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Solving TSP by Transiently  
Chaotic Neural Networks 

Shyan-Shiou Chen1 and Chih-Wen Shih2 

1Department of Mathematics, National Taiwan Normal University, Taipei,  
2Department of Applied Mathematics, National Chiao Tung University, Hsinchu,  

Taiwan, R.O.C. 

1. Introduction 

Inspired by the information processing of human neural systems, the artificial neural 
networks (ANNs) have been developed and applied to solve problems in various disciplines 
with varying degrees of success.  For example, ANNs have been applied to memory storage, 
pattern recognition, categorization, error correction, decision making, and machine learning 
in object oriented machine. Various computational schemes and algorithms have been 
devised for solving the travelling salesman problem which is a difficult NP-hard 
combinatorial optimization problem. The use of ANN as a computational machine to solve 
combinatorial optimization problems, including TSP, dates back to 1985 by Hopfield and 
Tank (1985). Although the achievement of such an application broadens the capacity of 
ANNs, there remain several insufficiencies to be improved for such a computational task, cf. 
(Smith, 1999). They include that the computations can easily get trapped at local minimum 
of the objective function, feasibility of computational outputs, and suitable choice of 
parameters.  Improvements of feasibility and solution quality for the scheme have been 
reported subsequently.  Among them, there is a success in adding the chaotic ingredient into 
the network to enhance the global searching ability.  Chaotic behavior is an inside essence of 
stochastic processes in nonlinear deterministic system.  Recently, chaotic neural networks 
have been paid much attention to, and contribute toward solving TSP.  Chaotic phenomena 
arise from nonlinear system, and the discrete-time analogue of Hopfield’s model can admit 
such a dynamics. Notably, the discrete-time neural network models can also be 
implemented into analogue circuits, cf. (Hänggi et al., 1999 ; Harrer & Nossek, 1992). 
The chapter aims at introducing recent progress in discrete-time neural network models, in 
particular, the transiently chaotic neural network (TCNN) and the advantage of adopting 
piecewise linear activation function. We shall demonstrate the use of TCNN in solving the 
TSP and compare the results with other neural networks. The chaotic ingredients improve 
the shortcoming of the previous ODE models in which the outputs strongly depend on the 
initial conditions and are easily trapped at the local minimum of objective function. There 
are transiently chaotic phase and convergent phase for the TCNN. The parameters for 
convergent phase are confirmed by the nonautonomous discrete-time LaSalle’s invariant 
principle, whereas the ones for chaotic phase are derived by applying the Marotto’s 
theorem. The Marotto’s theorem which generalizes the Li-York’s theorem on chaos from 
one-dimension to multi-dimension has found its best application in the discrete-time neural 
network model considered herein. O
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In Section 2, we will introduce the setting of solving the TSP by the neural networks, 
including the description of objective functions to be minimized at optimal routes, and the 
original work by Hopfield and Tank.  In Section 3, we review the LaSalle’s invariant 
principle, the Marotto’s theorem, and introduce the discrete-time analogue of Hopfield’s 
network. The recent progress in the transiently chaotic neural network is summarized in 
Section 4.  We arrange some numerical simulations in applying the TCNN with piecewise 
linear activation function in Section 5. Finally, the chapter is concluded with some 
discussions. 

2. Solving TSP via Hopfield neural network 

Suppose there are  N cities indexed by i= 1, 2,…, N and the distance between city i  and city 

k is dik. The optimal solution to the TSP consists of an ordered list of the N cities.  The list 
expresses the order of the cities visited and indicates the path with shortest total tour length.  
Let us describe how to map the TSP into the computational networks. For each city, its final 
location in the ordered list is to be specified by the asymptotic output states of a set of N 
neurons. For example, for a 10-city problem, if city i is the seventh city visited in an optimal 
solution, then it is represented by the corresponding outputs of 10 neurons: 

0 0 0 0 0 010 0 0.  

Accordingly, N2 neurons will be needed in the computational network for a N-city TSP. We 

thus arrange the outputs of these neurons into a N× N  matrix.  In such a representation, an 
ideal output matrix with only one entry equal to one in each row and in each column, and 
other entries all zero, will then correspond to a feasible solution of the TSP.  
Thereafter, the TSP with N cities can be formulated as the following optimization problem: 

( 1) ( 1)

1 1 1

1
Minimize ( ) ( )

2

N N N

ij ik j k j k

i j k

E d y y y− +
= = =

= + ,∑∑∑y  (1) 

where matrix y=[yij] is constrained by 

1 1

1and 1
N N

ij ij

i j

y y
= =

= = ,∑ ∑  (2) 

for all i,j =1,…,N, and yi0=yiN and yi1=yi(N+1). The variables yij∈[0,1], i,j =1,…,N, can also be 

regarded as the probability for the i th city to be visited the j th time.   If every  yij is either 0 

or 1, then the constraint Eq. (2) means that every city must be visited only once. Under such 

a circumstances, the optimal solution of the objective function E(y) equals the shortest 

distance of the traveling route.  Notably, any shift of an optimal solution also yields an 

optimal solution (with the same shortest tour length).  Thus, the optimal solution is not 

unique.  

The main idea of using neural networks to solve TSP is to search the global minimum of the 

objective function which involves the data of TSP, through evolutions of the states of the 

network. Hopfield & Tank (1985) considered the following objective function 
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 231 2

1 1 1 1 1 1

( ) ( )
2 2 2

N N N N N N N N

ij ik ij kj ij

i j k j j i k i i j

E y y y y y N
γγ γ

= = ≠ = = ≠ = =

= + + −∑∑∑ ∑∑∑ ∑∑y  (3) 

 4
( 1) ( 1)

1 1 1

( )
2

N N N

ij ik j k j k

i j k

d y y y
γ

− +
= = =

+ + .∑∑∑  (4) 

Note that the minimum, i.e., zero, of (3) is attained at a feasible solution. They aimed at 

using the Hopfield network to locate the global minimum of this objective function.  The 

Hopfield network is a continuous-time ODE system which consists of a fully interconnected 

system of computational elements or neurons arranged in, say, lattice L: 

 

L

dx x
C w y I L

dt R ∈

= − + + , ∈ ,∑i i
i ij j i

ji

i  (5) 

 ( )y g x= .i i i
 (6) 

The synapse (or weight) between two neurons is defined by wij, which may be positive or 

negative depending on whether the action of neurons is  in an excitatory or inhibitory 

manner;  x
i
 is the internal state of neuron i, and y

i
 with 0 1y≤ ≤i

 is the external (output) state 

of neuron i. The parameter Ci (resp. Ri) is the input capacitance of the cell membrane (resp. 

the transmembrane resistance) of neuron i. The activation function gi is a monotonically 

increasing function and thus has an inverse. Typical gi is given by  

1
( ) (1 tanh( ))

2
g ξ ξ ε= + / ,i

 

where ε  is a parameter controlling the slope of the activation function. The gradient 

descent dynamics of the neural network provides a decreasing property of the objective 

function for the TSP. For convenience of expression and derivation, we consider (5) on the 

one-dimensional array {1,2,…,n}. There exists a Lyapunov function (energy function for the 

network)  

 1

0
1 1 1 1

1 1
( )

2

i
n n n n

y

ij i j i i i

i j i i i

V w y y I y g d
R

ξ ξ−

= = = =

= − − + .∑∑ ∑ ∑ ∫  (7) 

The time derivative of V along a solution ( )tx  is computed as  

1 1 1

2

1

( )

( )
[ ]( ) .

n n n
i i i i

ij j i i

i j ii

n
i i i

i

i i

dy x dy dxdV
w y I C

dt dt R dt dt

dg x dx
C

dx dt

= = =

=

= − − + = −

= −

∑ ∑ ∑

∑
 

Due to the increasing property of the activation function gi, we obtain 
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 0 and 0 if 0idxdV dV

dt dt dt
≤ , = = .  (8) 

3. Discrete-time dynamical systems 

Biological neurons are much more complicated than the simple threshold elements in 
ANNs.  Chaotic behaviors have actually been observed experimentally in biological 
neurons, as pointed out in Aihara et al. (1990) and the references therein. 
Discrete-time dynamical systems have attracted much attention in recent years, thanks to its 
capacity of applications and underlying sophisticated mathematical theory.  Indeed, not 
only that discrete-time counterparts of classical theorems for continuous-time systems have 
been developed successfully, but also the chaotic behaviors for discrete-time systems can be 
characterized lucidly.  
Due to the shortcomings that solutions get trapped at local minimum of objective function, 
and dependence of performance upon choosing initial conditions in continuous-time 
systems, researchers have attempted to introduce the chaotic ingredient into the networks.  
The stage was thus set for the development of discrete-time neural networks, cf. (Aihara et 
al., 1990; Chen & Aihara, 1995; Nozawa, 1992; Yamada & Aihara, 1997).  In particular, 
Nozawa (1992) showed that the Euler approximation of the continuous-time Hopfield 
neural network with a negative self-feedback connection possesses chaotic dynamics, and 
has a much better searching ability in solving the TSP than the original continuous-time 
Hopfield neural network.  
Notably, although it has been reported in (Bersini,1998; Bersini & Senser, 2002) that there 
exist chaotic behaviours in continuous-time Hopfield-type neural networks, it is still 
unknown whether the same concept or technique can be applied to the TSP problem.  
We shall introduce the discrete-time Hopfield neural network in Subsection 3.1; then review 
the LaSalle’s invariant principle for convergent dynamics and the Marotto’s theorem for 
chaos, for discrete-time dynamical systems in Subsections 3.2, 3.3, respectively.  

3.1 Discrete-time Hopfield neural networks 
Discrete-time neural network model of Hopfield type can be described by the following 
equations: for i = 1,…,n,  

 

1

( 1) ( ) ( )
n

i i ij j i

j

x t x t w y t Iμ
=

+ = + + .∑  (9) 

Here, xi is the internal state of neuron i; yi  is the output of neuron i; μ is the damping factor; 
wii is the self-feedback connection weight; wij is the connection weight from neuron j  to 

neuron i; 
i
I  is the input bias.  The parameter μ (resp. ωij, Ii) in Eq. (9) can be compared to 

1
i i

t
C R
Δ−  (resp. ij

i

t

C

ω Δ , i

i

I t

C

Δ ) in terms of the parameters in Eq. (5), where tΔ  is the discretization 

time step.  System (9) is the Euler approximation of Eq. (5).  There also exists a Lyapunov 
function for the discrete-time system (9):  

 1

0
1 1 1 1

1
( ) ( 1) ( )

2

i
n n n n

y

ij i j i i i

i j i i

V w y y I y g dμ ξ ξ−

= = = =

= − − − − ,∑∑ ∑ ∑∫y  (10) 
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where again ( )
i i i
y g x= . It has been shown in (Chen & Aihara, 1997; Chen & Shih, 2002) that, 

under some conditions, the energy function (10) is decreasing along the solution of the 
system: 

( ( 1)) ( ( )) 0 for allV t V t t+ − ≤ , ∈ .y y N  

Notably, the Lyapunov function (10) for the discrete-time network and the one (7) for the 
continuous-time network are quite similar. The existence of Lyapunov function basically 
guarantees the convergence of evolutions for the system to certain steady states, by the 
LaSalle’s invariant principle. The transiently chaotic neural network is developed from this 
discrete-time network with transient chaos imbedded in.  Before introducing the theory for 
the TCNN, let us review the LaSalle’s invariant principle and the Marotto’s theorem. 

3.2 LaSalle’s invariant principle 
Long-time asymptotic behaviors of solutions for a dynamical system, such as neural 
network, are always important concerns. In 1960, LaSalle discovered the relation between 
Lyapunov function and Birkhoff limit set. Extended from the Lyapunov direct method, a 
uniform concept was developed to describe the asymptotic behaviors in terms of limit set.  
By the invariant property of limit set, a basic theory for the stability of motion of dynamical 
systems was derived. In this section, we review the invariant principle for both autonomous 
and non-autonomous discrete-time dynamical systems, cf. (LaSalle, 1976).  First, we consider 
an autonomous difference equation 

 ( 1) ( ( )) n
t t R t+ = , ∈ , ∈ ,x F x x N  (11) 

where n n
R R: →F  is continuous. We assume that 

∗
x  is a fixed point (i.e. ( )∗ ∗=F x x ).  

Suppose there exists a continuous, positive definite, and radially unbounded function 
n

V G R G R: → , ⊂  with  

( ) 0V GΔ ≤ , ∀ ∈x x  

where ( ) ( ( )) ( )V V VΔ = −x F x x , then every solution to Eq. (11) converges to the largest 

invariant set M contained in { ( ) 0}G V∈ | Δ =x x .  If the set M only contains the equilibrium 

x* , then x* is asymptotically stable. The function V satisfying ( ) 0VΔ ≤x  for all G∈x  is 

said to be a Lyapunov function on set G.  
Now we consider a discrete-time non-autonomous system. Let N be the set of positive 

integers. For a given continuous function n n
R R: × ⎯→F N , we consider the non-

autonomous dynamical system  

 ( 1) ( ( ))t t t+ = , .x F x  (12) 

A sequence of points { ( ) | 1 2 }t t = , ,x A  in Rn is a solution of (12) if ( 1) ( ( ))t t t+ = ,x F x , for 

all t∈N .  Let { ( ) | (1) }O t t= ∈ , =x x x xN  be the orbit of x.  We say that p is a ω -limit point 

of O
x

 if there exists a sequence of positive integers { }
k
t  with 

k
t →∞  as k →∞ , such 
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that lim ( )
k k

t→∞=p x .  Denote by ( )ω x  the set of all ω -limit points of O
x

.  Let Ni represent 

the set of all positive integers larger than ni, for some positive integer 
i
n .  Let 

nRΩ⊆  and 

Ω  be its closure. For a function 
0V R: ×Ω⎯→N , we define ( ) ( 1 ( )) ( )V t V t t V t, = + , , − ,x F x x$  

so that if { ( )}tx  is a solution of Eq. (12), then ( ( )) ( 1 ( 1)) ( ( ))V t t V t t V t t, = + , + − ,x x x$ .  V is said 

to be a Lyapunov function for (12) if   

i. each ( )V t,⋅  is continuous, and   

ii. for each ∈Ωp , there exists a neighborhood U  of p  such that ( )V t,x  is bounded 

below for U∈ ∩Ωx  and 1t∈N , 1 0n n≥ , and  

iii. there exists a non-degenerate continuous function 0Q R: Ω→  such that 

0( ) ( ) 0V t Q, ≤ − ≤x x$  for all ∈Ωx  and for all 2t∈N , 2 1n n≥ ,  

or  

iii.’ there exist a non-degenerate continuous function 0Q R: Ω→  and an equi-continuous 

family of functions ( )Q t R, ⋅ : Ω→  such that 
0lim ( ) ( ) 0

t
Q t Q→∞ | , − |=x x  for all ∈Ωx  and 

( ) ( ) 0V t Q t, ≤ − , ≤x x$  for all 
2( )t N, ∈ ×Ωx , 2 1n n≥ .  

 

If there exists such a Lyapunov function V, then the LaSalle’s invariant principle states that 

the ω -limit set of any point x lies in 0S , i.e. 0( ) Sω ⊂x , where  

 
0 0{ ( ) 0}S Q= ∈Ω : = .x x  (13) 

3.3 Marotto’s theorem on chaos 
Originally, a chaotic phenomenon was numerically found in the research of Lorenz on 
weather prediction in 1963.  Later, the mathematical definition of chaos was initiated by Li & 
Yorke (1975) for one-dimensional continuous maps. A criterion of existence of chaos has 

been termed as “period three implies chaos" therein. More precisely, let f I I: →  be a 

continuous map of the compact interval I of the real line R into itself; if f has a periodic point 
of period three, then f exhibits chaotic behavior.  Three years later, the above result was 
generalized by Marotto (1978).  He proposed the definition of “snapback repeller" and 
proved that “snapback repellers imply chaos" for multi-dimensional maps.  The definition of 
snapback repeller was further clarified in (Marotto, 2005).  
The theorem has provided the best analytic argument of chaos for multi-dimensional maps. 
The detailed description of chaos in the sense of Marotto is as follows. Let us define a 

system as 
1 ( )

k k
F+ =x x  where 

n

k
R∈x , and F is C1 or piecewise C1 with non-smooth 

points at suitable locations.  A fixed point x  is said to be a snapback repeller (see Fig. 1) of F if 

all eigenvalues of ( )DF x  exceeding one in magnitude, and there exists a point 
0 ≠x x  in a 

repelling neighborhood of x , such that 0( )m
F =x x  for some m∈N , and 
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0det( ( )) 0j
DF ≠x , for all 1 j m≤ ≤ .  If F has a snapback repeller, then the dynamical system 

defined by F is chaotic in the following sense: (i) There exists a positive integer m0 such that 
for each integer p ≥ m0, F has p-periodic points. (ii) There exists a scrambled set, that is, an 
uncountable set L containing no periodic points such that the following pertains: (a) 

( )F L L⊂ ; (b) for every y∈L and any periodic point x of F,  

( ) ( ) 0limsup k k

k

F F
→∞

|| − ||> ;y x
 

 (c) for every x, y ∈L  with ≠x y ,  

( ) ( ) 0limsup k k

k

F F
→∞

|| − ||> ;y x
 

(iii) There exists an uncountable subset  L0 of L such that for every x, y ∈L0,  

( ) ( ) 0liminf k k

k

F F
→∞

|| − ||= .y x  

 

Fig. 1. Diagram of a snapback repeller.  The point X  is a snapback repeller.  The point 
0X  is 

a snapback point such that Fm(X0)= X  for some integer m. Note that the value of F at the (m-

1)-th point is the snapback repeller X . 

Notably, (ii) (b) describes that any point in the scrambled set L does not converge to any 
periodic point of F under the iteration of F.  It bears a sense that there only exist unstable 
periodic points in the system. (ii)(c) shows that there only exist unstable points in the 
scrambled set L.  In other words, points in the scrambled set do not attract each other. (iii) 
describes that distances between the iterations of any pair of points in an uncountable subset 
of L approach zero.  Although it seems that there exists no rule for the dynamical behavior, 
the behavior is controlled by the underlying deterministic system.  It is not similar to the 
concept of randomness of a stochastic system. The chaotic behavior is very random but 
ordered.  
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Let us illustrate the existence of period-three points and a snap-back repeller in the sense of 

Li-Yorke and Marotto respectively, for the logistic map, ( ) (1 ) [0 1]f x x x xμ μ= − , ∈ , , as an 

example. The period-three points and a snap-back repeller are presented in Fig. (2). There 

exists chaos in the sense of Li-Yorke (resp. Marotto) for the logistic map fμ  with 4μ = . 

 

 

Fig. 2. The blue line is the graph of logistic map with 4μ = . Black line illustrates the period 

3 trajectory. The dotted line depicts a homoclinic orbit with snap-back points.  This logistic 
map possesses Li-Yorke’s and Marotto’s chaos. 

4. Transiently chaotic neural networks 

The transiently chaotic neural network (TCNN) is equipped with a chaotic phase which 

prevails in the first stage of computation to enhance global searching and reduce the effect 

of variations from choosing initial values.  This procedure can be realized by a suitable 

choice of parameters which typically starts from sufficiently large negative self-feedback 

connection weights.  The process is then cooled down, as the self-feedback connection 

weights increases, while maintaining decreasing property of the energy (objective) function, 

and finally settles at a state with lower value of objective function. The characteristic of 

dynamical phenomena from chaotic phase to convergent phase is called “chaotic simulated 

annealing".  

The TCNN, inherited from the Hopfield type network, was first proposed by Chen & Aihara 

(1995, 1997, 1999).  Later, Chen & Shih (2002) performed a systematic analysis on the chaotic 

behaviors of the TCNN.  The existence of chaos is proved by a geometrical formulation 

combined with the use of Marotto’s theorem.  The analysis has provided the ranges of 
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parameters for the chaotic phase and convergent phase.  Recently, Chen and Shih (2007) 

further extended the TCNN to the setting with piecewise linear activation function, which 

not only improves the performance of computation, but also admits more succinct and 

crystal mathematical description on the chaotic phase than the TCNN with the logistic 

activation function.  Such a setting fits into the revised version of theorem in (Marotto, 2005) 

pertinently.  

Let us describe the model equation for the TCNN.  

 
0

1

( 1) ( ) ( )[ ( ) ] [ ( ) ]
n

i i ii i i ij j i

j j i

x t x t t y t a y t vμ ω α ω
= , ≠

+ = − − + + ,∑  (14) 

 ( 1) (1 ) ( )
ii ii
t tω β ω| + |=| − |,  (15) 

for i=1,…,n, t∈N, (positive integers), where xi is the internal state of neuron i; yi is the output 

of neuron i, which corresponds to xi through an activation function; μ  with 0 1μ< <  is the 

damping factor of nerve membrane; 
ii

ω  is the self-feedback connection weight; 0ia  is the 

self-recurrent bias of neuron i; 
ijω  is the connection weight from neuron j to neuron i; 

i
v  is 

the input bias of neuron i; β  with 0 1β< < , is the damping factor for 
ii

ω ; α is a positive 

scaling parameter. Equation (15) represents an exponential cooling schedule in the 
annealing procedure.  The activation function adopted in (Chen & Aihara, 1995; 1997; 1999) 
is the logistic function given by  

( ) 1 [1 exp( ( ) )]
i i
y t x t ε= / + − / ,  

which is depicted in Fig. 3 (b).  
 

 
(a) 

 
(b) 

 

Fig. 3. The graphs of (a) the piecewise linear and (b) the logistic activation function. 
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One may also consider more general annealing process:  

 ( )

0

1

( 1) ( ) (1 ) [ ( ) ] [ ( ) ]
n

q t

i i i i ij j i

j j i

x t x t y t a y t vμ β ω α ω
= , ≠

+ = + − − + + ,∑  (16) 

where i=1,…,n, 0 1β< < ; ( )q t  satisfies the condition that there exists an n1∈N such that 

( ) 0q t t− ≥  for all 
1t n> . The standard annealing process simply takes ( )q t t= . 

The disadvantage of using the logistic activation function is that the output values for some 
neurons may be neither close to one nor to zero, as demonstrated in Fig. (4).  Although it is 
possible to avoid such a situation by choosing high gain of the logistic activation function, 
i.e., small ε , taking the piecewise linear output function (Fig. 3 (a)) leads to much better 

performance. 

 

Fig. 4. An example that the TCNN with the logistic activation function has an infeasible 
solution, i.e., there exists an output entry yi which approaches 0.6012, neither close to 1 nor 
to 0, after 1400 iterations. 

4.1 Piecewise linear activation function 
Chen & Shih (2007) proposed a transiently chaotic neural network (TCNN) with piecewise 
linear activation function, instead of the logistic one, as follows:  

 ( )

0

1

( 1) ( ) (1 ) [ ( ) ] ( )
n

q t

i i i i ij j i

j

x t x t y t a w y t vμ β ω
=

+ = + − − + + ,∑  (17) 

where i=1,…,n, and xi and yi satisfy the following relation  

 
( ) ( )

( ) ( ( )) [2 1 1 ] 4 0,i i
i i

x t x t
y t g x tε ε

ε ε
= := + | + | − | − | / , >  (18) 

That is, we consider the following time-dependent map on Rn:  

 ( )

0

1

( ) (1 ) [ ( ) ] ( )
n

q t

i i i i ij j i

j

F t x g x a g x vε εμ β ω ω
=

, = + − − + + .∑x  (19) 

Corresponding to this piecewise linear activation function, for a fixed 0ε > , we partition 

the real line into the left (` ), middle (m), right (r) parts; namely,  

 
m r( ) [ ] ( )ε ε ε εΩ := −∞,− , Ω := − , , Ω := ,∞ .`

 (20) 
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Consequently, Rn can be partitioned into the following subsets:  

 
1 1{( ) r m 1 }

n i

n

q q n i q ix x R x q `` " `` " `` " i nΩ = , , ∈ | ∈Ω ; = , , ; = , , ,A A ` A  (21) 

as illustrated in Fig. 5 for n=2. We may call 
m mΩ A  the interior region, each 

1 nq q
Ω A , with 

r
i
q `` " `` "= ,` , for all i , an saturated region; each 

1 nq q
Ω A , with 

i
q `` "= ` , or r`` " , for 

some i, and m
j

q `` "=  for some j, a mixed region.  

 

Fig. 5. Illustration of 
1 2q q

Ω  in R2, where q1 and q2 are `` "`  or m`` "  or r`` "  

Through introducing upper and lower bounds for the map (19), the existence of snap-back 
repellers in each of the 3n regions, hence Marotto’s chaos, for the system can be established.  
Let us quote the parameter conditions and the theorem. Consider 

(A) 0ω > , 
1 1

2
0

μ
ω ε
−< < , 

1

0 0h a
μ

ω ωε−− − + > , 
1

0 1h a
μ

ω ωε− + + < ,  

(B) 1 1
0 0 02 2

(1 ) [( ) (1 ) ]a h a h a hω
μ εμε ω ω ω μ ω ω+ − − > − + / − − − + − .  

Theorem 1 (Chen & Shih, 2007). If the parameters 
0( )
i i

a hμ ω ε, , , , , satisfy (A) and (B) with 

a0=a0i, h=hi, for every i=1,…,n, then there exist snap-back repellers for the TCNN with 
activation function (18). 
  

On the other hand, system (17) admits a time-dependent Lyapunov function  

 2

1 1 1 1

1
( ) ( 1) ( )

2

n n n n
t

ij i j i i i i

i j i i

V t y y v y y y cω μ ε
= = = =

, = − − − − − + ,∑∑ ∑ ∑x  (22) 
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where ( )i iy g xε= , i=1,…,n, and  0< c <1. Note that V is globally Lipschitz, but not C1.  Let 

[ ]
ij n n

W ω ×= .  By applying the LaSalle’s invariant principle, the following convergent 

theorem can be derived.  

Theorem 2 (Chen & Shih, 2007). If 0 1μ≤ ≤ , 0ε > , 1
1

c

β−| |<  and the matrix 

2 (1 )W Iε μ+ −  is positive-definite, then there exists 2 2 1n n n∈ , >N  so that 

( 1 ( 1)) ( ( ))V t t V t t+ , + ≤ ,x x  for t≥n2 and V is a Lyapunov function for system (17) on N2×Rn. 
 

The conditions for chaotic and convergent dynamical phases for the TCNN are all 
computable. The range of the parameters satisfying these conditions can also be depicted 
numerically.  There are other advantages in adopting the piecewise linear activation 

function. Note that the feasible and optimal solutions lie in the saturated regions 
1 nq q

Ω A , 

with r
i
q `` " `` "= ` , , for all i.  One can further impose conditions so that the fixed points in 

the interior and mixed regions are unstable.  Accordingly, iterations from almost any initial 
value converge to outputs with component equal to either 0 or 1.  Details for these 
discussions can be found in (Chen & Shih, 2007).  
On the other hand, the following objective function is considered in (Chen & Aihara, 1995) 

2 21

1 1 1 1

( ) [ ( 1) ( 1) ]
2

N N N N

ik ik

i k k i

E y y
γ

= = = =

= − + −∑ ∑ ∑ ∑y  

 2
( 1) ( 1)

1 1 1

( )
2

N N N

ij ik j k j k

i j k

d y y y
γ

− +
= = =

+ + ,∑∑∑  (23) 

where 1γ  and 2γ  are parameters which are selected to reflect the relative importance of the 

constraints and the cost function of the tour length, respectively.  
To apply the TCNN to the TSP, we reformulate the setting of TSP with two-dimensional 
indices into the one-dimensional form. Restated, by letting s(i,j)=j+(i-1)N, where N is the 
number of cities for the TSP, Eq. (23) becomes 

 
2 21 1

1
( ) 2

2

T

N N
E W I Nγ γ

×
= − − + ,y y y y  (24) 

where, 2 2N N
I

×
 is the identity matrix of size 2 2N N× , 21 ( )( )

s i j N
y y y,= , , , ,y A A  and  

 
1 2[ 1 1 ]N N N N N N N NW I I D Bγ γ× × × ×= − ⊗ + ⊗ − ⊗ ;  (25) 

1
N N×  is the matrix whose entries are all one, [ ]T

ij
D d=  and [ ]

ij
B b=  with 0

i j
b , =  except that 

1i i
b , + = 1i i

b , − = 1 N
b , = 1 1

N
b , = ; the 2 2

N N×  block matrix A B⊗  is defined by the formula 

[ ] [ ]
ij ij

A B a B⊗ = , where [ ]ijA a=  and [ ]
ij

B b= .  The TCNN for the TSP is adjusted to  

 

2

( )

0 1

1

( 1) ( ) (1 ) [ ( ) ] ( ) 2
N

q t

i i i i ij j

j

x t x t y t a W y tμ β ω γ
=

+ = + − − + + ,∑   (26) 

www.intechopen.com



Solving TSP by Transiently Chaotic Neural Networks 

 

129 

where [ ] diag[ ] 2
ij

W W W W= := − / , i=1,…,N2. According to previous discussions, there is a 

Lyapunov function for Eq. (17):  

 

2 2 2 2

2

1

1 1 1 1

1
( ) 2 ( 1) ( )

2

N N N N
t

ij i j i i i

i j i i

V t W y y y y y cγ μ ε
= = = =

, = − − − − − + .∑∑ ∑ ∑y  (27) 

Notice that the Lyapunov function (27) can be compared to a constant shift of the objective 

function (24) when 1c| |< , ε  is sufficiently small and as t is large. 

5. Numerical simulations 

Let us describe the method to suitably choose the parameters in the numerical simulation.  
Due to the deterministic nature for the TCNN (17), parameters are selected such that its 
dynamical behaviors have some stable properties.  Therefore, we take a parameter μ with  

0< μ < 1 for boundedness of iterations for the TCNN. Set ω=0, and choose 0ia hε , , , where 

2max{ 1 }
i

h h i N= : = A, , , 
2

11
{ 2 }

N

i ikk
h W γ

=
= | | + | |∑ , 21i N= A, , , so that the TCNN with 

these parameters is in convergent phase. In convergent phase, any iteration is going to settle 

at a fixed point. Next, we let ω| |  increase from 0 to see if parameters 0( )
i

a hμ ε ω, , , ,  

enter the chaotic regime which has been justified in (Chen & Shih, 2002; 2007).  These 
computations can be assisted by a computer programming.  If the output matrix does not 

tend to a permutation matrix, one can enlarge slightly the parameter 1γ  in Eq. (25). 

In this section, we quote the numerical simulations in (Chen & Shih, 2007) to demonstrate 
the computation performance of using the TCNN (17) to find the optimal route of the TSP.  

We consider the five cities {1 2 3 4 10}, , , ,  with coordinates in Table 1.  These are data from 

the ten-city TSP problem in (Hopfield & Tank, 1985).  The positions of the ten cities and the 
optimal route are presented in Fig. 6. 
 

 

Fig. 6.  Illustration of the locations of 10 cities for the Hopfield-Tank original data.  The best 
way to travel for ten (resp. five) cities is in terms of the solid line (resp. dotted line) 
connection. 
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In our simulation, the parameters for the TCNN (17) are set as 

0 9μ = . ; 0 005β = . ; 0 01ε = . ; 
0 0 65ia = . ;  

0 08ω = − . ; 
1 0 015γ = . , 

2 0 015γ = . ; ( )q t t= .  

Recall that coefficients 1γ  and 2γ  reflect the relative strength of the constraint and the tour 

length energy terms  (23). An optimal route trajectory is demonstrated in Fig. 7.  Our 
simulation indicates that the order of the best route for the TSP is 4 1 10 2 3U U U U .  The 

other best routes include  1 10 2 3 4U U U U  and 4 3 2 10 1U U U U .  Actually, all of 

them represent the same loop.  Three diagrams in Fig. 8 are plotted to show the evolutions 
of constraint part and tour length part in the objective function. 
 

City No. x-axis y-axis 

1 .4 .445 

2 .245 .155 

3 .165 .235 

4 .225 .77 

10 .625 .27 

Table 1.  Coordinates of positions for 5 cities. 

 

Fig. 7. Evolutions of outputs yij in Eq. (17).  The trajectory approaches one, in the subfigures 
with a black point. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Fig. 8. Evolutions of (a) E, (b) the constraint term; (c) the tour-legnth term, in Eq. (23). 

As another observation on the convergent and chaotic phases, we compute the Lyapunov 

exponents for the one-neuron equation: 

 
0( 1) ( ) [ ( ( )) ] (1 )tx t x t g x t a hεμ ω ω β ω+ = + − + , = −  (28) 

 

with parameters set as  

0 9 0 65 0 01 0a hμ ε= . ; = . ; = . ; = .  
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Let us consider 
0[ 0]ω ω∈ ,  with 

0 0 08ω = − . .  If the system possesses a chaotic behavior, its 

maximal Lyapunov exponent is positive along the chaotic trajectory, and vice versa.  The 

maximal Lyapunov exponent means the average of the maximal eigenvalue for linear part 

of the system along the chaotic trajectory in the ergodic sense.  If the maximal Lyapunov 

exponent is negative, the system corresponds to stable phase.  Notably, for a one-neuron 

map, there is only one Lyapunov exponent. The bifurcation diagram of Lyapunov exponent 

for the map (28) with parameters 
0[ 0]ω ω∈ ,  is shown in Fig. (9).  It follows from Fig. (9) 

that there is a bifurcation point near 
0 0 04ω = − . .  In other words, the behavior changes near 

the point, and transforms from chaotic phase to stable phase. However, since our algorithm 

is based on 0(1 )tω β ω= − , we also present the correspondence between iteration number 

t  and parameter ω  in Fig. (10). Similar computations can be applied to the 

multidimensional systems. 

 

 

 

Fig. 9. Bifurcation diagram of Lyapunov exponent for one-dimensional map (28). 
 

 
 

Fig. 10.  Correspondence between iteration number t and parameter ω .  

6. Conclusions 

It has been more than two decades since artificial neural networks were employed to solve 

TSP.  Among the efforts in improving the performance of this computational scheme, 

substantial achievements have been made in incorporating chaos into the system and 

developing mathematical analysis for finding the parameters in the chaotic regime and 

convergent regime.  There are several advantages in employing the piecewise linear 

activation function.  We have observed that the TCNN with piecewise linear activation 

function has better performance than with the logistic activation function in the 
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applications.  In addition, the parameter conditions derived in this framework are much 

simpler than the ones for logistic activation functions. 

There are certainly some further improvements to be developed; for example, in the 

decision of timing to cool down the process from the chaotic phase; observing and 

realization of the rotational symmetry and reversal symmetry in the solution structure, 

as well as conditions for stability of feasible solutions and instability of infeasible 

solutions. 
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