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Mechanism of Emergent Symmetry Properties  
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Katsuya Kanai, Koki Kikuchi and Xueshan Gao 

Chiba Institute of Technology 
Japan 

1. Introduction 

In order to create an autonomous robot with the ability to dynamically adapt to a changing 
environment, many researchers have studied robotic intelligence, especially control systems, 
based on biological systems such as neural networks (NNs), reinforcement learning (RL), 
and genetic algorithms (GA) (Harvey et al., 1993, Richard, 1989, and Holland, 1975). In a 
recent decade, however, it has been recognized that it is important to design not only robotic 
intelligence but also a structure that depends on the environment as it changes because the 
dynamics of the structural system exerts a strong influence on the control system (Pfeifer & 
Scheier, 1999, and Hara & Pfeifer, 2003). The behavior of a robot is strongly affected by the 
physical interactions between its somatic structure and the outside world, such as collisions 
or frictions. Additionally, since the control system, the main part of robotic intelligence, is 
described as a mapping from sensor inputs to actuator outputs, the physical location of the 
sensors and actuators and the manner of their interaction are also critical factors for the 
entire robotic system. Therefore, to design a reasonable robot, it is necessary to consider the 
relationship between the structural system and the control system, as exemplified by the 
evolution of living creatures. 
From this point of view, several researchers have tried to dynamically design structural 
systems together with control systems. Sims (Sims, 1994) and Ventrella (Ventrella, 1994) 
have demonstrated the evolution of a robot with a reconfigurable multibody structure and 
control system through computer simulation. The Golem Project of Lipson and Pollack has 
realized the automatic design and manufacture of robotic life forms using rapid prototyping 
technology (Lipson & Pollack, 2000). Salomon and Lichtensteiger have simulated the 
evolution of an artificial compound eye as a control system by using NNs and have shown 
that the robot creates motion parallax to estimate the critical distance to obstacles by 
modifying the angular positions of the individual light sensors within the compound eye 
(Salomon & Lichtensteiger, 2000). These researches have shown the importance of 
adaptation through not only intelligence but also the relationship between morphology and 
intelligence. However, the mechanism of the function emerging from such relationship or 
some kind of design principle is not fully understood yet. 
Meanwhile, for living creatures, symmetry properties may be a common design principle; 
these properties may have two phases, that is, the structural and functional phases. For 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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example, most legged creatures are symmetric in the structural phase and their gait, that is, 
the manner in which they actuate their left and right legs, is also symmetric in the functional 
phase. For the locomotion of a biped robot, Bongard et al. have demonstrated the 
importance of a symmetry structure from the viewpoint of energy efficiency (Bongard & 
Paul, 2000, and Bongard & Pfeifer, 2002). This is an example of effective symmetry structure 
from the viewpoint of engineering. However, the effectiveness of an asymmetry structure 
has also been shown in nature. Although insect wings to fly are symmetric, those to sing are 
generally asymmetric. One claw of the fiddler crab is extremely big as compared with 
another. The asymmetric brain structure of a fruit fly enhances its long-term memory 
(Pascual et al., 2004) and an asymmetric ear structure of barn owls allows accurate auditory 
localization (Kundsen, 2002). These examples indicate that since living beings must have 
created optimal mechanisms through interactions with the environment, the characteristics 
of symmetry or asymmetry are extremely important for not only the physical structure but 
also functionality, including control. Hence, since the symmetry properties and their 
concomitant functionality show the design principle of the entire system, the clarification of 
the mechanism of the emergence of symmetry properties can contribute to the development 
of a methodology for a robotic system that designs its own morphology and intelligence 
depending on the changing environment.  
From this point of view, we have studied the mechanism of symmetry properties emerging 
from the balance between structural and control systems by using an evolutionary robotic 
system with reconfigurable morphology and intelligence (Kikuchi & Hara, 1998, Kikuchi et 
al., 2001, and Kikuch & Hara, 2000). Here, as an example of our studies, we introduce the 
symmetry properties created by two relative velocity conditions, fast predator vs. slow prey 
and slow predator vs. fast prey, and by genotype-phenotype noise conditions, genetic errors 
due to a growth process. 

2. Task and Evolutionary Robotic System 

In this section, we introduce a task for a robot, a fitness criterion, and an evolutionary 
robotic system. 

2.1 Task and Evaluation 

The task given to the robot is to maintain a certain distance D from a target. The robot and 
the target are in an arena surrounded by walls, as shown Fig. 1. The target moves randomly 
and the robot behaves by using the morphology and intelligence automatically generated by 
genetic programming (GP). Note that, the short distance D means that since the robot chases 
the target, the predator chases the prey. On the other hand, the long distance D means that 
since the robot departs from the target, the prey runs away from the predator.  
A fitness value, F, is calculated according to the performance of the robot. The performance 
is evaluated by using a multiobjective function that is defined as 
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where X is the center of the robot, P is the center of the target, t is the time, T is the total 
evaluation time, H is the side length of the arena, i is the trial number, and N is the total 
number of trials. The robot obtains a high evaluation if it maintains D. Here, the weight α is 
determined by the distance between the robot and the target. When this distance is smaller 

than D, α is 2 /H D , and when it is larger than D, α is 1. Note that the value of 2H  

means the maximum distance of the robot and the target. Additionally, the smaller the 
fitness value, the better the performance.  When the robot collides with the target, the fitness 
value is 1.63 and when the robot maintains an objective distance, it is 0.0. 

2.2 Evolutionary Robotic System 

The robot is modeled as a cylindrical shape and has two visual sensors and two wheels with 
motors. The motion is calculated on the basis of a two-dimensional dynamic model that 
includes realistic physical conditions such as collisions and frictions. The equations of 
motion are given by 
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where M is the mass of the robot, x and y are the coordinates of the center of the robot, Ti is 
the torque of the motor, Rt is the wheel radius, r is the distance from the center of the wheel 
to the center of the robot (equals to the robot radius), F* is the friction with the floor, P* is the 
impact with the target or a wall, I is the moment of inertia, θ is the direction of the robot, and 
i is the wheel ID that is 0 for the left wheel and 1 for the right wheel, as shown in Fig. 2. Note 
that the origin is the center of the arena and the counterclockwise direction is positive, as 
illustrated in Fig. 1. Using these equations, the motions of the robot and target are simulated 
by a Runge-Kutta method. 

Objective 

distance circle

 
Figure 1. Simulation arena 
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Figure 2. Two-dimensional model of evolutionary robotic system 

3. Morphology and Intelligence Genes 

In this study, the evolutionary robotic system is optimized through the processes of GP: (1) 
development, (2) evaluation, (3) selection and multiplication, and (4) crossover and 
mutation. Under GP, each robot is treated as an individual coded by a morphology gene 
and an intelligence gene. In this section, we explain the coding method. 

3.1 Morphology Gene 
 

d=0.12 

SL SR

αRαL 

くL 

けL けR 

くR

Recognition range of sensor 

Robotic body 

 

Figure 3. Morphological parameters 

A morphology of a robot may be generally defined by using many kinds of elements such as 
the body shape, size, weight, rigidity, surface characteristics, and sensor-actuator 
arrangement. In this study, the morphology is represented by the physical arrangement of 
two flexible visual sensors, two fixed motors, and a cylindrical shape, as illustrated in Fig. 3. 
Here, two visual sensors SL and SR have three degrees of freedom: alpha, beta, and gamma. 
Alpha corresponds to the arrangement angle of the sensors on a circumference of a circle 
with a radius of 0.04 m ( °≤≤° 90,0 RL αα ), beta is the range of the field of view 
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( °≤≤° 50,0 RL ββ ), and gamma is the direction of the visual axis ( °≤≤°− 90,90 RL γγ ). Thus, the 

evolutionary robotic system has six degrees of freedom for the morphology gene. Note that 
the shaded areas show the recognition areas for the target; the sensor becomes “ON” when 
the target is recognized in this area. The sensor resolution is set to be 1 for simplicity. 

3.2 Intelligence Gene 

The intelligence gene of the robot is a computer program described as a decision tree that 
represents the relationship between the sensor inputs and the motor outputs. The decision 
tree is created by using two kinds of nodes--terminal nodes and nonterminal nodes--as 
shown in Table 1. The terminal nodes are the sensor nodes and motor nodes. The sensor 
nodes L and R correspond to the state of the two sensors SL and SR shown in Fig. 3, with 
“true” and “false” assigned to “ON” and “OFF.” The motor nodes have the action functions 
such as MOVE_F to move forward, TURN_L to turn left, TURN_R to turn right, MOVE_B to 
move backward, and STOP to stop. Figure 4 shows the behavior of these functions. The 
nonterminal nodes are function nodes, i.e., typical computer language commands such as 
IF, AND, OR, and NOT. The robotic intelligence gene is automatically created by combining 
these nodes. 

 Sensor nodes  L, R

 Motor nodes  MOVE_F, TURN_L, TURN_R, MOVE_B, STOP

 Function nodes  IF, AND, OR, NOT

Terminal nodes

Nonterminal nodes

 

Table 1. Node for decision tree 

 

 

MOVE_F MOVE_B TURN_L TURN_R STOP 

Traveling direction 

Wheel torque 

 

Figure 4. Robotic behaviors for each motor node 

4. Evolutionary Simulation I 

4.1 Conditions for Simulation 

In this study, to clarify the mechanism of emergent symmetry properties, we performed two 
simulations for different relative velocities of the robot: in Case A, the robot was twice as 
fast as the target and in Case B, the target was twice as fast as the robot. Since we set an 
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objective distance D as a short distance of 0.5 m, the robots mean the fast predator in Case A 
and the slow predator in Case B. 
The physical conditions were as follows. The length of one side of the arena H was 4.0m, the 
diameter of the robot and target d was 0.12 m, the evaluation time T ranged from 20.0 s to 
90.0 s, the maximum speeds of the robot and target were 0.2 m/s and 0.1m/s, respectively, 
in Case A and 0.1 m/s and 0.2 m/s, respectively, in Case B, the sampling time of the sensor 
was 100 ms, and the weight of the robot and the target M was 0.4 kg. The recognition error 
of the sensors was set from -3.0° to 3.0° (randomly determined from a normal distribution). 
The GP parameters were set as follows. The population size was 300, the generation was 
300, the selection ratio was 0.8, the crossover ratio was 0.3, and the mutation ratio was 0.1. 
The initial positions and directions of the robot and target were randomly determined from 
a uniform distribution within the center region. 

4.2 Definition: Indices of Symmetry Properties 

To analyze the structural symmetry properties of the robotic system, we defined three 
indices: || RL αα − , || RL ββ − , and || RL γγ − . Hence, the smaller the indices, the higher  was 

the structural symmetry. In the development of the first GP process, these values were 
uniformly generated to avoid bias.  

 

Actual cross point: Cpa

Actual cross point 

angle: θcpa 

Traveling direction 

line

Cross points: Cp 

Cross point angles: θcp 

 

Figure 5. Definition of cross-points and cross-point angles 

Additionally, we defined another index for the state space created by the visual sensors. As 
illustrated in Fig. 5, the values Cp represent the cross-points of the recognition areas of the 
two visual sensors, and the values θcp represent the angle between the traveling direction 
line and the line connecting the cross-points and the center of the robot. Note that the 
maximum cross-point number is four, since each visual sensor has two edges of recognition 
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area. We further defined the cross-point that is employed for action assignment as an actual 
cross-point Cpa. Similarly, θcpa represents the actual cross-point angle. 
Using these parameters, we performed 20 simulations for each case and analyzed elite 
individuals in the final generation of each simulation. 

4.3 Results 

Table 2 shows the fitness averages of the elite individuals obtained in Cases A and B and the 
standard deviations. The fitness in Case A is better than that in Case B, since the robot is 
faster than the target and can quickly approach it. Here, the fitness value of 0.218 means that 
the robot departs averagely 0.14 m inside from the objective distance circle shown in Fig. 1, 
and 0.278 means that it departs averagely 0.16 m inside. 

 

  Case A Case B 

Ave. 0.218  0.278  

Std. dev. 0.056  0.086  

Table 2. Fitness in Cases A and B 

 

Morphology genes α R=65, く R=35, け R=-32

[deg] α L=37, く L=27, け L=64

  ( if ( not L)

Intelligence genes       TURN_L

      MOVE_F)
 

Table 3. Genotype of typical individual obtained in Case A (Type I) 

Table 3 and Fig. 6 show the genotype and phenotype of a typical individual obtained in 
Case A, respectively. This individual divides the state space into two regions and assigns 
two actions. Here, we defined this kind of individual as Type I. This type occupies 52.5% out 
of 200 individuals in Case A and accomplishes the task of maintaing a certain distance from 
the target by using the following simple strategy. As shown in the intelligence gene of Table 
3, if L is not true, then TURN_L is executed; in other words, if the left visual sensor does not 
recognize the target, the robot turns left (State 1 in Fig. 6). Otherwise, if L is true, MOVE_F is 
executed, that is, if the left visual sensor recognizes the target, the robot moves forward 
(State 2 in Fig. 6). Here, MOVE_F in the state space is arranged in the right front of the robot 
and TURN_L occupies the rest of the state space. Further, the robot has two visual sensors, 
but actually uses only one. In Case A, the robot is two times faster than the target and 
collides with it if the MOVE_F is arranged in front of the robot. Thus, the Type I robot avoids 
a collision and maintains the objective distance by shifting the MOVE_F from the front and 
rotating frequently. 
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State 1 State 2

TURN_L

MOVE_F

 
Figure 6. Phenotype of typical individual expressed by the genotype of Table 3 (Type I) 

Morphology genes α R=63, く R=27, け R=82

[deg] α L=48, く L=50, け L=30

  ( if L

Intelligence genes       (if R TURN_L MOVE_F)

      (if (not R) TURN_R MOVE_B))  

Table 4. Genotype of typical individual obtained in Case B (Type II) 

 
MOVE_F

MOVE_B

TURN_RTURN_L

Cpa 

State 3State 2State 1 State 4

 

Figure 7. Phenotype of typical individual expressed by the genotype of Table 4 (Type II) 

Next, Table 4 and Fig. 7 show the genotype and phenotype of a typical individual obtained 
in Case B. This individual divides the state space into four regions and assigns four actions. 
Here, we defined this kind of robot as Type II. This type occupies 57.5% out of 200 
individuals in Case B and accomplishes the task by using the following strategy. As shown 
in the intelligence gene of Table 4, if L and R are true, then TURN_L is executed, that is, if 
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both sensors recognize the target, the robot turns left (State 1 in Fig. 7). If L is true and R is 
not true, then MOVE_F is executed; in other words, if the left visual sensor recognizes the 
target and the right visual sensor does not, the robot moves forward (State 2 in Fig. 7). If 
both R and L are not true, then TRUN_R is executed, that is, if neither the left visual sensor 
nor the right visual sensor recognizes the target, the robot turns right (State 3 in Fig. 7). If L 
is not true and R is true, MOVE_B is executed, that is, if the left visual sensor does not 
recognize the target and the right visual sensor does, the robot moves backward (State 4 in 
Fig. 7). Here, MOVE_F in the state-action space is arranged in the front of the robot, TURN_L 
and TURN_R are to the left and right of the MOVE_F region, and MOVE_B is between 
MOVE_F and the robot. In Case B, the robot is two times slower than the target and needs to 
approach the target along the shortest path. Therefore, MOVE_F should be arranged in the 
front of the robot. Additionally, the arrangement of TURN_L and TURN_R for MOVE_F 
allows a fast search and the centering of the target. Furthermore, when the robot gets too 
close to the target, it moves backward and maintains a distance between the robot and the 
target. With this state-action space, Type II obtains better fitness as compared to the others 
in Case B. 

4.4 Discussion: Structural Symmetry Properties 

Table 5 shows the averages of the structural indices of the symmetry properties: || RL αα − , 

|| RL ββ − , and || RL γγ − , for the elite individuals in the final generation and the standard 

deviations. Since the standard deviations were high and the averages did not converge, 
distinguishing structural symmetry properties represented by the arrangement of the two 
visual sensors were identified. This result shows that a structural symmetry property does 
not clearly manifest in simulation without considering the physical factor such as sensor 
weight. 

  Case A [deg] Case B [deg] 

  Ave. Std. dev. Ave. Std. dev. 

|| RL αα −  29.5 27.2 25.5 19.4 

|| RL ββ −  14.3 7.9 14.5 13.3 

|| RL γγ −  37.4 29.1 42.4 36.0 

Table 5. Results of structural indices obtained in Cases A and B 

4.5 Discussion: Functional Symmetry Properties 

From the viewpoint of state-action space, we discus the phenotype of Type II. Figure 8 
shows the state-action space of Type II and the physical arrangement of the two visual 
sensors. As shown by the broken lines, the state-action space of Type II is symmetric about 
the line between the actual cross-point and the center of the robot, because MOVE_F and 
MOVE_B are arranged in the front and back for the actual cross-point and TURN_L and 
TURN_R are to its left and right. In this study, we define such symmetry of the state-action 
space as functional symmetry. This result shows that from the viewpoint of physical 
structure, the arrangement of the two visual sensors is not symmetric (the lower area 
marked by the broken line in Fig. 8), but from the viewpoint of control, the state-action 
space is symmetric. Table 6 shows the incidence ratio of an individual with functional 
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symmetry obtained in Cases A and B. Since the ratios are 10.0% in Case A and 57.5% in Case 
B, the relative velocity difference must be one of factors that generate the functional 
symmetry. Table 7 shows the average of the actual cross-point angle of the individual with 
functional symmetry obtained in Cases A and B. Here, if the actual cross-point is 0 [deg] 
(i.e., exists on the traveling direction line), it means that the state-action space is almost 
symmetric about the traveling direction. The actual cross-point angle in Case B is lower than 
that in Case A, that is, the individual obtained in Case B is more symmetric. Furthermore, as 
shown in Fig. 9, 25% of individuals with functional symmetry in Case A created the actual 
cross-point within 10 [deg], while the percentage of individual in Case B was 90%. This 
result suggests that in Case B, most of the robotic systems designed the actual cross-point in 
front of the robot and assigned actions based on this point. Therefore, the condition in Case 
B tends to generate functional symmetry about the  traveling direction as compared with 
that in Case A. Furthermore, Fig. 10 shows the relationship between the actual cross-point 
angle and the fitness in Case B. This result shows that since the correlation is 0.38, the 
smaller the actual cross-point angle (i.e., the more the functional symmetry), the better the 
fitness. This is considered to be due to the following reason. In Case B, the robot consumes 
considerable amount of time in chasing the target because the target velocity is twice that of 
the robot velocity. Thus, the Type II robot has the fastest approach by creating a region of 
MOVE_F in the travelling direction, as shown Fig. 8. In addition, this type of robot can 
quickly cope with the random behavior of the target by symmetrically assigning actions 
based on the actual cross-point. Hence, functional symmetry properties about the traveling 
direction emerging from the arrangement of the two visual sensors are one of the important 
design principles in Case B. These result may show that, in nature, since a slower predator, 
for example, a tiger, compared with a prey must efficiently chase, it almost creates the 
symmetric stereo-vision. 

 
MOVE_F

MOVE_B

TURN_RTURN_L

Cpa 

State 3State 2State 1 State 4

Structural 
asymmetry 

Functional 

symmetry 

 

Figure 8. State-action space of individual with functional symmetry 

Case A [%] Case B [%] 

10.0 57.5  

Table 6. Incidence ratio of individual with functional symmetry obtained in Cases A and B 
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  Case A [deg] Case B [deg] 

Ave. 12.5  4.6  

Std. dev. 3.4  3.7  

Table 7. Actual cross-point angle obtained in Cases A and B 
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Figure 9. Comparison of actual cross-point angle distribution obtained in Cases A and B 
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Figure 10. Correlation between actual cross point angle and fitness obtained in Case B 

5. Evolutionary Simulation II 

5.1 Condition for Simulation 

To investigate the influence of genetic noise on the manifestation of symmetry properties, 
we performed same simulations identical to Evolutionary Simulation I for the noise ratios: 
0%, 25%, 50%, 75%, and 100%. Here, the genetic noise is a genotype–phenotype noise (G-P 
noise) that is added during the transformation process from the genotype to the 
phenotype. From this, an individual with same genotype is translated to slightly different 
phenotypes and is given a different fitness value. This G-P noise may be similar to an 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

244 

acquired disposition in nature. The G-P noise adds a disturbance from -1.0 [deg] to 1.0 
[deg] to α, く, and け of the genotype according to the normal probability distribution. Note 
that the change in the sensor direction in the  traveling direction due to this G-P noise is 
less than 2.0 [deg], and that the change in the edge of the field of view is less than 2.5 
[deg]. 

5.2 Results and Discussion 

Table 8 shows the incidence ratio of an individual with functional symmetry for different 
G-P noise ratios. From this, we find that in Case A, the incidence ratio of functional 
symmetry gradually decreases with an increase in the G-P noise, and in Case B, there is a 
peak in the incidence ratio of functional symmetry depending on the G-P noise ratio. We 
consider this mechanism as follows. Type I is robust against the G-P noise as compared 
with Type II. Since Type II designs the state-action space based on the cross-point, a 
change in the cross-point due to the G-P noise deteriorates the fitness. However, Type I is 
not affected much, since it does not have a cross-point. Thus, in Case A, Type II is 
eliminated with an increase in the G-P noise. Consequently, the individuals in Case A lose 
one visual sensor through evolution and become Type I with high robustness in the 
presence of G-P noise. The Type I visual sensor has a bias angle (approximately 30 [deg]) 
for the traveling direction and is asymmetric. Hence, Case A creates functional 
asymmetry.  
On the other hand, Type II must use the state-action space with a cross-point for the fastest 
chase. Therefore, Type II is not eliminated by increasing the G-P noise in Case B. Moreover, 
a small G-P noise increases the incidence of functional symmetry. Hence, Case B creates 
functional symmetry. From this, in this case study, we conclude that Case A , in which the 
robot is faster, creates functional asymmetry and Case B, in which the target is faster, creates 
functional symmetry. 

G-P Noise Case A Case B 

0% 10.0  57.5  

25% 14.0  57.5  

50% 6.0  80.5  

75% 5.0  57.5  

100% 0.5  56.5  

Table 8. Incidence ratios of individual with functional symmetry 

6. Conclusions 

We focused on symmetry properties and performed computational simulations by using an 
evolutionary robotic system with reconfigurable morphology and intelligence. First, we 
investigated the mechanism of emergent symmetry properties for two different relative 
velocities of the robot and the target and the influence by which the genetic noise gives to 
the symmetry properties. Although, from the viewpoint of physical structure, 
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distinguishing structural symmetry properties were identified in simulation without 
considering the physical factor such as sensor weight, from the viewpoint of control, 
functional symmetric properties were manifested; functional asymmetry was designed in 
Case A in which the robot was faster than the target, and functional symmetry was designed 
in Case B in which the robot was slower than the target. Genotype-phenotype noise, which 
creates different individuals from the same genotype, improved the robustness of the robot 
in Case A and raised the incidence ratio of functional asymmetry. On the other hand, a small 
genotype –phenotype noise improved the incidence ratio of functional symmetry in Case B. 
In a future study, we intend to investigate the relationship between the sensory system and 
the driving system using an evolutionary robotic system that is capable of changing not only 
the sensor arrangement but also the motor arrangement. Additionally, we aim to further 
investigate the design principles leading to structural symmetry. Furthermore, we will 
employ physical experiments and attempt to reveal the characteristics of symmetry 
properties in the real world. 
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This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.
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