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1. Introduction  

In a multi-robot system, each robot needs work together with the network of other robots, 
considering options for matching its capabilities with demand, negotiating on such 
constraints as quality, price and time, and then making decisions for committing resources 
to match demands.  Multi-robot systems demand group coherence (robots need to have the 
incentive to work together faithfully) and group competence (robots need to know how to 
work together well).  With recent advances in all aspects of the technology associated with 
computing, energy, sensing, and networking infrastructure, more progress has been made 
in the developing of multi-robot systems for a potentially dynamic, challenging, and 
hazardous environment. Some examples of such applications include search and rescue, 
mine detection, hazardous material collection (or cleanup), reconnaissance, smart 
home/office, surveillance, construction, planetary exploration, and transportation.     Since 
human assistance in these challenging environments is limited due to distance or the need 
for quick response to changing circumstances, more advanced techniques, such as self-
adaptive and self-evolving, would be desirable for these multi-robot systems, which are still 
unsolved research areas.    
Some common challenges exist for this kind of systems.  It is often not hard to implement a 
rudimentary controller that accomplishes the task, but achieving optimal performance can 
be very challenging.  Coordination is hard when robots are really self-interested.  If each 
individual robot is very complex with plenty of intelligent functionalities, through the 
interacting with other robots and environments, the overall systems will become 
computational intractable with the large scale agents.  
To achieve the global intelligence of a cooperative multi-agent system, distributed 

coordination methods are more attractive compared to the centralized methods due to its 

robustness, flexibility, and adaptivity. However, designing a self-adaptive multi-robot 

system is not a trivial task.  Nolfi and Floreano [Nolfi and Floreano, 2000] claim that, since 

the individual behavior is the emerging result of the interaction between agents and 

environment, it is difficult to predict which behavior results from a given set of rules, and 

which are the rules behind an observed behavior. Similar difficulties are present in the 

decomposition of the organized behaviors of the whole system into interactions among 

individual behaviors of the system components. The understanding of the mechanisms that 

led to the emergence of self-organization must take into account the dynamic interactions O
pe
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among individual components of the system and between these components and the 

environment.  Thus, it is difficult to predict, given a set of individual behaviors, which 

behavior at the system level will emerge, and it is also difficult to decompose the emergence 

of a desired global behavior into simple interaction among individuals [Dorigo, 2004]. To 

develop intelligent robots that can adapt their behaviors based on interaction with the 

environment and other robots, become more proficient in their tasks over time, and adapt to 

new situations as they occur, more researchers turned their attentions to bio-inspired 

systems, such as social insects.  Swarm intelligence is an innovative computational and 

behavioral metaphor by taking its inspiration from the behavior of social insects swarming, 

flocking, herding, and shoaling phenomena in vertebrates, where social insect colonies are 

able to build sophisticated structures and regulate the activities of millions of individuals by 

endowing each individual with simple rules based on local perception.   

In this chapter, we propose a novel bio-inspired coordination paradigm, i.e. QVP-PSO, to 

achieve an optimal group behavior for multi-robot systems, which is the combination of a 

reinforcement learning method and a bio-inspired Visual Pheromone based Particle Swarm 

Intelligence (VP-PSO).  Basically, two coordination processes among the robots are 

established in the proposed QVP-PSO architecture. One is a virtual pheromone based 

algorithm to guide the robots’ movements for targets, where each robot has its own virtual 

pheromone matrix, which can be created, enhanced, evaporated, and propagated to its 

neighboring robots.  The other one is Particle Swarm Optimization (PSO)’s cognitive 

capabilities through local interaction, which aims to achieve the balance for each robot 

between the exploration and exploitation through the interactions among the robots using 

the PSO-based algorithm.  To adapt to the changing environment for optimal group 

behaviors, a Q-learning method is applied to dynamically adjust the associated parameters 

of the PSO method so that the balance between the explorative, cognitive, and social factors 

can be optimized under different scenarios.  

The paper is organized as follows: Section 2 describes the problem statement. The virtual 
pheromone based PSO (VP-PSO) scheme is explained in Section 3.  Then the Q-learning 
adjusted VP-PSO method is discussed in Section 4.  Section 5 presents the simulation results 
using the embodied robot simulator: Player/Stage. To conclude the paper, Section 6 outlines 
the research conclusions and the future work.  

2. Related work 

Extensive multi-robot coordination techniques have been developed for various 

applications, such as foraging, box-pushing, aggregation and segregation, formation 

forming, cooperative mapping, soccer tournaments, site preparation, sorting, and collective 

construction.  [Balch and Arkin, 1999] [Stewart, 2006] [Dias et al., 2004] [Burgard et al., 2005] 

[Chaimonwicz, 2004] [Fernandez, 2005][Martinoli, 1999] [Weigel, 2006] [Parker and Zhang, 

2006] [Holland and Melhuish, 1999][Correll and Martinoli, 2006].  All of these systems 

consist of multiple robots or embodied simulated robots acting autonomously based on their 

own individual decisions.   

Some computational intelligence algorithms have been proposed, such as neural networks 
[Rumelhart and McLelland, 1986], genetic algorithms [Holland, 1975], evolution strategies 
[Rechenberg, 1973], immune networks [Bersini and Varela, 1991], Ant Colony Optimization 
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(ACO) [Dorigo et al, 1996] and Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 
1995], seeking to replicate the related natural behaviors.  All of the above nature-inspired 
computational intelligence has proved to be effective and efficient approaches towards 
design and control of complex problems under dynamic environments.   
Although artificial evolution has been often used for synthesizing behaviors for autonomous 

robots [Nolfi and Floreano, 2000], its use as a methodology to evolve behaviors for groups of 

robots is still limited.  Reynolds [Reynolds, 1987] built a computer simulation to model the 

motion of a flock of birds, called boids.   He believes the motion of the boids, as a whole, is 

the result of the actions of each individual member that follow some simple rules.  Ward et 

al. [Ward, 2001] evolved e-boids, groups of artificial fish capable of displaying schooling 

behavior.  Spector et al. [Spector et al., 2003] used genetic programming to evolve group 

behaviors for flying robots in a simulated environment.  The above mentioned works 

suggest that artificial evolution can be successfully applied to synthesize effective collective 

behaviors. Dorigo et al. [Dorigo et al., 1996] developed a robotic system consisting of a 

swarm of s-bots, mobile robots with the ability to connect to and to disconnect from each 

other depends on different environments and applications, which is based on behaviors of 

ant systems.  Payton et al. [Payton et al., 2001] proposed pheromone robotics, which was 

modeled after the chemical insects, such as ants, use to communicate.  Instead of spreading a 

chemical landmark in the environment, they used a virtual pheromone to spread 

information and create gradients in the information space.  By using the virtual pheromone, 

the robots can send and receive directional communications to each other.  Pugh and 

Martinoli [Pugh and Martinoli, 2006] proposed a group learning algorithm using Particle 

Swarm Optimization for a multi-robot system, where aggregation behaviors were 

conducted to evaluate the proposed methods.  Werfel and Nagpal [Werfel and Nagpal, 

2006] proposed an extended pheromone by increasing the capabilities of environmental 

elements in swarm robots to automatically assemble solid structures of square building 

blocks in two dimensions according to a high-level user-specific design.   In our previous 

work [Meng et al. 2007][Meng and Gan, 2007], swarm intelligence based robot coordination 

methods were proposed.       

3. Virtual pheromone based PSO method 

The objective of this study is to design an efficient and robust distributed coordination 
algorithm for a multi-robot system with limited on-board power, sensing and 
communication on each robot, aiming at optimizing the group behavior especially for a 
searching task under a dynamic environment.   The targets can be defined as any kind of 
predefined object. It is assumed that the searching area is bounded and robots can detect the 
targets using special on-board sensors, such as camera systems. The robot can only detect 
the targets within its local sensing range.  Once a robot detects a target, it processes the 
target assuming the processing time is proportional to the size of target. Assume that the 
robots are simple, and homogeneous.  Each robot can only communicate with its neighbors.  
Two robots are defined as neighbors if the distance between them is less than a pre-specified 
communication range.  The goal is to detect and process all of the targets within the 
searching area as soon as possible.   
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3.1 Virtual Pheromone 

Pheromone is a class of mechanisms that mediate animal-animal interactions through 
artifacts or via indirect communication, providing a kind of environmental synergy, 
information gathered from work in progress, distributed incremental learning and memory 
among the society. To emulate pheromone-based communication in a multi-robot system, 
special pheromone materials and associated detectors need to be designed, and most of the 
time such chemical/physical pheromone is unreliable and easily be modified under some 
hazardous environments, such as urban search and rescue.  A modification of this 
autocatalysis is necessary.  Similar to [Payton, 2001], a unique virtual robot-to-robot 
interaction mechanism, i.e. virtual pheromone, was proposed as the message passing 
coordination scheme for the swarm robots.   
Each target in the environment is associated with one unique pheromone, which can be 
enhanced or evaporated over time to adapt to a dynamic environment.  Initially, each robot 
creates its own virtual pheromone matrix, which installs all pheromone information 
associated with different targets.  Whenever a robot detects a target, it would update its own 
pheromone matrix and broadcast this target information to its neighbors through a visual 
pheromone package.   

3.2 Fitness function 

To emulate the pheromone creation, enhancement and elimination procedure in natural 

world, the pheromone density )(tkijτ  can be updated by the following equation: 

 ( 1) ( ( ) ) (1 ) ( )k k k
i i it t m tτ ρ τ α ρ τ+ = + − −     (1) 

 where ( )k

i tτ  represents the pheromone density of target i at time t for agent k.  0<ρ<1 is the 

enhancement factor of the pheromone density. α  is the pheromone interaction intensity 

received from the neighboring robots for target i.   Basically, α  is used for pheromone 

enhancement, and m represents the elimination factor. In the ants system, the pheromone 
will be eliminated over time if it is not being enhanced by the ants, and the elimination 
procedure usually is slower than the enhancement.  When the pheromone trail is totally 
eliminated, it means that no target is needed to be processed through this pheromone.  To 
slow down the elimination relative to enhancement, m is set as less than 1.                    

To define the probability that robot k moves toward target i  with pheromone density ( )k

i tτ , 

the target utility function is defined as following:  

 ( ) ( ) ik k

i it t e
γµ τ −=   (2) 

where iγ represents local target redundancy, which is defined as the number of the local 

neighbors who have sent the pheromone referring to the same target i to robot k.    
Generally speaking, the higher the target utility is, the more attractive the corresponding 
target is to the robot.  Therefore, the benefit of moving to this target would be higher in 
terms of the global optimization.  If the local target redundancy is high, it means that there 
will be more potential robots (globally) moving to this target, which may lead to the less 
available targets left in the future.  Therefore, the benefit of moving to this target would be 
less in terms of the global optimization.  With the local redundancy, we are trying to prevent 
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the scenarios that all of the robots within a local neighbor move to the same target instead of 
exploring new targets elsewhere. 
Initially, the robots are randomly distributed in the searching environment, where multiple 
targets with different sizes and some static obstacles are randomly dispersed within the 
environment.  At each iteration, if each robot adjusts its behavior based only on the target 
utility, it may lead the robot to be very greedy in terms of the robots’ behaviors, since the 
robots would rather move to the target with higher utility than explore new areas.  This 
greedy behavior of the robots may easily lead to local optima.    
To prevent the local optima scenarios with utility-greedy method using (2), the target 

visibility has to be considered as well.  Let ( )k

i tη  denotes the target visibility for agent k in 

terms of target i, which is defined as: 

 ( ) max( ,1)
( )

k
k
i k

i

t
d t

δ
η =   (3) 

where 
kδ  represents the local detection range of robot k, and the ( )k

id t represents the 

distance between the robot k and target i.  When the target visibility is higher, it means the 
distance between the target and the robot is smaller, it would be more beneficial to move to 
this target due to its lower cost compared to moving to the more distinct target under the 
same environmental condition. 

3.3 Coordination of Robot Behaviors 

One of the objectives of the pheromone update rules is to prevent stagnation, which occurs 
when most of the robots follow the same path, or converge to the same target.  In general, 
global updates will facilitate exploitation, while local updates will favor exploration by letting 
each robot update pheromone after each transition decision.  During each local update, the 
pheromone will diminish due to evaporation.  Over time, frequently visited links will become 
less attractive, thus favoring exploration of less frequently used links.  The local update by 
each agent therefore will avoid a very strong link from dominating as a component of the final 
solution.  The utility-greedy using (2) has the tendency which may lead to the stagnation.   
Now the question is how to integrate the target utility and target visibility into an efficient 
fitness function to guide the movement behaviors of each robot so that the stagnation can be 
avoided. Stagnation occurs when most of the robots follow the same path, or converge to the 
same target.  To tackle this issue, we turned our attention to the Particle Swarm 
Optimization (PSO) method. The PSO algorithm is a population-based optimization 
method, where a set of potential solutions evolves to approach a convenient solution (or set 
of solutions) for a problem. The social metaphor that led to this algorithm can be 
summarized as follows: the individuals that are part of a society hold an opinion that is part 
of a "belief space" (the search space) shared by every possible individual. Individuals may 
modify this "opinion state" based on three factors: (1) The knowledge of the environment 
(explorative factor); (2) The individual's previous history of states (cognitive factor); (3) The 
previous history of states of the individual's neighborhood (social factor).  
Basically, the PSO algorithm can be represented as in (4), which is derived from the classical 
PSO algorithm [Kennedy and Eberhart, 1995] with minor redefinitions of formula variables: 

 v = explorative + cognitive + social  (4) 
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 where v  is the velocity of a robot.  To determine which behavior is adopted by robot k, the 
velocity has to be decided first.  If the received pheromone density is high, the robot would 
increase the weight of social factor, and decrease the weight of the cognitive and exploration 
factors. On the other hand, if the local visibility is of significant to the robot, then the 
velocity of the robot would prefer the cognitive factor to the social factor. If both social and 
cognitive factors are low, then the exploration factor would be increased.  Furthermore, at 
any given time, the velocity of the robot would leave some spaces for the exploration of new 
areas no matter what. Therefore, the basic idea is to propel towards a probabilistic median, 
where explorative factor, cognitive factor (local robot respective views), and social factor 
(global swarm wide views) are considered simultaneously and try to merge these three 
factors into consistent behaviors for each robot.  The exploration factor can be easily 
emulated by random movement. 
The challenging part is how to define the local best (cognitive factor) and the global best 
(social factor).  One straight forward method is to select the highest target visibility from a 
list of available targets as the local best.  If only one target is on the list, then this target 
would be the local best.  The easy way to select global best is to select the highest target 
utility from a list of available targets.  
Instead of defining a fitness function, for a robot system, the robot velocity vector including 
both magnitude and direction would be a better representation to control the movement 
behavior.  Based on the above discussion and the PSO algorithm, each robot would control 
its movement behaviors by following this equation: 

  ( 1) ( ) ( ) ( )( ( )) ( )( ( ))k k k k

e e c c c s s sv t rand v t rand p x t rand p x tψ ψ ψ+ = + − + −  (5) 

where, sce andψψψ ,, represent the propensity constraint factors for explosive, cognitive, 

and social behaviors, respectively, 0 ≤ randΘ() < 1 where Θ = e, c, or s, and ( )kx t  represents 

the position of robot k at time t.  max( ( ))k

s ip tµ=  represents the global best from the 

neighbors, and max( ( ))k

c ip tη=  represents the local cognitive best.  The position of each 

robot k at time t+1 can be updated by 

 ( 1) ( ) ( 1)k k kx t x t v t+ = + + .   (6) 

4. Q-Learning adjusted method 

Since the environment is dynamic, it is difficult to guarantee that the initial parameters of 
the VP-PSO method will be the best-fit for the current scenario all the time. Therefore, it is 
necessary to dynamically adjust these parameters to achieve optimal global performance 
and expedite the convergence.   
After some preliminary experiments using the VP-PSO method, it was observed that with 
different weight parameters of the PSO, the searching performance varied noticeably, i.e., 
the convergence rate and the target/robot distribution ratio may be different.  For example, 
it is assumed that there are 10 targets which are distributed in groups in three different 
locations.  There are 20 robots.  We conduct 2 cases with different parameters of the PSO 
method. In case 1, the target/robot distribution map is 3(target)/10(robot), 5/6, and 2/4. In 
case 2, the distribution map becomes 3/7, 5/12, and 2/1.  In case 1, after finishing the 3 
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targets, the first group of robots has to start searching again for other unfinished targets, 
such as second locations.  Extensive travel cost would be consumed for the searching.  In an 
ideal situation, each target should attract 2 robots by average. The processing time could be 
reduced significantly since extensive unnecessary travel cost has been saved.  However, 
since the system is distributed, there is no global station to check the status of other targets 
or robots.  Each robot has to make decisions based on its local sensor feedbacks.      
It would be desirable that robots have the self-learning capability to dynamically adjust the 
parameters of the coordination algorithms according to their current status and sensor 
feedbacks.  Since the environment of a multi-robot system is dynamically changing, the 
measurement feedbacks from the environment would be critical to help to adjust the 
coordination methods for the changing situations.  To achieve a higher learning 
performance, it is assumed that the predefined expected robot/target ratio is provided.  Q-
learning method is applied to adjust the parameters of the PSO for better coordination 
behaviors. Q-learning is a learning technique for acquiring optimal actions based on the 

evaluation values ),( asQ (Q-value) for state-action sets.  To simplify the method, the 

gradient-based action for parameter adjustment will be applied.  For example, parameter X 
will be increased by 0.5 unit of gradient and Y will be decreased by 1.3 unit of gradient.    
The Q-learning method is summarized as followings:  

1. Initialize all states s S∈  and action , 
i i
a A∈ and 1 )( , 0 i nQ s a a =L ; 

2. Repeat for every 10 step’s state s S∈ : 

1) Get target info ( )iw t  from the pheromone matrix; 

2) Choose an action ia  according to 
1

arg max ( , )
i i

t t

i a A i n
a Q s a a∈= L  

3) Observe rewards t

ir , and the next state 1tS +  

1 1 1 1 1 1

1 1 1( , ) (1 ) ( , , , ) ( ( , , , ))t t t t t t t t t t

i n i n i i nQ s a a Q s a a r Q s a aβ β λ+ + + + + += − + + %L L L  

where 
( )

,0 (1 )
( )( )

t t T t

i i i

i i it t

i i

w w w
Q pmax p

d rand t d

εγ

δ

⎛ ⎞− −
= + −⎜ ⎟

−⎝ ⎠
%

  

where β is the learning factor. t
iw  is the weight of detected target i.. t

iγ  represents the 

estimated value of robots redundancy at target i , ε is the expected target/robot ratio, and 

t

id is the distance between the robot’s current position and the target i.   Therefore, 
t t

i i

t

i

w

d

εγ−
 

represents the benefit a robot can gain by moving towards target i.  When the number of 

robots around a target extends the expected target/robot ratio, the benefit is set to 0.  Tw is 

the total target weights within the search area, and δ is the sensor detection range.  It is 

assumed that the targets are distributed within the search area in uniform probability 

density, thus the benefit of random search can be represented by 
( )

( )( )

T t

i

t

i

w w

rand t d ξ

−

−
.  ip  is the 

probability of going to target i, which is defined as s

i

e c s

p
ψ

ψ ψ ψ
=

+ +
, where eψ , cψ , 
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and sψ are the weight parameters of Equation (5).  The reward 
i

tr = 1 if the robot number 

around the target i is approximately equal to ε , otherwise,  
i

tr = -1 .  

5. Experimental results 

5.1 Experimental setup 

Player/Stage is selected as our embodied robot simulator to implement the QVP-PSO 
algorithm using swarming robots. As shown in Fig. 1, the environment is an open space 
with the size of 41.8m x 45.1m, where several targets are distributed randomly. 20 
homogeneous Pioneer 3DX robots are used as our robot model, which is equipped with a 
camera system to detect and track targets, a laser range finder to measure the distance 
between the target and itself, a sonar sensor to avoid obstacles (i.e. both static obstacles and 
mobile obstacles, such as other robots), and a wireless communication card to communicate 
with other robots.  The arc shape in front of each robot represents the field of view of the 
vision system on each robot.  The communication range is set up as the same range of the 
vision but using a circle instead of an arc.  Whenever the robots are within other robot’s 
communication range, they would exchange the information between them. 

5.2 Robot localization and path planning 

Self-localization is critical for multi-robot to coordinate with each other.  Since the robots are 
working in an unknown environment, an a priori map is not available.  Building a map 
using distributed multi robots is a challenging task requiring more computational 
complexity, which is not the focus of this paper.  Since it is assumed that each robot is 
simple and small with limited on-board battery, a simplified localization is required.   It is 
assumed that the initial positions of all robots relative to a global coordinate frame of 
searching area are given.  Since each robot has encoders attached with wheel motors, 
odometry-based localization is employed here.   
Since the targets are designed with different colors, a color blob detection using on-board 
camera system is carried out for target detection.  Once a robot detects one or more targets, 
it uses on-board laser range finder to estimate the distance of the target relative to its own 
position.  Then the target information can be propagated to its neighbors with the target 
position.   When a robot picks a target, it would track the target color using the vision 
system while moving toward the target.   
There are two important factors contributing to a dynamic environment.  One is that robots 
always have to avoid obstacles, including static obstacles (i.e. walls) and dynamic obstacles 
(i.e. other mobile robots).  It would be too computationally expensive for a robot since the 
global path has to be recalculated every time the robot avoids an obstacle.  On the other 
hand, once a robot turns around to avoid one obstacle, it may become closer to other targets 
or it may receive new pheromone from its new neighbors, which naturally leads to new 
path planning for this robot.  Therefore, it would be inefficient to use any complex global 
path planning.  Here, a simplified path planning method is employed, where a robot sets up 
a destination location based on the detected or received target information, then the robot 
moves directly toward this destination.  If an obstacle is in its way, the robot turns 45 
degrees left if the obstacle is on the right side or turns right if the obstacle is on the left to 
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avoid the obstacle, then continue moving towards the destination.  The destination may be 
changed due to new detection or new pheromone.  

5.3 Experiments under an open-space environment 

An open space experiment is conducted as shown in Fig. 1.  Initially, the robots are 
randomly searching for targets at t = 1. Once a robot detects a target, it would propagate the 
pheromone of this target to its neighbors, as shown in Fig. 1(b), where a small rectangle 
beside a robot indicates that the on-board vision system has detected the targets.  After 
receiving a pheromone message, robots make their own movement decisions based on the 
QVP-PSO algorithm, as shown in Fig. 1(c), Fig. 1(d), and Fig. 1(e).  The simulation stops 
when all of the targets have been found and processed, as shown in Fig. 1(f).     

 

 (a) t =1   (b) t = 17    (c) t = 20 

    

 (d) t = 50   (e) t = 203  (f) t = 277 
Figure 1. 20 robots search for randomly distributed targets in an open space on a 
player/stage simulator at t = 1, 17, 20, 50, 203, and 277 time steps 

To evaluate the robustness of the QVP-PSO algorithm under a dynamic environment, 
another set of experiments are conducted in an open space, as shown in Fig.2.  Since it is not 
allowed to dynamically change the target configuration in Player/Stage, the target 
relocations are conducted manually.   As shown in Fig. 4, initially, 20 robots search for 
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targets.  After some robots have reached to a target, the target is manually relocated to 
somewhere else.  All of the robots around this target would disperse to explore new areas 
for new targets until all of the robots converge to the targets.  It can be seen that the QVP-
PSO algorithm is very robust to adapt to the unexpected events, such as target relocation.   

   

 (a) t = 1    (b) t=271  (c) t=288 

  

  (d) t = 682  (e)  t = 693   (f)  t = 987 
Figure 2.  Snapshots of simulation in an open space on Player/Stage with dynamic target 
relocations. (a) initial state; (b) all robot converge to targets; (c) relocate targets; (d) converge 
to new targets;  (e) relocate targets; (f) converge to new targets 

5.4 Experiments under an indoor office environment 

Second set of experiment is conducted in an indoor office environment, as shown in Fig. 3, 
where the size of environment is 41.8m x 45.1m. Several targets with different colors are 
randomly distributed in the environment, and 20 robots search for them.   The major 
difference of this experiment compared to the open space lies in the fact that even if the robot 
received the target information from its neighbors, it may not be able to move toward the 
target if there is a wall exits between the robot and target.  The robot may have to spend some 
time to avoid the wall, and during this procedure, if new target information comes in, the 
robot may change its mind to move forward to new target based on the QVP-PSO algorithm.   

www.intechopen.com



Q-Learning Adjusted Bio-Inspired Multi-Robot Coordination 

 

149 

    
 t=1 t=13   t=15 

   
  t=58   t=423   t=495 
Figure 3. 20 robots search for randomly distributed targets in an indoor office environment 
on a player/stage simulator at t = 1, 13, 15, 58, 423, and 495 time steps 

5.5 Experimental Results 

To evaluate the performance of the QVS-PSO algorithm, two other methods are carried out 
for comparison.  One is random movement (Random), where all robots search for targets in 
a random manner without communicating with others.  Second one is the VS-PSO algorithm 
without Q-learning adjustment.  To obtain the statistic performance, we implemented the 
following experiments.  10 targets are distributed in the environment with fixed positions 
for the simulations. Then, we start running the simulations with the swarm size of 20 using 
three methods, each method runs 35 times to obtain result of ending time, the total travel 
time of all robots, and the mean squared error of robot/target distribution ratio. The results 
are shown in Fig. 4, Fig.5, and Fig.6, respectively.   
The search ending time represents the searching performance. The less ending time the system 
takes, the faster the robots detect and process all the targets.   To take the overall power 
consumption into the considerations, the total travel time of all the robots is a good measurement 
since robot movements usually consume higher percentage of power compared to the power 
consumption for the communication and onboard computation processing of the robots.  The 
robot/target distribution ratio errors could tell us how good the algorithm can achieve to 
dynamically allocate the robots into different targets dynamically in a more reasonable manner.   
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Figure 4. The search ending time vs. run times 
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Figure 5. The mean squared error of the robot/target distribution ratio vs. run times 
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Figure 6. Total travel time of all robots vs. run times 
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It is obvious that the random approach takes much longer time than the other two 
approaches and obtains the bigger error in the robot/target distribution ratio.   Although 
sometimes the QVP-PSO algorithm and VP-PSO algorithm have the similar performance 
under specific target configuration, overall the QVP-PSO algorithm outperforms the VP-
PSO algorithm in the search ending time, the total travel time, and the robot/target 
distribution errors under different target configurations. 

6. Conclusion 

The proposed QVP-PSO algorithm has the following characteristics: (1) Robots act 
independently, asynchronously, and in parallel, without maintaining a global model; (2) Robots 
use a simple control algorithm regardless of the changes under a dynamic environment; and (3) 
Robots can only communicate with their neighbors to share information; (4) the randomness of 
the robot movement has been reduced to achieve more reasonable robot/target distribution.  
Compared to the VP-PSO method, extensive simulation results demonstrate the higher 
performance of the QVP-PSO algorithm in three different measurements, i.e., search ending 
time, total travel time of robots (which is directly related to the overall power consumption of 
the system), and the robot/target distribution ratio errors.   
However, due to the dynamic characteristics of this distributed multi-robot system, it is difficult 
to estimate the target utility value with high accuracy because each individual robot makes its 
own decision independently based on its local view and some neighboring view. The robot 
sensor may also bring the noise for the target detection.  Probability approaches tend to be more 
robust in the face of sensor limitation and model limitations.  To improve the target detection 
rate and system robustness, the probability-based approaches will be investigated in the future.  
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