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1. Introduction 

In this chapter, we consider vehicle routing problems (VRPs) where the demand of 

customers varies. We have proposed a problem with two periods of different demand 

(Murata & Itai, 2005). In each period, we treat the VRPs as multi-objective optimization 

problems (MOPs). In MOPs, we can handle several objectives such as minimizing total cost 

for delivery, minimizing maximum cost, minimizing the number of vehicles, minimizing 

total delay to the date of delivery and so on. Although a set of non-dominated solutions can 

be searched independently in each period, NDP or HDP, drivers of vehicles prefer to have 

similar routes in the both periods in order to reduce their fatigue to drive on a different 

route. We propose a local search that enhances the similarity of routes in NDP and HDP. 

Simulation results show that the proposed local search can find a similar set of non-

dominated solutions in HDP to the one in NDP. 

As for the algorithm to find a set of solutions for MOPs, we have various approaches in 

Evolutionary Multi-criterion Optimization (EMO) community community (Zitzler et al., 

2001; Fonseca et al., 2003; Coello Coello et al., 2005; Obayashi et al, 2007). However, there are 

few research works that investigate the similarity among obtained sets of non-dominated 

solutions. Deb (2001) considered topologies of several non-dominated solutions in Chapter 9 

of his book. He examined the topologies or structures of three-bar and ten-bar truss. He 

showed that neighboring non-dominated solutions on the obtained front were under the 

same topology, and NSGA-II could find the gap between the different topologies. While he 

considered the similarity of solutions in a single set of non-dominated solutions from a 

topological point of view, there is no research work relating to EMO that considers the 

similarity of solutions in different sets of non-dominated solutions. In this chapter, we 

propose a local search in an EMO algorithm that enhances the similarity of solutions in 

different sets of non-dominated solutions. O
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Source: Vehicle Routing Problem, Book edited by: Tonci Caric and Hrvoje Gold, ISBN 978-953-7619-09-1, pp. 142, September 2008, 
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2. Multi-objective vehicle routing problems 

The VRP is a complex combinatorial optimization problem that can be seen as a merge of 

two well-known problems: Traveling Salesman Problems (TSPs) and Bin Packing Problems 

(BRPs). This problem can be described as follows: Given a fleet of vehicles, a common depot, 

and several customers scattered geographically. Find the sets of routes for the fleet of 

vehicles. As for objective functions considered in VRPs, many research works (Tavares et al., 

2003; Berger & Barkaoui, 2003; Tan et al., 2003; Saadah et al., 2004; Chitty & Hernandez, 

2004) on their VRP try to minimize the total route cost that is calculated using the distance 

or the duration between customers. Tan et al. (2003) and Saadah et al. (2004) employed the 

travel distance and the number of vehicles to be minimized. Chitty & Hernandez (2004) 

tried to minimize the total mean transit time and the total variance in transit time. 

In this chapter, we employ three objectives. One is to minimize the maximum routing time 

and another is to minimize the number of vehicles in VRPs. It should be noted that we don’t 

employ the total routing time of all the vehicles, but use the maximum routing time among 

the vehicles. We employed it in order to minimize the active duration of the central depot of 

all vehicles. Even if the total routing time is minimized, the central depot should be opened 

until the last vehicle comes back to the depot. In order to minimize the active duration of the 

central depot, the maximum routing time should be minimized. 

As for the third objective, we consider the maximization of the similarity of solutions. In this 
chapter, we suppose two periods with different demands. One period has a normal demand 
of customers. The other has a higher demand. We refer to the former period and the latter 
period as Normal Demand Period (NDP) and High Demand Period (HDP), respectively. We 
define the demand in the HDP as an extended demand of the NDP. For example, we assume 
that the demand in the HDP is a demand occurring in a high season such as Christmas 
season. In that season, the depot may have an extra demand in addition to the demand in 
the normal season. In order to avoid big changes of each route from the depot, a solution 
(i.e., a set of route) in HDP should be similar to a solution in NDP. This situation requires us 
to consider the similarity of solutions on different non-dominated solutions in multi-
objective VRPs. 
In order to find a set of non-dominated solutions in the HDP that is similar to a set of non-
dominated solutions in the NDP, we apply a two-fold EMO algorithm (Murata & Itai, 2005) 
to the problem. In the two-fold EMO algorithm, first we find a set of non-dominated 
solutions for the NDP by an EMO algorithm. In order to enhance the similarity between sets 
of non-dominated solutions in NDP and HDP, we showed the effectiveness of utilization of 
a solution set in NDP for population initialization in HDP. The two-fold EMO algorithm is 
explained in the next section. 
The domain of VRPs has large variety of problems such as capacitated VRP, multiple depot 
VRP, periodic VRP, split delivery VRP, stochastic VRP, VRP with backhauls, VRP with pick-
up and delivering, VRP with satellite facilities, VRP with time windows and so on. These 
problems have the basic architecture of the VRP except their own constraints. Those 
constraints are arisen in practical cases. For the detail of the VRP problems, see  Lensta & 
Rinnooy Kan (1981). 
A solution of the VRPs is represented by a permutation of N customers, and we split it into 
M parts as shown in Figure 1. It shows eight customers that are served by three vehicles. 

The first vehicle denoted 1v  in the figure visits three customers in the order of Customers 1, 
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2 and 3. Each solution is divided by a closed triangle. Therefore the driving duration for 1v  

is calculated by DD cccc ,33,22,11, +++ . Figure 2 shows an example of three routes depicted 

on the map of eight customers and the depot. It should be noted that, we consider only 

problems with symmetric cost where 1,22,1 cc =  in this chapter. 

 

 

1 2 3 4 5 6 7 8

1v 2v 3v  

Fig. 1. An example of eight customers visited by three vehicles. Each triangle shows the split 
between the routes for vehicles. 
 

1

2

3

4

5

6

7
8 

1v

2v

3v

Depot

 

Fig. 2. An example of eight customers visited by three vehicles. 

The objective employed in many VRPs is to minimize a total cost described as follows: 

 Min. ∑ =
M

k kc1 ,  (1) 

where M is the number of vehicles that start from the depot and are routed by a sequence of 

customers, then return to the depot. The cost of k-th vehicle is denoted by kc  and described 

as follows: 

 Dn
n
i iiDk k

k cccc ,
1

1 1,1, ++= ∑ −
= + ,  (2) 

where jic ,  means the cost between Customers i and j. Let us denote D  as the index for the 

depot in this paper. Equation (2) indicates the sum of the cost between the depot and the 

first customer assigned to the k-th vehicle (i.e., 1,Dc ), the total cost from the 1st customer to 

the kn -th customer (i.e., 
1

, 11

kn

i ii
c

−

+=∑ ), and the cost between the final customer kn  and the 

depot. Each vehicle is assigned to visit kn  customers, thus we have 
1

M

kk
N n

=
=∑  customers 

in total. The aim of this VRP is to find a set of sequences of customers that minimizes the 

total cost. Each customer should be visited exactly once by one vehicle. 

While the total cost of all the vehicles is ordinarily employed in the VRP, we employ the 

maximum cost to be minimized in this paper. When the cost jic ,  is related to the driving 
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duration between Customers i and j in Equation (2), the total cost kc  for the k-th vehicle 

means the driving duration from the starting time from the depot to the returning time to 

the depot. In order to minimize the activity duration of the depot, the maximum duration of 

the vehicles should be minimized since the depot should wait until all the vehicles return to 

the depot. We also consider the minimization of the number of vehicles in our multi-

objective VRP. The objectives in this paper can be described as follows: 

 Min. k
k
cmax ,  (3) 

 Min. M . (4) 

When we have a solution with 1=M , our problem becomes the TSP. In that case, the other 
objective, to minimize the maximum driving duration in Equation (3), becomes just to 
minimize the total driving duration by one vehicle. On the other hand, the maximum 
driving duration becomes minimum when the number of vehicles equals to the number of 
customers (i.e., NM = ). In that case, each vehicle visits only one customer. The driving 
duration for each vehicle in (2) can be described as follows: 

 DDk kk
ccc ,]1[]1[, += , (5) 

where k]1[  denotes the index of the customer visited by the k-th vehicle. The maximum 

driving duration in Equation (5) over M vehicles becomes the optimal value of that objective 
in the case of NM = . Therefore we face the trade off between these two objectives: the 
minimization of the maximum driving duration and the minimization of the number of 
vehicles. 
We consider two periods with different demands: NDP and HDP. In NDP, a normal 
demand of customers should be satisfied. On the other hand, extra demands should also be 
satisfied in HDP. In this chapter, we increase the number of customers in HDP. That is, 

HDPNDP NN < , where NDPN  and HDPN  are the number of customers in NDP and HDP, 

respectively. We can obtain a set of non-dominated solutions for each problem. We refer a 

set of non-dominated solutions for NDP as NDPΨ , and that for HDP as HDPΨ . These two 

sets of non-dominated solutions can be obtained by applying one of EMO algorithms such 
as NSGA-II (Deb et al, 2002). But if we apply the algorithm to each of NDP and HDP 
independently, we can not expect to obtain a set of solutions that is similar to each other. 

3. Similarity between sets of non-dominated solutions 

In this section, we define a similarity of a non-dominated solution in HDPΨ  obtained for 

HDP to the set of solutions NDPΨ  for NDP. Since the aim of measuring the similarity is to 

find a solution in HDP that is similar to one in NDP, we measure the similarity of a solution 
in HDP to the one in NDP. We measure it by a ratio of the number of the same edges to the 
number of all edges in a solution of NDP. 
We define the similarity of solution x  in HDP is as follows: 

 )
)(

),(
(max)),((max)(

yedges

yxsames
yxsimilarityxsimilarity

NDPNDP yy Ψ∈Ψ∈
== , HDPx Ψ∈ , (6) 
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(D1, 12, 2D, D3, 3D)

(D5, 5D, D1, 12, 2D, D3, 36, 6D, D4, 4D) 

5 1 2 3 6 4Solution for HDP

1 2 3

Solutions for NDP

2 1 3 1 3 2

0.0 0.8 0.5 

(D1, 1D, D3, 3D, D2, 2D) (D2, 21, 13, 3D) 

 

Fig. 3. The similarity of a solution for HDP that is calculated as the maximum similarity 
among three similarities. 

where ),( yxsimilarity  is the similarity of the solution x  to the solution y , that is calculated 

by ),( yxsames  (i.e., the number of the same edges) and )(yedges  (i.e., the number of edges 

in a solution y ). Figure 3 shows an example to calculate the similarity of solution x  (5, 1, 2, 

3, 6, 4 with four vehicles) to three non-dominated solutions (2, 1, 3 with one vehicle, 1, 2, 3 
with two, and 1, 3, 2 with three) obtained for NDP. The similarity of solutions x  becomes 

the maximum similarity 0.8 through the calculation. 

4. Two-fold EMO algorithm for multi-objective VRPs 

In this section, we show a Two-Fold EMO algorithm for our multi-objective VRPs (Murata & 
Itai, 2005). Then we show how we apply a two-fold EMO algorithm to obtain a similar set of 
solutions in NDP and HDP. 

4.1 Genetic operators 
[Crossover] 
We employ the edge exchange crossover (EXX) (Maekawa et al. 1996) as a crossover 
operator. This crossover produces offspring only by exchanging edges in parents 
chromosome, where an edge means a segment between two customers. Therefore offspring 
chromosomes preserve segments between customers well. The following is the algorithm of 
this crossover: 

Step 1: Select an edge randomly from one parent (Parent 1), and let 1i  be the position of the 

edge. Let 2i be the position of the edge of the other parent (Parent 2) whose origin 

customer is the same as that of the 1i -th edge in Parent l. 

Step 2: Let 2j  be the position of the edge of Parent 2 whose origin customer is the same as 

the destination customer of the 1i -th edge in Parent l, and 1j  be the position of the 

edge of Parent l whose origin customer is the same as the destination customer of the 

2i -th edge in Parent 2. 

Step 3: Exchange the 1i -th edge of Parent l and the 2i -th edge of Parent 2. If the destination 

customers of them are the same, terminate the algorithm. 
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Step 4: Invert the order of the edges and their origin and destination customers of Parent 1 

between the positions 1i  and 1j , and those of Parent 2 between the positions 2i  

and 2j . 

Step 5: Let 11 ji =  and 22 ji =  and go to Step 2. 

Figure 4 shows the above procedure between the following parents with one vehicle: 
Parent 1: (1 2 3 4 5 6 7 8),  and Parent 2: (2 5 4 1 6 7 3 8). 
Their edges can be represented as follows: 
Parent 1: (12 23 34 45 56 67 78 81), and Parent 2: (25 54 51 16 67 73 38 82). 
As an example where the edge 23 of Parent l is taken as the starting edge in Step 1 of the 
above procedure. We have the following offspring after the crossover operation: 
Offspring 1: (1 2 5 4 3 8 7 6) , and Offspring 2: (7 3 2 8 1 4 5 6). 
In this chapter, we consider any chromosome with multiple vehicles as that with one 
vehicle. Thus the following cases have the same result in the order of the customers while 
their positions of Depot do not change between parent and offspring. 
Case A: Parent 1: (1 2 | 3 4 5 6 | 7 8),  and Parent 2: (2 5 4 1 | 6 7 3 8). 
Case B: Parent 1: (1 2 3 | 4 5 6 7 8),  and Parent 2: (2 | 5 4 | 1 6 7 | 3 8). 
Case A: Offspring 1: (1 2 | 5 4 3 8 | 7 6),  and Offspring 2: (7 3 2 8 | 1 4 5 6). 
Case B: Offspring 1: (1 2 5 | 4 3 8 7 6),  and Offspring 2: (7 | 3 2 | 8 1 4 | 5 6). 
 

 

12 23 34 45 56 67 78 81

25 54 41 16 67 73 38 82

1i

2i 2j

1j

12 25 34 45 56 67 78 81

23 54 41 16 67 73 38 82

12 25 54 43 56 67 78 81

23 37 76 61 14 45 38 82

1i

2i

1j

2j

12 25 54 43 38 67 78 81 

23 37 76 61 14 45 56 82 

12 25 54 43 38 87 76 81 

73 32 28 61 14 45 56 67 

1i  

2i

1j

2j

12 25 54 43 38 87 76 61 

73 32 28 81 14 45 56 67 

P1 

P2 

O1

O2

 

Fig. 4. Examples of Edge Exchange Crossover (Maekawa et al., 1996). 
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8 1 3 4 7 2 5 6

8 1 3 4 5 2 7 6

8 1 3 4 7 2 5 6

Split Mutation

Order Mutation

 

Fig. 5. Examples of two mutation operators. In the order mutation, a selected route is 
inversed its order of customers. In the split mutation, locations of splits are changed 
randomly.  

[Mutation] 
As for the mutation, we employ two kinds of operators in order to modify the order of 
customers and the locations of splits in a selected route. Figure 5 shows examples of these 
mutations. It should be noted that the order mutation itself does not affect the two objectives 
(i.e., the maximum driving duration and the number of vehicles). But it can be useful to 
increase the variety of solutions when it is used with the crossover and the split mutation. 
It should be noted that through crossover and mutation in this chapter, the number of 
vehicles does not change. Therefore if there is no individual with a certain number of 
vehicles, no solution with that number of vehicles is generated through genetic search. 

4.2 Two-fold EMO algorithm 
In our multi-objective VRP, we have two periods, NDP and HDP. Since HDP has extra 
demands of customers with the demands of NDP, we have two approaches to search a set of 
non-dominated solutions for each of NDP and HDP. One approach is to apply an EMO 
algorithm individually to each of them. The other is to apply a two-fold EMO algorithm 
(Murata & Itai, 2005) to them. In the two-fold EMO algorithm, first we find a set of non-
dominated solutions for the NDP by an EMO algorithm. Then we generate a set of initial 
solutions for the HDP from the non-dominated solutions for the NDP. We apply an EMO 
algorithm to the HDP with initial solutions that are similar to those of the NDP problem. In 
our former study (Murata & Itai 2007), we showed that the two-fold EMO algorithm has the 
better performance than applying an EMO algorithm individually. The procedure of the 
two-fold EMO algorithm is described as follows: 
[Two-Fold EMO Algorithm] 
Step 1: Initialize a set of solutions randomly for the NDP. The number of vehicles and the 

order of customers in each solution are defined randomly. 
Step 2: Apply an EMO algorithm to find a set of non-dominated solutions for the NDP until 

the specified stopping condition is satisfied. 
Step 3: Obtain a set of non-dominated solutions for the NDP. 
Step 4: Initialize a set of solutions for the HDP using a set of non-dominated solutions of the 

NDP. 
Step 5: Apply an EMO algorithm to find a set of non-dominated solutions for the HDP until 

the specified stopping condition is satisfied. 
Step 6: Obtain a set of non-dominated solutions for the HDP. 
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In Step 4, we initialize a set of solutions as follows: 
Step 4.1: Specify a solution of the set of non-dominated solutions of the NDP. 
Step 4.2: Insert new customers randomly into the solution. 
Step 4.3: Repeat Steps 4.1 and 4.2 until all solutions in the set of non-dominated solutions of 

the NDP are modified. 
It should be noted that the number of vehicles of each solution is not changed by this 

initialization. Using this initialization method, we found that the similarity between non-

dominated solutions for the NDP and those for the HDP can be increased (Murata & Itai, 

2005). 

We applied the two-fold EMO algorithm to a VRP that has five customers in NDP and ten 

customers in HDP. As for an EMO algorithm, we employed NSGA-II (Deb et al., 2002). 

Figure 6 shows the results of the two-fold EMO, and the EMO applied the HDP with a 

population initialized randomly. In this problem, we consider only two objectives: the 

maximum duration and the number of vehicles. We obtained the average maximum 

duration of a set of non-dominated solutions over 100 trials. We calculate the average 

similarity after obtaining a set of non-dominated solutions for HDP. In the first figure of 

Figure 6, we can find that the two-fold EMO can find better non-dominated solutions with 
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Fig. 6. The obtained non-dominated solutions in the HDP with ten customers. The number 
of vehicles and the maximum duration are to be minimized, and the similarity to be 
maximized. 
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respect to the minimization of the maximum duration and the number of vehicles. From the 
second figure, we can find that the similarity of non-dominated solutions obtained by the 
two-fold EMO algorithm is better than that obtained by the EMO algorithm. In this 
experiment, we can see that improving solutions with respect to the maximum duration 
does not lead to deterioration of the similarity of non-dominated solutions to those in NDP. 
Therefore we can say that the two-fold EMO could find the better solutions compared to the 
EMO for HDP without initial solutions from NDP. 

5. Two-fold memetic EMO algorithm 

We propose a local search that enhances the similarity of non-dominated solutions for HDP. 
In order to increase the similarity of a solution for HDP, we incorporate segments between 
customers from a solution of NDP to a solution of HDP. Therefore we introduce this 
procedure in an EMO search for HDP not for NDP. The algorithm of the proposed local 
search can be described as follows: 
[Local Search Algorithm] 

Step 1:  Select a solution x  from the current HDPΨ . 

Step 2: Select a non-dominated solution y  from NDPΨ  that is used for the calculation of the 

maximum similarity of x . 

Step 3: Select an edge between two customers in y . Note that the edge should be selected 

within a vehicle. 
Step 4: Find a first customer of the selected edge in x . 

Step 5: Incorporate the edge to x  at the position of the first customer in x . Since the 

following customer to the first customer in x  is replaced by the second customer in 

the edge, a repairing process should be followed. Find the second customer in x , 

and replace that with the following customer. 
Step 6: Return to Step 3 until all edges in y  is incorporated in x . 

Figure 7 shows an example of this local search. We apply this local search to each solution of 
the current set of non-dominated solutions. Since this local search process is introduced to 
an EMO search in HDP, the two-fold memetic EMO algorithm can be depicted as Figure 8. 
 

 

3 1 4 5 2

Solution for HDP

(Before LS)
Non-dominated

 Solution for NDP

1 2 3 4

3 4 1 5 2 1 2 3 4

3 4 1 2 5

Solution for HDP

(After 1st LS)

Solution for HDP 

(After 2nd LS)

Non-dominated

 Solution for NDP

 
Fig. 7. Local search applied to a solution for HDP. An edge (3, 4) in a non-dominated 
solution for NDP is incorporated to a solution for HDP. Since (3, 1) in the solution for HDP 
is replaced with (3, 4), the customers 1 and 4 in the solutions for HDP should be exchanged 
in a repairing process. Since the solution for NDP has two edges in its string, the local search 
process terminates at the second time. 
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Local Search 

First Phase: EMO for NDP 

Second Phase: EMO for HDP

Memetic EMO Algorithm 

 

Fig. 8. Two-fold memetic EMO algorithm. A local search is introduced in the second phase 
of EMO search for HDP. 
 

Number of population 30 

Crossover rate 1.0 

Order mutation rate 0.04 

Split mutation rate 0.02 

Terminal generation 2000 

Table 1.  The parameter specifications in EMO algorithms. 

6. Simulation results by two-fold memetic EMO algorithm 

We show the simulation result on a multi-objective VRP with NDP and HDP. In that 

problem, there are five customers in NDP, and ten customers in HDP. Table 1 shows the 

parameter specifications in our two-fold memetic EMO algorithm. We apply our two-fold 

memetic EMO algorithm to the problem with 100 different initial solution sets. That is, we 

obtain average results over 100 trials in a problem. In this section, first we examine the effect 

of introducing the similarity as third objective. Then we show the effectiveness of the 

proposed local search to enhance the similarity. 

6.1 Effect of similarity 

We apply two EMO algorithms to a problem in HDP. One is the two-fold EMO algorithm 

with three objectives (2F-EMO-3). The other is the two-fold EMO algorithm with two 

objectives (2F-EMO-2). We don’t employ the proposed local search in this section. The result 

obtained by 2F-EMO-2 is the same that obtained by Two-Fold EMO in Figure 6. We 

calculate the similarity of non-dominated solutions obtained by 2F-EMO-2 after the search. 

Figure 9 shows the simulation results obtained by these algorithms. Since the 2F-EMO-3 

finds non-dominated solutions on the surface of three objectives, we project them onto the 

two-objective space in Figure 9. Therefore they are projected between two lines. We 

depicted two lines of extreme cases, that are the lowest and the highest similarity on the 

space with the maximum duration and the number of vehicles. On the other hand, the 

shortest and the longest maximum duration on the space with the similarity and the number 

of vehicles. From Figure 9, we can see that slightly better solutions are obtained by the 2F-

EMO-2 with respect to the minimization of the maximum duration. But it finds worse 

solutions with respect to the maximization of the similarity. As for the 2F-EMO-3, it 
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produces slightly better non-dominated solutions in the similarity when their maximum 

duration becomes near to those of the 2F-EMO-2. On the other hand, when the 2F-EMO-3 

sacrifices the minimization of the maximum duration, the similarity of non-dominated 

solutions becomes much better than the 2F-EMO-2. Through this figure, we can find that the 

similarity of non-dominated solutions has the trade-off relationship with the maximum 

duration. Therefore the introduction of the similarity as the third objective is needed for 

those who wants to have similar routes in HDP to NDP. 
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Fig. 9. The effect of the similarity. 

6.2 Effect of local search to enhance the similarity in HDP 

In this section, we examine the effectiveness of the proposed local search to enhance the 

similarity of non-dominated solutions for HDP. We compare the 2F-EMO-3 and the two-fold 

memetic EMO algorithm (2F-mEMO). From Figure 10, We can see that the 2F-EMO-3 could 

find better solutions with respect to the maximum duration when it sacrifices the similarity. 

On the other hand, almost similar maximum durations are obtained by both algorithms 

when they seek to maximize the similarity. Although both the algorithms have similar 

maximum durations in the case of high similarity, the degree of the similarity of these 

algorithms is quite different in the latter figure of Figure 10. Using the proposed local 

search, the 2F-mEMO could enhance the similarity especially in non-dominated solutions 
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with two through six vehicles. As for the solutions with more than seven vehicles, the 

similarity is not improved well. This is because each vehicle should not visit several 

customers when the number of vehicles is similar to the number of customers. Similar 

routes are required when each vehicle has several customers to visit. From Figure 10, we can 

see that the proposed local search is very much effective in enhancing the similarity with a 

slight deterioration in the maximum duration. 
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Fig. 10. The effect of the local search in HDP. 

7. Conclusion 

In this chapter, we proposed a local search that can be used in a two-fold EMO algorithm for 

multiple-objective VRPs with different demands. The simulation results show that the 

proposed method have the fine effectiveness to enhance the similarity of obtained routes for 

vehicles. Although the local search slightly deteriorates the maximum duration, it improves 

the similarity of the routes that may decrease the possibility of getting lost the way of 

drivers. If drivers get lost their ways during their delivery, the cost of his routes may 

increase. The enhancing the similarity of set of non-dominated solutions seems important 

when we apply EMO algorithms to practical problems. 
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Since the algorithm of the proposed local search to enhance the similarity depends on the 

problem specifications, we should make further research on the similarity of a set of non-

dominated solutions with different problems. We may define similarity on the genotype, 

and it on the phenotype. Since the similarity on the phenotype may depend on problems, 

we should research further on the similarity on the genotype of various problems. 
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