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Tabu Search and Hybrid Genetic Algorithms for 
Quadratic Assignment Problems 

Zvi Drezner 
California State University, Fullerton 

U.S.A. 

1. Introduction 

In this chapter experience with solving quadratic assignment problems is reported. The 
results reported in this chapter are the best results for heuristic solutions of the quadratic 
assignment problem available to date and can serve as bench mark results for future 
researchers who propose new approaches for solving quadratic assignment problems. 
The most effective method to date for solving quadratic assignment problems heuristically 
is the hybrid genetic algorithm. The offspring produced by the genetic algorithms are 
improved by tabu search before considering them for inclusion into the population. Six 
different tabu searches are described and are embedded in a special genetic algorithm 
whose merging process is the most effective for heuristically solving quadratic assignment 
problems. 
The most successful merging process (the crossover operator) used in the genetic algorithm 
is described. This specific merging process exploits the special structure of quadratic 
assignment problems and is especially effective when the distance matrix consists of “real” 
distances rather than random values. 
A short cut suggested by Taillard (1995) is described. This short cut reduces the time 
required for the evaluation of all O(n2) values of the objective function by all pair-wise 
exchanges of facilities from O(n4) to O(n2) (i.e. O(1) per pair exchange) where n is the 
number of facilities. 
Grey pattern problems are quadratic assignment problems with a special structure. For 
these problems a special merging process and a special tabu search are developed (Drezner, 
2006).  
Several improvement schemes for genetic algorithms (or hybrid genetic algorithms) are 
described and discussed. These include: gender specific genetic algorithms, distance based 
approach to selecting parents in genetic algorithms, a distance based rule for removing 
population members, and compounded genetic algorithms. These improvement schemes 
can help researchers who work on other problems as well to improve the performance of 
their genetic or hybrid genetic algorithms. 
The chapter concludes with summary tables of computational experiments with various 
techniques. These include the best known results for 32 “pure” quadratic assignment 
problems and 127 grey pattern quadratic assignment problems. All pure quadratic 
assignment problems have between 36 and 150 facilities. Smaller problems, with a few 

Source: Local Search Techniques: Focus on Tabu Search, Book edited by: Wassim Jaziri, ISBN 978-3-902613-34-9, pp. 278,  
October 2008, I-Tech, Vienna, Austria
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exceptions, were optimally solved and thus not reported. One hundred and twenty six grey 
pattern problems have 256 facilities. One grey pattern problem with 64 facilities and 6 grey 
pattern problems with 256 facilities are optimally solved. 

2. The quadratic assignment problem 

The quadratic assignment problem (QAP) is considered one of the most difficult 
optimization problems to solve optimally. The QAP is a combinatorial optimization 
problem proposed by Koopmans & Beckmann (1957).   
The problem is defined as follows. A set of n possible sites are given and n facilities are to be 
located on these sites, one facility at a site. Let cij be the cost per unit distance between 
facilities i and j and dij be the distance between sites i and j. The cost f to be minimized over 
all possible permutations, calculated for an assignment of facility i to site p(i) for i=1, ... ,n, is: 

 
( ) ( )

1 1

n n

ij p i p j
i j

f c d
= =

=∑∑  (1) 

Optimal algorithms can solve relatively small problems (n≤36). Nug30, Kra30b, Tho30 were 
solved by Anstreicher et al. (2002); Kra30a by Hahn & Krarup (2001); Ste36a by Brixius and 
Anstreicher (2001); Ste36b, Ste36c by Nystrom (1999). Consequently, considerable effort has 
been devoted to constructing heuristic algorithms for its solution. The first heuristic 
algorithm proposed for this problem was CRAFT (Armour & Buffa, 1962) which is a descent 
heuristic. More recent algorithms use metaheuristics such as tabu search (Batiti & Tecchiolli, 
1994; Skorin-Kapov, 1990; Taillard, 1991), simulated annealing (Burkard & Rendl, 1984; 
Wilhelm & Ward, 1987; Connoly, 1990; Misevicius, 2003), simulated jumping (Amin, 1999), 
genetic algorithms (Ahuja et al., 2000; Fleurent & Ferland, 1994; Tate & Smith, 1995; Drezner, 
2003, 2005c), ant colony search (Gambardella et al., 1999), scatter search (Cung et al., 1997), 
or specially designed heuristics (Drezner, 2002; Li et al., 1994). 
For a complete discussion and list of references see Burkard (1990), Cela (1998), Rendl 
(2002), Taillard (1995), and Drezner et al. (2005). 

2.1 Grey pattern problems 

Grey Pattern problems (Taillard, 1995) are a special class of quadratic assignment problems. 
These quadratic assignment problems have a special structure that can be exploited in the 
design of hybrid genetic algorithms. 
The grey pattern problem (Taillard 1995) is based on a rectangle of dimensions n1 by n2. A 
grey pattern of m black points is selected from the n = n1×n2 slots in the rectangle while the 
rest of the slots remain white. This forms a “grey pattern” of density m/n. The objective is to 
have a grey pattern where the black points are distributed as uniformly as possible. This 
objective is achieved by defining a distance between pairs of points according to some rule. 
For more details see Taillard (1995). 
Two grey pattern problems are available at QAPLIB http://www.seas.upenn.edu/qaplib. 
These are called Tai64c and Tai256c. Tai64c is a grey pattern problem in a square of 8 by 8 
slots (n=64) and m=13 black points. Tai256c is a grey pattern problem in a square of 
dimensions 16 by 16 (n=256) and m=92 black points. Taillard and Gambardella (1997) define 
126 grey pattern problems with the same distance matrix as Tai256c for n=256 selecting 
3≤m≤128 black points. 
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The grey pattern quadratic assignment problems can be formulated in a simpler way 
(Taillard, 1995; Drezner, 2006). m slots out of n available slots need to be selected.  dij is the 
distance between slots i and j. Let M of cardinality m be the subset of selected slots. The 

objective function, to be minimized by selection of the best subset M, is ( )
,

ij
i j M

f M d
∈

= ∑ . In 

Drezner (2006) the grey pattern problem is described as a special case of a more general 
problem. Consider n objects such as points in the plane or nodes of a network with a given 
distance between every pair of points. We wish to find a cluster of m points which 
minimizes the total distance between all pairs of points in the cluster. This cluster can be 
interpreted as the “tightest” cluster of m points. 
 Since this quadratic assignment formulation has a special structure, it is easier to solve as 
pointed out by Taillard (1995). Taillard (1995), Misevicius (2003a,b, 2004, 2005), and Drezner 
(2006) used this special formulation rather than the general QAP formulation for its 
solution. 

3. Tabu searches for quadratic assignment problems 

Tabu search procedures were suggested by Glover (1986). For a review of tabu searches the 
reader is referred to Glover & Laguna (1997). The search starts as a steepest descent 
algorithm but continues after the steepest descent algorithm has been terminated. Unlike the 
steepest descent, tabu search may take upward moves in the hope that a sequence of 
upward moves will lead to subsequent downward moves and eventually lead to a better 
solution. The direction of the search is determined by the recent history of moves that are 
“memorized”. Once a move is performed, the reverse move (i.e. moving back to the 
previous combination) is forbidden for some iterations called tabu tenure (hence the name 
tabu which can also be spelled as taboo), thus pushing the search away from previous 
combinations. Imagine a search on a plane with many craters. One of these craters is the 
deepest one, and that one is the desired solution (the global optimum). The steepest descent 
performs only downward moves and may land at a shallow crater (a local optimum) and 
not at the global one. Tabu search attempts to get out of a shallow crater in the hope of 
getting to a better one. Therefore, when the steepest descent algorithm terminates at a 
bottom of a crater, upward moves are taken in tabu search while sliding back into the same 
crater is disallowed with the hope of sliding into deeper craters and eventually reaching the 
global optimum. 
In this section six different tabu searches are presented: the robust tabu (RT) proposed by 
Taillard (1991), the modified robust tabu (MRT) suggested by Drezner & Marcoulides 
(2008), the simple tabu (ST) suggested in Drezner (2003) and improved by Drezner (2008a), 
the concentric tabu (CT) proposed by Drezner (2002), the ring moves (RM) and all moves 
(AM) suggested by Drezner (2005c). 

3.1 Robust Tabu (RT) 

Robust tabu (RT) was introduced by Taillard (1991) and is also described in Taillard (1995). 
The defined tabu list commonly used is set to contain pairs of facility-site (i.e., there are n2 
possible entries in the tabu list). There is a short term and long term tabu memory. 
Short Term Memory: When a facility is removed from a site, the iteration number is 
recorded (meaning that the facility was at that site one iteration earlier). An exchange 
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between two facilities is disallowed (unless the objective function is better than the best one 
found so far) if at least one of the facilities moves back to a site it was removed from in the 
last u iterations. The tabu tenure u is randomly generated in [0.9n, 1.1n] every iteration. 
Long Term Memory: Every iteration after t iterations (we use t=3n2): if there is an exchange 

between two facilities such that each facility moves to a site it was never there in the last t 

iterations, such an exchange preempts any other exchange and is executed. The long term 

memory serves as a diversification of the tabu search. 

3.2 Modified Robust Tabu (MRT) 

The modification suggested by Drezner & Marcoulides (2008) is replacing the range of [0.9n, 

1.1n] for the tabu tenure in the short term memory with the expanded range of [0.2n, 1.8n]. 

This modification yielded statistically proven superior results in computational 

experiments. 

3.3 Simple Tabu (ST) 

The simple tabu was suggested in Drezner (2003) and was modified to a wide range for 

generating the tabu tenure in Drezner (2008a).  

1.  The terminal solution of the descent heuristic is defined as the current solution and the 
best-known solution. The number of iterations of the descent heuristic is h. Empty the 
tabu list. 

2.  The following is repeated max{2h, 50} times: 

• All pair-wise exchanges of facilities in the current solution are checked. 

• If a solution better than the best-known solution is found, the best improving exchange 
is performed, the tabu list is emptied, and the next iteration starts. 

• The tabu tenure TT is randomly generated in [0.05n, 0.45n] and the tabu list consists of 
the facilities added to it in the last TT iterations. 

• If no exchanged solution is better than the best-known solution, the best exchange 
(whether improving or not) between two facilities, both not in the tabu list, is 
performed. 

• The two exchanged facilities are added to the tabu list.  

3.4 Concentric Tabu (CT) 

Concentric tabu search was introduced in Drezner (2002). One iteration of the concentric 

tabu search is very similar to the variable neighborhood search (Mladenovic & Hansen, 

1997; Hansen & Mladenovic, 2001). The search is performed in “rings” around the center 

solution, proceeding from one ring to a larger one, and so on, until a pre-specified radius is 

obtained. A starting solution is selected as the center solution. Every feasible solution of the 

quadratic assignment problem is a permutation p of the center solution. A “distance” ∆p is 

defined for each solution p (permutation of the center solution). The distance ∆p is the 

number of facilities in p that are not in their center solution site. Note that ∆p≤n. The tabu list 

consists of solutions that are not farther than ∆p from the center solution, thus forcing the 

search away from the center solution. 

For each ∆p three solutions are recorded: s0, s1, and s2. The solution s0 is the best encountered 

solution with distance ∆p. Similarly, s1 and s2 are the best encountered solutions with 

distances ∆p+1, and ∆p+2, respectively. The depth of the search is set to d≤n. 
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One Iteration of CT 
1. Set ∆p=0. The starting solution s0 is the center solution and the best found solution. 

2. All pair exchanges of s0 are evaluated. 

3. If the exchanged solution is better than the best found solution, the best found solution 

is updated and the rest of the exchanges are evaluated. 

4. If the distance of an exchanged solution is ∆p or lower, it is in the tabu list. It is ignored 

and the rest of the exchanges are evaluated. 

5. If its distance is ∆p+1 or ∆p+2, s1 or s2 are updated if necessary. 

6. If a new best found solution is found by scanning all the exchanges of s0, the starting 

(center) solution is set to the new best found solution. Go to Step 1. 

7. Otherwise, set s0=s1, s1=s2, and s2 is emptied. Set ∆p=∆p+1. 

8. If ∆p=d+1 stop the iteration. Otherwise, go to Step 2. 

3.5 Two extended concentric tabu searches 
Two variants of the concentric tabu search are suggested in Drezner (2005c): ring moves 
(RM) and all moves (AM). These extended concentric tabu searches are based on the 
following observations. 
Consider all possible changes in ∆p (∆∆p) when facilities f1 and f2 are exchanged. The nine 
possible changes are depicted in Table 1. “Back” means that the facility is moved back to its 
center site (decreasing ∆p by 1); “Out” means that a facility is removed from its center site 
(increasing ∆p by 1), and NC (No Change) means that the facility was neither in its center 
site nor moved into its center site so ∆p is not changed. The combination of one “Back” and 
one “Out” is impossible. If facility f1 is moved out of its center site, facility f2 could not be 
moved into its center site because this site is the center site of facility f1. 
 

f1 f2 ∆∆p 

Back Back -2 

Out Back * 

NC Back -1 

Back Out * 

Out Out +2 

NC Out +1 

Back NC -1 

Out NC +1 

NC NC 0 

                     * Impossible 

Table 1. The nine possible moves 

In Table 2 we summarize the possibilities in a different way. 
 

∆∆p Move 

-2 Both Back 

-1 One Back, the other NC 

0 Both NC 

+1 One out, the other NC 

+2 Both Out 
Table 2. Summary of moves 
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In the original concentric tabu (CT) only +1 and +2 moves are considered (unless a solution 
better than the center solution is found). Moves of -2, -1, and 0 are in the tabu list. This 
means that a facility that was taken out from its center location, cannot be moved back into 
its center location throughout the iteration because “Back” moves are not considered 
(except, of course, when a better best known solution is found). Also, every move must 
include a facility taken out of its center location. These restrictions are a bit “harsh”. Two 
possible modifications to the concentric tabu are suggested. These modifications reduce the 
tabu list and yet guarantee that no cycling is possible. 

3.6 Ring Moves (RM) 

In the RM algorithm, we consider also moves “inside the ring”. A change ∆∆p =0 means that 
the exchanged facilities did not move in or out of their center location. The solution 
following the exchange has the same ∆p (is in the same ring). 
One Iteration of RM 
1. Set ∆p=0. The starting solution s0 is the center solution and the best found solution. 

2. All pair exchanges of s0 are evaluated. 

3. If the exchanged solution is better than the best found solution, the best found solution 

is updated and the rest of the exchanges are evaluated. 

4. If the distance of an exchanged solution is lower than ∆p, it is in the tabu list. It is 

ignored and the rest of the exchanges are evaluated. 

5. If its distance is ∆p, ∆p+1 or ∆p+2, s0, s1 or s2 are updated if necessary. Note that the 

original s0 is still used for the rest of the pair exchanges. 

6. If a new best found solution is found by scanning all the exchanges of s0, the starting 

(center) solution is set to the new best found solution. Go to Step 1. 

7. Otherwise, 

•  If s0 has changed, go to Step 2. 

•  If s0 has not changed, set s0=s1, s1=s2 and s2 is emptied. Set ∆p=∆p+1. 

•  If ∆p=d+1 stop the iteration. Otherwise, go to Step 2.      
The algorithm allows for exchanges between two facilities, both with “No Change” that 
improve the present value of the objective function. Note that when a facility was taken out 
from its center location, it cannot be moved back into its center location throughout the 
iteration. Therefore, the ring moves do not rectify this issue encountered in concentric tabu. 

3.7 All Moves (AM) 

In the AM algorithm the tabu list is eliminated and replaced by a different approach. A list 
of the best encountered solution for each 0≤∆p≤n is maintained (at the beginning only the 
center solution is in the list). Members in the list are tested to find whether their neighbors 
are better than other members in the list or themselves. A list member whose neighbors 
were not tested yet, is flagged. Once none of the members in the list are flagged, the iteration 
terminates. This way the value of ∆p can change up and down while in CT it can only 
increase and in RM it can increase or stay the same. 
One Iteration of AM 
1. Set ∆p=0. The best encountered solution for each 2≤∆p≤n is emptied and all flags 

removed. The starting solution is the best encountered for ∆p=0 and is flagged. 

2. The flagged solution, if there is one, with the lowest ∆p is selected for pair exchanges. 
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3. If there are no flagged solutions left, the iteration terminates with the center solution. 

4. All pair exchanges of the selected solution are evaluated and its flag removed. 

5. If the exchanged solution is better than the best found solution, the best found solution 

is updated and the rest of the exchanges are evaluated. 

6. If an exchanged solution is better than the best encountered solution for the appropriate 

∆p, it replaces it and flagged. (If the improvement is for the same ∆p, the original 

selected solution is kept for the remaining pair exchanges). 

7. If a new best found solution is found by scanning all the exchanges of the selected 

solution, the starting (center) solution is set to the new best found solution. Go to Step 1. 

8. Otherwise, go to Step 2.     

This variant has no tabu list. It allows moves to a ring with a smaller ∆p, if they improve the 
best encountered value of the objective function for that ∆p. This variant may allow a facility 
that was removed from its center location to move back to it. 

3.8 The improvement procedure 

Robust Tabu (RT), the modified robust tabu (MRT) and the simple tabu (ST) constitute the 
improvement procedure. One iteration of concentric tabu (CT), ring moves (RM), or all 
moves (AM) is repeated L times called “levels” in the post merging improvement procedure 
of the hybrid genetic algorithm. In Drezner (2003) concentric tabu with L=3 levels (CT3) was 
used. 
The Improvement Procedure for CT, RM, and AM 
1. The result of the merging procedure is the center solution. It is also the best found 

solution. 

2. Set a counter c=0. 

3. Select d randomly in [n-4, n-2] (other ranges for d may be used). Perform one iteration of 

CT, RM, or AM on the center solution. 

4. If the iteration improved the best found solution go to Step 2. 

5. Otherwise, advance the counter c=c+1, and 

• If c≤L and is odd use the best solution with depth d as the new center solution and 
go to Step 3. 

• If c≤L and is even use the best solution found throughout the scan (the previous 
center solution is not considered) as the new center solution and go to Step 3. 

• If c=L+1 stop and report the best found solution. 
In order to reduce run time, a shorter depth d randomly generated in [0.3n, 0.9n] defined as 
a “short” search was suggested in Drezner (2005a). It produced improved results when the 
number of levels was relatively small but was inferior for larger number of levels reported 
in this chapter. 

3.9 Selecting among equal values 

In many heuristic optimization algorithms (such as tabu search), each iteration the best 
“move" to another solution to be employed in the next iteration is selected. It is very 
common that there are several moves with exactly the same value for the objective function. 
Which of the tying moves should be selected? If we select a move only if it is better than the 
best move found so far, the first tying move will always be selected. If we select a move as 
long as it is not worse than the best move found so far, the last one will be selected. This 
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may bias the search (for example, if the moves are scanned by the order of the facilities) 
giving a preference to either early scanned moves or late scanned moves. One possible 
approach is to evaluate the possible moves in random order. Another way is to save the 
tying moves and once the process is completed, when we know how many tying moves 
there are, a tying move is selected at random. Both of these approaches are cumbersome and 
require extra code and memory space. The following approach (Drezner, 2008b) is a simple 
approach which is very easy to implement. 
When the moves are evaluated et seriatim, we do not know how many tying moves there 
will eventually be. The strategy is to select tying move number K with a probability of 1/K. 
The first move which is better than the best move found so far is selected with probability 1. 
The second tying move is selected with probability of 1/2, the third with probability of 1/3 
and so on. This rule is obvious for one or two tying moves (if there are 2 tying moves, each 
is selected with a probability of 50%). It is proven in Drezner (2008b) by mathematical 
induction that if eventually there are K tying moves, each of them is selected with a 
probability of 1/K. 

3.10 A short cut for reducing the run time in tabu searches 

Taillard (1995) suggested an effective short cut for reducing the run time necessary for 
evaluating the values of the objective function for all pair exchanges. There are n(n-1)/2 
possible pair exchanges and evaluating each value of the objective function requires O(n2) 
time leading to a total of O(n4) time. Taillard (1995) suggested the following procedure that 
calculates all these values of the objective functions in O(n2) time. Run times of the various 
tabu searches and the hybrid genetic algorithms were reduced by a substantial factor using 
this technique. This short cut can be applied for the calculations of pair exchanges in all six 
tabu searches described above. 
Since we experimented only with symmetric problems, we present this short cut for 
symmetric problems with zero diagonal (i.e., the cost between a facility and itself, and the 
distance between the same two locations is zero). It can be easily generalized to non 
symmetric problems. 
Let ∆frs be the change in the cost f, calculated by Equation (1), by exchanging the sites of 
facilities r and s. This is a concept similar to the derivative of f. There are n(n−1)/2 such 
values. It can be easily verified by examining Equation (1) that: 
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Calculating ∆frs by using Equation (2) requires only O(n) time rather than O(n2) time 
required to calculate f by Equation (1). Taillard (1995) points to yet a faster formula for 
calculating ∆frs. 
Let ∆uvfrs be the change in the value of the objective function between the exchanged 
permutation by uv, and an additional exchanged pair rs when rs and uv are mutually 
exclusive. Note that ∆uvfrs=∆rsfuv. This is a concept similar to the second derivative of f. This 
change in the value of the objective function can be calculated in O(1) time (starting from the 
second iteration) if the pairs rs and uv are mutually exclusive. The formula is based on ∆fuv 
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(the change in the value of the objective function from the previous permutation by 
exchanging the pair uv). Therefore, one needs to keep all the values of ∆fij for all i, j. Saving 
these ∆fij values requires O(n2) time for each evaluation of all pair exchanges of s0. 
Since 

}( ) ( ) ( ) ( )
1

2
n

uv iu iv p i p u p i p v
i

f c c d d
=

⎧ ⎡ ⎤⎡ ⎤⎨⎣ ⎦ ⎣ ⎦⎩
Δ = − −∑  

it can be easily verified that: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2uv rs uv su rv sv ru p s p u p r p v p s p v p r p u
f f c c c c d d d d⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦Δ = Δ + + − − + − −  (3) 

which is calculated in O(1). Note that only 2n − 3 pairs are not mutually exclusive and 

formula (2) can be used in these cases to evaluate uv rsfΔ . Therefore, evaluating the change 

in the value of the objective function for all n(n−1)/2 possible pair exchanges (which is 
required for one step of each of the tabu search algorithms described above)  requires O(n2) 
time rather than O(n4) time by calculating each f directly or O(n3) time by using only 
reduction scheme (2). 

4. Hybrid genetic algorithms 

Genetic algorithms (Holland, 1975; Goldberg, 1989) simulate evolution and survival of the 
fittest. A population (made of individual permutations) evolves over time (generations). 
Pairs of population members (permutations) mate and produce an offspring (two 
permutations are merged to produce a new permutation). Good offspring are kept in the 
population whereas unfit population members are discarded (the survival of the fittest). The 
population evolves and at the end of the process, the population usually consists of fairly 
good solutions (without a guarantee that the optimal solution is found).  Hybrid genetic 
algorithms, sometimes called memetic algorithms (Moscato, 2002), incorporate some 
improvement heuristic on every offspring before considering its inclusion into the 
population. For a review see Drezner & Drezner (2005). 
The following is a short description of the specific hybrid genetic algorithm used for the 
computational experiments.  
1. A starting population of size P is randomly selected, and the improvement procedure is 

applied on each starting population member. 

2. Steps 3-6 are repeated for a pre-specified number of G generations. 

3. Two population members are randomly selected and merged by a crossover operator to 

produce an offspring. 

4. The improvement procedure is applied on the merged solution, possibly improving it. 

5. If the value of the objective function of the offspring is not better than the value of the 

objective function of the worst population member, the offspring is ignored and the 

process of the next generation starts. 

6. Otherwise, 

• If the offspring is identical to an existing population member, it is ignored and the 
process of the next generation starts. 
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• If the offspring is different from all population members, the offspring replaces a 
population member selected according to one of the rules described in Section 5.4. 
In most variants the worst population member is removed. 

There are many genetic algorithms suggested for the solution of the quadratic assignment 
problem (Ahuja et al., 2000; Fleurent & Ferland, 1994; Tate & Smith, 1995; Drezner, 2003, 
2005c). Drezner (2003) suggested a merging process that proved to be most effective for the 
solution of quadratic assignment problems. There are two merging processes suggested in 
Drezner (2003): the cohesive merging process and the scrambled merging process. The 
cohesive merging process was slightly better than the scrambled merging process and was 
used in subsequent algorithms. We present here the cohesive merging procedure. 

4.1 The cohesive merging procedure 

The most crucial part of a successful genetic algorithm is the merging process of two parents 
to produce an offspring. For the process to be effective an offspring should be significantly 
better (in terms of its value of the objective function) than a randomly generated solution. 
Otherwise, we do not gain by the merging process. It is true that such an algorithm may find 
a good solution, but it does not have a significant advantage over repeating the 
improvement process from randomly generated solutions the same number of times. 
Therefore, it is essential to find a merging rule that exploits the structure of the problem and 
is likely to use “good features” of the parents when creating an offspring. 
The cohesive merging process for the solution of the quadratic assignment problem is 
similar to the successful merging procedure used in Drezner & Salhi (2002) for solving a 
network design problem. Drezner & Wesolowsky (1997) suggested the problem of 
designing a network so that each link can be either a two way link or a one-way link in one 
direction. The model was extended in Drezner & Wesolowsky (2003) to include the option of 
eliminating links. The problem is to determine the design of each link to minimize an 
objective function. A hybrid genetic algorithm is proposed in Drezner & Salhi (2002) for the 
solution of the problem. Suppose that two parents are selected and an offspring is designed. 
The network is divided into two cohesive parts by selecting a pivot node, assigning a count 
of 1 to all links directly connected to it, a count of 2 to all links connected to a link of count 1, 
and so on. Each link gets a count. The median of these counts for all links is calculated. The 
design of links with a count below the median is taken from the first parent and the design 
of links above the median is taken from the second parent. The design of links that have a 
count equal to the median is randomly selected from one of the parents. This way each part 
of a parent is a connected part of the network. Drezner & Salhi (2002) suggest considering 
the n possible partitions (one for each pivot node) and selecting the best offspring of these n 
partitions for an improvement procedure and possible inclusion in the population. For the 
quadratic assignment problem a similar merging process is suggested (Drezner, 2003). 
In the cohesive merging process we attempt to divide the sites into two cohesive parts 
where each has all its facilities from the same parent. A pair of parents is randomly selected. 
The parent with the better value of the objective function is selected as the first parent. If the 
two parents tie in the value of the objective function, one of them is arbitrarily selected as 
the first parent. The following is executed for every pivot site. 
1. The median distance from the pivot site to all sites is calculated (this is done in the 

preamble and not at every iteration). 
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2. A site that is closer than the median to the pivot site is assigned the facility from the 

first parent. 

3. All other sites are assigned the facility from the second parent. 

4. It is likely that some facilities are assigned twice and some are not assigned at all. 

Therefore, 

• Create a list of unassigned facilities. 

• Find all facilities that are assigned twice, and replace the site that is farther than the 
median (i.e., from the second parent) with a facility from the list. 

• Remove the selected facility from the list. 
5. This completes the merge of the two selected parents for one pivot site. 
The merged solution with the lowest value of the objective function is the offspring selected 
for the improvement algorithm. 

4.2 Merging processes for the grey pattern problems 
Grey pattern problems (Taillard, 1995; Drezner, 2006) are special cases of the quadratic 
assignment problem and special merging processes designed for it are warranted. We 
present the descent merging process and its extension to a tabu merging process (Drezner, 
2006). These merging processes do not resemble neither the standard crossover operator nor 
the hybrid genetic algorithm approach. They combine elements of both. The tabu merging 
process provided the best results. 

4.3 The descent merging process for grey pattern problems 
The descent merging process is similar to the merging process suggested in Berman and 
Drezner (2007). 
1. The two parents are M1 and M2, each represented by a set of m slots. 

2. The intersection between M1 and M2 is: MI =M1∩M2. The cardinality of the intersection 

is mI. 

3. The union of M1 and M2 is: MU =M1∪M2. The cardinality of MU is 2m−mI. 

4. K different slots not in MU are randomly selected to form MK (if 2m−mI+K>n, only 

n−2m+mI points are selected). 

5. All the points in MU which are not in MI define ME. The cardinality of ME is 2m− 2mI. 

6. Define MD =ME∪MK. The cardinality of MD is mD = min{n−mI, 2m−2mI+K}. 

7. A starting offspring M′ of cardinality m is created by randomly adding to MI m−mI 

points from MD. 

8. A restricted descent process is performed on M′ by adding or removing only points in 

MD and keeping the points in MI in the selected set. 

9. The result of the restricted descent process is the offspring. 

4.4 The tabu merging process 
We also experimented with a tabu extension of the restricted descent search. Let h be the 
number of iterations performed by the restricted descent algorithm. A restricted tabu search 
for additional 5h iterations is performed. The value K=3 was used in the descent algorithm 
and the tabu search. The tabu tenure was randomly generated in the range [0.02(n-m), 0.2(n-
m)]. We need to select m−mI slots out of mD slots. If mD−(m−mI) ≤ 5, the tabu search is not 
performed and the result of the descent algorithm is applied. For complete details see 
Drezner (2006). 
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5. Improvements of genetic algorithms 

The improvements described below are described in Drezner & Drezner (2005). The 
compounded genetic algorithm is proposed in Drezner (2005a), the gender specific genetic 
algorithm is proposed in Drezner & Drezner (2006), the distance based parent selection is 
proposed in Drezner & Marcoulides (2003), and the modification of the removal rule of 
population members is proposed in Drezner (2005b). The reader is referred to these papers 
for a complete description of the improvements. There are many other improvements 
suggested by many authors. For example, mutations (Spears, 2000), invasions (Goldberg, 
1989), parallel genetic algorithms (Cantu-Paz, 1998), among others. 

5.1 Compounded genetic algorithms 

In the compounded genetic algorithm (Drezner, 2005a) genetic algorithms are applied in 
two phases, generating the starting population for phase 2 by repeating genetic algorithms 
in phase 1. This mimics evolving parallel populations at several isolated locations. The best 
species in each location are moved to a common location thus creating a “high quality” 
starting population. Suppose that a population of P members is applied in phase 2. Genetic 
algorithms are run K times in phase 1 using K randomly generated starting populations (it is 
convenient but not necessary to have integer P/K). The population size of the phase 1 
genetic algorithm should have at least P/K members. The best P/K population members of 
each run are compiled to construct the starting population for phase 2. Phase 2 genetic 
algorithm is run once. It is recommended that a “quick” genetic algorithm is used for phase 
1 and an “effective” and possibly “slow” genetic algorithm is used for phase 2. 
For example, if a population of P=100 members is required for phase 2, phase 1 can be run 
K=20 times (each with a population of at least 5 members), the best P/K=5 population 
members are selected from each run and compiled to create a starting population for phase 
2.  
Note that the best solution found in phase 1 by any of the runs can only be improved by the 
compounded genetic algorithm because the best solution found during phase 1 is a member 
of the starting population of phase 2 and can only be removed from the population by better 
solutions. 

5.2 Gender specific genetic algorithms 

In nature, most advanced species require two genders in order to mate and reproduce. The 

gender modification attempts to mimic this natural process. One can argue that the division 

into two genders was selected over time as the preferred way for producing offspring and is 

therefore superior to other possible mating schemes. Epelman et al. (2005) show that having 

only two genders maximizes long run viability. Their finding is not directly related to 

genetic algorithms. However, it supports our experience that it is true for genetic algorithms 

as well. In gender-specific genetic algorithms the diversity of the population is better 

maintained with no detrimental effects on run time. 

It is easy to “convert” a given genetic algorithm to a gender-specific one. Three minor 
modifications are required (Drezner & Drezner, 2006). 
1. When the starting population is generated, half the population members are designated 

as males and half are designated as females. The assignment of gender is done at 

random and no characteristic of the population member is used for such determination. 
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2. When selecting two parents, the first parent is randomly selected while the second is 

randomly selected from the pool of the opposite gender. 

3. When an offspring is generated, it is randomly assigned a gender with a 50% 

probability of being assigned a male gender and 50% probability a female. Again, no 

characteristic of the offspring should be used to determine its gender. 

No extra effort is required for the implementation of the gender-specific modification. A 

vector of genders for population members needs to be maintained, along with the gender 

determined for each offspring. In Drezner & Drezner (2006) it has been statistically shown 

that the gender-specific algorithm significantly improves the solutions on four sets of 

optimization problems. 

Note that it is important that an offspring's gender is randomly determined. An early 

attempt (Allenson, 1992) for such a modification failed because it was suggested that the 

offspring is assigned the gender of the discarded population member. The rationale for this 

rule is to keep the population half males and half females. However, such a rule is 

inconsistent with nature. The concern is that if the population becomes all males or all 

females no further evolution is possible. The evolutionary process must be terminated 

prematurely if such a population structure evolves. In Drezner & Drezner (2006) it is shown 

that for a sufficiently large population (50 or more members), the probability that all 

population members will have the same gender is extremely low and such an event can be 

ignored. 

5.3 Distance based parent selection 

All human cultures prohibit marriage between siblings or between parents and children 

(genetically similar pairs). In societies where marriages are arranged, similarity in socio-

economic standing, but not genetic make-up, is prevalent. Some plants avoid pollination 

from genetically similar or identical individuals because self-pollination or pollination by 

‘siblings’ is typically unsuccessful, a phenomenon referred to in biology as “inbreeding 

depression”. Mating between close relatives often results in less fit offspring. Another, less 

well known biological fact, is that mating between genetically distant members of the same 

species can lead to a decline in offspring fitness, a condition known as “outbreeding 

depression” or “hybrid breakdown”. Some species avoid pollination from individuals that 

are geographically distant or genetically dissimilar, as offspring may be less suited to the 

local conditions and may be poorer competitors locally.  Edmands (1999, 2002) observed that 

parental divergence (parents who are genetically distant) leads to less fit offspring. 

In genetic algorithms, if dissimilar individuals mate, the offspring is more genetically 

diverse which is critical in maintaining a population’s genetic diversity. However, parents 

who are too dissimilar produce less fit offspring. Using the distance criterion for parent 

selection Drezner & Marcoulides (2003) crafted a rule attempting to find dissimilar but not 

too distant parents. A parameter K=1,2,3,…. is used. The first parent is randomly selected 

and K candidates for mating are then randomly selected.  The distance (number of variables 

with different values, the Hamming distance metric) between the first parent and all 

candidate mates is calculated. The farthest mate among these K candidates is selected as the 

second parent. Note that K=1 is the “standard” parent selection. Drezner & Marcoulides 

(2003) found that the efficiency of the modification for a set of test problems peaks for K=2, 
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3. Selecting the farthest population member as a mate does not work well. Two dissimilar 

parents may produce an offspring which is not improved compared with a randomly 

generated solution. It was also found that run time increases with K which further reduces 

the appeal of larger values of K. 

5.4 Removal of population members 

In most standard genetic algorithms, when an offspring is generated, it is compared with 

the worst population member and if the offspring is better than the worst population 

member, it replaces it. Some genetic algorithms employ a rule according to which if the 

offspring is identical to an existing population member it is not considered for inclusion in 

the population. This precludes the possibility of having two identical population members. 

Drezner (2005b) suggested a different rule for removal of population members. Two rules 

for removal of a population member, once a better offspring (who is not identical to an 

existing population member) is found, are used. Rule 1 is the standard approach and Rule 2 

is a new one. 

Rule  1:  Remove the worst population member. 
Rule 2: Hamming distances between all pairs of population members are calculated. 

Suppose that the shortest distance among all pairs of population members is d. All 
existing population members who are at distance d from another population 
member form a subset. This subset must have at least two members (at least one 
pair of population members are at distance d from one another). Remove the worst 
population member in this subset. 

In the experiments performed in Drezner (2005b) it was found that Rule 2 is not necessarily 

better than Rule 1. The suggested rule is to select Rule 2 with probability p, and to select 

Rule 1 otherwise. Note that p=0 is the standard rule (Rule 1), and p=1 is Rule 2. The mix 

between the two rules by selecting 0<p<1, seems to work well. 

6. Computational results 

All the results reported in this chapter are based on programs coded in Fortran, compiled by 

Intel 9.0  Fortran compiler and ran on a 2.8GHz Pentium IV desktop computer with 256MB 

of RAM. 

6.1 Results for the first set of problems 

In Table 3 we report the results obtained in Drezner (2008a) for 18 problems available in the 

QAPLIB. These problems are: Ste36a, Ste36c (Steinberg, 1961), Tho40 (Thonemann & Bolte, 

1994), Sko49 (Skorin-Kapov, 1990), Wil50 (Wilhelm & Ward, 1987), Sko56, Sko64, Sko72, 

Sko81, Sko90, Sko100a-f (Skorin-Kapov, 1990), Wil100 (Wilhelm & Ward, 1987), and  Tho150 

(Thonemann & Bolte, 1994). 

Each problem was solved twenty times. The results for the first 17 problems are by the 

hybrid genetic algorithm using the modified robust tabu search with 60 levels (MRT60). The 

results for the last problem (Tho150) are by a simple tabu hybrid genetic algorithm (Drezner, 

2008a) with 100 levels. When MRT60 was applied to Tho150, the best known solution was 

found 6 times out of 20 runs with the average solution of 0.002% over the best known 

solution requiring a run time of 1223.57 minutes. 
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# Problem n 
Best 

Known 
(1) (2) 

Time 
(min.) 

1 Ste36a 36 9,526 20 0.000% 1.55 

2 Ste36c 36 8,239.11 20 0.000% 1.55 

3 Tho40 40 240,516 20 0.000% 2.12 

4 Sko49 49 23,386 20 0.000% 4.27 

5 Wil50 50 48,816 20 0.000% 4.55 

6 Sko56 56 34,458 20 0.000% 7.15 

7 Sko64 64 48,498 20 0.000% 12.41 

8 Sko72 72 66,256 20 0.000% 19.85 

9 Sko81 81 90,998 20 0.000% 31.94 

10 Sko90 90 115,534 20 0.000% 48.46 

11 Sko100a 100 152,002 20 0.000% 73.57 

12 Sko100b 100 153,890 20 0.000% 73.47 

13 Sko100c 100 147,862 20 0.000% 73.46 

14 Sko100d 100 149,576 20 0.000% 73.50 

15 Sko100e 100 149,150 20 0.000% 73.47 

16 Sko100f 100 149,036 18 0.001% 73.48 

17 Wil100 100 273,038 20 0.000% 73.57 

18 Tho150 150 8,133,398 17 0.000% 1949.05 

(1) Number of times (out of 20 runs) that best known solution found 
(2) Percent of average solution above best known solution 

Table 3. Results for first set of problems 

6.2 Results for de Carvalho and Rahmann problems 

Recently de Carvalho & Rahmann (2006) introduced a new class of quadratic assignment 

problems that turn out to be extremely difficult to solve. There are 14 problems in this set. 

Seven problems called border length minimization and seven problems called conflict index 

minimization. The costs of the seven conflict minimization are not symmetric but the 

distances are and the diagonal elements are zeroes. In order to solve these problems by our 

symmetric program, the costs are redefined as ' '

ij ji ij ji
c c c c= = + . All these 14 problems were 

solved by GRASP (Oliveira Pardalos & Resende, 2004) reported in de Carvalho & Rahmann 

(2006), GATS (genetic algorithm and tabu search) solved by the method in Rodriguez et al., 

(2004), EDA (estimation of distribution algorithms) reported in Pelikan et al. (2007), and 

Drezner & Marcoulides (2008). All these researchers report that these problems are 

extremely difficult to solve among the benchmark problems available on QAPLIB. Drezner 

& Marcoulides (2008) obtained the best results by applying the modified robust tabu search. 

There are two parameters that determine the total run time required by the hybrid genetic 

algorithm: the number of generations and the depth of the tabu search applied in each 

generation. The run time of the algorithm is proportional to each of these parameters and 

thus proportional to their product. The “standard" number of generations (Drezner, 2003) is 

max{20n, 1000}  thus we used G×max{20n, 1000} generations. The depth of the tabu search 

(the number of iterations in the tabu search) is D×n. G and D are parameters. Various values 

of G and D such that G×D=120 were tested to determine the trade-off between them. In 
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Table 4 the best known results for this set of problems are reported along with average run 

times reported in Drezner and Marcoulides (2008). Twelve of these results are better than 

the best results in all previous reports. 
 

Border Length 
Minimization 

Conflict Index 
Minimization 

n 
Best 

Known 
Time 
(min.) 

Best 
Known 

Time 
(min.) 

36 3,296 1.89 168,611,971 1.89 

49 4,548 4.92 236,355,034 4.92 

64 5,988 13.92 325,671,035 13.91 

81 7,536 37.98 427,447,820 38.14 

100 9,272 95.28 523,146,366 95.53 

121 11,412 235.61 653,416,978 235.29 

144 13,472 524.04 795,009,899 525.57 

Table 4. de Carvalho and Rahmann problems 

6.3 Results for grey pattern problems 

The best known values of the 126 grey pattern problems are reported in Table 5. The original 

best known values are reported in Taillard and Gambardella (1997). Misevicius (2003a,b, 

2004, 2005) improved some best known values. Eight additional improved best known 

values are reported in Drezner (2006) by using the hybrid genetic algorithm with the tabu 

merging process. Drezner (2006) also found all previously best known values. Average run 

time was 3.25 minutes per problem. In Drezner (2006) it was proven that the solution of 

1,855,928 for the Tai64c problem is optimal and the six solutions to Tai256c with m=3-8 

reported in Table 5 are also optimal. 

7. Conclusions 

In this chapter we report the best known results for 159 quadratic assignment problems. 

Thirty two of these problems are “pure” quadratic assignment problems and 127 of them are 

grey pattern problems which are a specific type of quadratic assignment problems. These 

results were obtained by hybrid genetic algorithms using tabu search as its improvement 

procedure. The genetic algorithm and six variants of tabu search are described and 

implemented for obtaining these best known solutions. A short cut for calculating the 

change in the value of the objective function by exchanging pairs of facilities, and an 

effective merging procedure for genetic or hybrid genetic algorithms are described. Special 

hybrid genetic algorithms that exploit the special structure of grey pattern problems are 

designed for solving these problems. 

We also describe four improvements to genetic or hybrid genetic algorithms, and an easy 

way to randomly select a solution among equally valued options. We also observe that 

increasing the range from which the tabu tenure is randomly selected is also beneficial. All 

these improvements can be used in designing tabu search, genetic or hybrid genetic 

algorithms, for heuristically solving any optimization problem.  
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m BK m BK m BK m BK 

3 7,810 35 4,890,132 67 21,439,396 99 52,660,116 

4 15,620 36 5,222,296 68 22,234,020 100 53,838,088 

5 38,072 37 5,565,236 69 23,049,732 101 55,014,262 

6 63,508 38 5,909,202 70 23,852,796 102 56,202,826 

7 97,178 39 6,262,248 71 24,693,608 103 57,417,112 

8 131,240 40 6,613,472 72 25,529,984 104 58,625,240 

9 183,744 41 7,002,794 73 26,375,828 105 59,854,744 

10 242,266 42 7,390,586 74 27,235,240 106 61,084,902 

11 304,722 43 7,794,422 75 28,114,952 107 62,324,634 

12 368,952 44 8,217,264 76 29,000,908 108 63,582,416 

13 457,504 45 8,674,910 77 29,894,452 109 64,851,966 

14 547,522 46 9,129,192 78 30,797,954 110 66,120,434 

15 644,036 47 9,575,736 79 31,702,182 111 67,392,724 

16 742,480 48 10,016,256 80 32,593,088 112 68,666,416 

17 878,888 49 10,518,838 81 33,544,628 113 69,984,758 

18 1,012,990 50 11,017,342 82 34,492,592 114 71,304,194 

19 1,157,992 51 11,516,840 83 35,443,938 115 72,630,764 

20 1,305,744 52 12,018,388 84 36,395,172 116 73,962,220 

21 1,466,210 53 12,558,226 85 37,378,800 117 75,307,424 

22 1,637,794 54 13,096,646 86 38,376,438 118 76,657,014 

23 1,820,052 55 13,661,614 87 39,389,054 119 78,015,914 

24 2,010,846 56 14,229,492 88 40,416,536 120 79,375,832 

25 2,215,714 57 14,793,682 89 41,512,742 121 80,756,852 

26 2,426,298 58 15,363,628 90 42,597,626 122 82,138,768 

27 2,645,436 59 15,981,086 91 43,676,474 123 83,528,554 

28 2,871,704 60 16,575,644 92 44,759,294 124 84,920,540 

29 3,122,510 61 17,194,812 93 45,870,244 125 86,327,812 

30 3,373,854 62 17,822,806 94 46,975,856 126 87,736,646 

31 3,646,344 63 18,435,790 95 48,081,112 127 89,150,166 

32 3,899,744 64 19,050,432 96 49,182,368 128 90,565,248 

33 4,230,950 65 19,848,790 97 50,344,050   

34 4,560,162 66 20,648,754 98 51,486,642   

Table 5: Best known values for grey pattern problems 
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