = 50 and p = 0.5, which were obtained by Tang & Miller-Hooks
(2004). In Liu’s studies (as well as the results of this study), all implementations were
performed on an Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB memory
(3479 MFlops), while TMH's study was based on a 10-run average and was conducted on a
DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). The best average
value of E[7] among the three compared sets for each problem size with different presence
probability interval is shown in shaded.

n p Best in this study Queen Previous Best
E[1] CPU (s) E[1] CPU (s) E[1] CPU (s)
50 0.2 224.8313 28.7 224.8313 28.7 224.8314 454
0.5 341.3313 16.8 341.4989 16.2 341.3000* 72.4*
1.0 449.5391 6.5 451.2717 8.4 450.2215 12.4
75 0.2 265.9293 108.9 265.9581 118.5 265.9315 240.6
0.5 403.4846 46.3 403.7050 50.1 403.2347 51.8
1.0 526.7646 28.6 526.7646 28.6 527.1907 41.5
100 0.2 300.8245 288.1 300.8370 269.5 300.8495 689.9
0.5 461.5559 115.6 461.5559 115.6 462.2678 121.2
1.0 624.1439 68.8 624.1439 68.8 624.6369 96.7

*Running on DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops)
Table 3. Computational Results for the Heterogeneous PTSP
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The results in Table 3 show that the best of the average E[ 7] values obtained in this study are
better than the ones obtained by the “Previous Best.” The only exception is when p = 0.5 and
n =75. The best average E[7] value yielded performs 0.06% worse than the one obtained by
the previous study (Liu, 2008), when p = 0.5 and n = 75. Moreover, the computation efforts
used to yield the best results in this study are all less than the one used in “Previous Best.”
It suggests that the GA solution framework proposed in this study is a promising method
for solving the heterogeneous PTSP. As for the Queen GA, the results show that it performs
better than the “Previous Best” in terms of average E[7] value and computational effort
when n =100. It suggests that the Queen GA is capable of effectively and efficiently solving
relatively large-sized heterogeneous PTSP.

4.2 Results of homogeneous PTSP
4.2.1 Descriptive statistics of average E [7] values obtained by the homogeneous
PTSP

Average E[7] values found from nine different selection schemes for the homogeneous
PTSP are reported in Table 4. In Table 4, the definitions of n and p are the same as in Tablel.
The best average value of E[7] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability is
shown in shaded. As the similar results obtained in the heterogeneous PTSP, the average
E[7z] values obtained by only using fitness-proportional (F) or rank-based (R) selection
strategy are consistently worse than the ones obtained by the other seven selection
strategies. The solution quality becomes much better when adding tournament (T) and/or
elitism (E) strategies to fitness-proportional (F) or rank-based (R) selection. Moreover,
except for p = 0.3 when n = 50, the average E[7] values obtained by adding elitism to fitness-
proportional (F) selection strategy (i.e., F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (i.e., F+T). Furthermore,
except for p = 0.3, 0.4 when n = 50, the average E[7] values obtained by adding elitism to
rank-based (R) selection strategy (i.e., R+E) performs better than the ones obtained by
adding tournament to rank-based (R) selection strategy (i.e., R+T). Finally, the average E[7]
values obtained by adding elitism to rank-based (R) selection strategy are similar to the ones
obtained by combining both elitism and tournament to rank-based (R) selection strategy.
Overall the queen, F+T+E, R+E, and R+T+E are better selection strategies and yielded
similar average E[7] value for the homogeneous PTSP than the other five selection strategies.

4.2.2 Inferential statistics analysis of nine selection schemes for homogeneous PTSP
A set of two-sample permutation tests is conducted to investigate if any statistically

significant differences exist between the best average E[7] value obtained and the ones
obtained by the other eight selection schemes. Table 5 shows the p-values of the
permutation tests, where a = 0.05 is considered statistically significant in this study.

Several important findings are obtained. First, according to the results of the permutation
tests, the average E[7] values obtained by F only, R only and F+T are significantly higher
than the best ones obtained by the other six selection schemes for all of the tested cases.
Second, the average E[7] values obtained by Queen GA performs best in 8 out of 27 tested
cases, and where they are not the best performing scheme, the average E[7] values are not
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statistically significant different to the best ones obtained by the other eight selection
schemes, except for n =75 and p = 0.6. Third, for most of the test cases (70 out of 81 cases),
the average E[7] values obtained by F+T+E, R+E and R+T+E are not statistically significant
different to the best ones obtained by these nine selection schemes. Finally, the average E[7]
values obtained by F+E and R+T performs statistically worse than the best ones obtained by
the nine selection schemes for most of the test cases (40 out of 54 cases).

n P F F+T F+E |F+T+E R R+T | R+E |R+T+E|Queen
50 0.1 233.907 |233.550(233.497 (233.493|233.584 | 233.513 | 233.492|233.492 | 233.492
0.2 312.887(311.251|311.079(311.033(311.488311.034 {310.998 (311.006 |310.995
0.3 371.020 |366.525(366.788|366.170|367.575 [366.097| 366.424 | 366.632 | 366.492
0.4 413.906 [406.654405.985|405.792 (408.614 |405.010{405.656 [405.699 | 405.466
0.5 467.415 |456.167 (453.551|453.791 [459.147 | 454.205|453.581 | 453.486 |453.204
0.6 515.228 [498.553|494.441493.196 | 503.028 | 496.461 | 492.888 [492.565|492.738
0.7 537.288 1519.762|510.409 [509.883525.096 | 516.295 [ 509.516 | 509.762 | 509.492
0.8 580.616 [562.011|551.838(552.437 |568.825|557.246 |550.880 | 551.649|551.506
0.9 586.400 [565.562|562.089(561.712|572.469|561.706 |560.520(561.090 | 561.496
75 0.1 277.591 |276.112|275.827(275.822|276.302|275.976 | 275.824 (275.819|275.820
0.2 369.227 1363.290(362.206 | 361.628|364.299 (362.419|361.878|361.895 |361.623
0.3 460.647 (448.300|444.228 | 444.268 (451.166|446.191 | 444.101 {444.083 | 444.365
0.4 514.566 |500.111 (493.371|493.100|503.418 {497.185]493.801 |493.083 |492.856
0.5 563.640 |537.817(526.367 |525.293|546.373 [532.653 | 525.790|525.704 | 525.308
0.6 623.310 |597.093578.021 (577.5701602.857 | 589.736 | 577.194 | 574.769 | 576.791
0.7 666.105 |638.7981621.849(620.450|648.911632.238|619.659 |618.957| 619.248
0.8 712.283 1688.3271659.604 [658.339693.720|677.008 | 658.942 1656.115 | 656.658
0.9 757.030 |722.5441690.629 (690.952|733.558 | 711.425|690.537690.196 [690.150
100 0.1 310.330 |306.549305.727|305.682|307.103 [ 306.172305.685 [305.676 | 305.682
0.2 435.561 |422.562(418.959418.552 (424.865|420.063 |418.046(418.428 418.515
0.3 526.932 |1507.731497.0241496.876512.953 [502.780 |496.402|497.076 | 497.298
0.4 619.191 |593.193(575.482 [574.381 | 600.909 | 586.779 | 574.386 | 574.636 | 574.569
0.5 679.219 |648.563 |618.385 [616.023|657.506 | 637.732617.572|616.625|616.519
0.6 733.9751703.389(662.915(660.517|711.493 | 689.266 | 660.917 |659.644 | 659.688
0.7 809.507 |775.264|730.042 | 726.416| 786.035 | 761.061 | 726.758 | 727.200|726.707
0.8 857.957 |811.857(751.417|749.322|827.972(795.440|750.532 | 748.208 | 749.040
0.9 880.283 844.058|791.853(790.753856.049|830.113|791.278 | 789.900 | 788.850

Table 4. Computational Results for the Homogeneous PTSP
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F+E |F+T+E

0.0021 0.0000

0.0048 0.0000

0.0000 | 0.0045 | 0.0000

n P F F+T
50 0.1 0.0000 | 0.0000 | 0.0075
0.2 0.0000 | 0.0000
0.3 0.0000 | 0.0099
0.4 0.0000 | 0.0000
0.5 0.0000 | 0.0000
0.6 0.0000 | 0.0000
0.7 0.0000 | 0.0000
0.8 0.0000 | 0.0000
0.9 0.0000 | 0.0000
75 0.1 0.0000 | 0.0000
0.2 0.0000 | 0.0000 | 0.0030
0.3 0.0000 | 0.0000
0.4 0.0000 | 0.0000
0.5 0.0000 | 0.0000
0.6 0.0000 | 0.0000 | 0.0000
0.7 0.0000 | 0.0000 | 0.0068
0.8 0.0000 | 0.0000 | 0.0037
0.9 0.0000 | 0.0000
100 0.1 0.0000 | 0.0000
0.2 0.0000 | 0.0000
0.3 0.0000 | 0.0000
0.4 0.0000 | 0.0000
0.5 0.0000 | 0.0000
0.6 0.0000 | 0.0000
0.7 0.0000 | 0.0000
0.8 0.0000 | 0.0000
0.9 0.0000 | 0.0000

Table 5. p-value of Permutation test for the Homogeneous PTSP

5. Concluding comments

In this chapter, a genetic algorithm is developed to solve the PTSP. The effectiveness and
efficiency of nine different selection schemes were investigated for both the heterogeneous

and homogeneous PTSP.

Extensive computational tests were performed and the

permutation test was adopted to test the statistical significance of the nine selection
schemes. Several important findings are obtained. First, fitness-proportional (F) or rank-
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based (R) selection should combine tournament (T) and/or elitism strategies to obtain
acceptable outcomes for both the heterogeneous and homogeneous PTSP. Second, the
average E[7] values obtained by keeping the best solution(s) to the successive generations
can generally perform better than the ones obtained by only applying tournament selection
to fitness-proportional (F) or rank-based (R) selection for both the heterogeneous and
homogeneous PTSP. Third, the queen, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[7] value for the heterogeneous and homogeneous
PTSP than the other five selection strategies. Finally, the numerical results showed that the
proposed solution procedure can further enhance the performance of the method proposed
by previous studies in most of the tested cases for the heterogeneous PTSP in terms of
objective function value and computation time. These findings showed the potential of the
proposed GA in effectively and efficiently solving the large-scale PTSP.
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