
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

11

Learning to Walk with Model Assisted
Evolution Strategies

Matthias Hebbel and Walter Nisticò
Technische Universität Dortmund

Germany

1. Introduction

Many algorithms in robotics contain parameterized models. The setting of the parameters in
general has a strong impact on the quality of the model. Finding a parameter set which
optimizes the quality of the model typically is a challenging task, especially if the structure
of the problem is unknown and can not be specified mathematically, i.e. the only way to get
the function value for a certain parameter set is to test them on the real problem. Controlling
the robot’s legs in order to walk is an example of such kind of black box approach. The walk
is usually defined by three-dimensional trajectories for the movement of the legs and feet.
The parameters (e.g. step height, step length, timings etc.) of these trajectories affect the
stability and speed of the walking gait. Finding a parameter set which creates an optimal (in
this case fast) walk can not be done by hand, since the direct effect of a parameter change is
unclear. This chapter describes how Evolution Strategies can be used for the gait
optimization of a four-legged robot whose walk is defined by 31 parameters and presents
how Model Assisted Evolution Strategies lead to a faster convergence of the optimization of
the problem.
At first an introduction to the standard Evolution Strategy with self-adaptation of the
mutation strengths is given. The individuals of the Evolution Strategy here define a set of
walk parameters. To evaluate the fitness of each individual, the robot has to walk for a
certain time with this parameter setting and measure the resulting walk speed. This is not
only time consuming but also causes a lot of wear out of the robot – especially parameters
resulting in stumbling or tumbling can damage the robot. Consequently, the goal is to
minimize the amount of real fitness evaluations on the robot. For that reason Model
Assisted Evolution Strategies will be introduced. These strategies use the fitness
measurements as obtained samples from the search space to predict the fitness of the
individuals and – based on the model – sort out the least promising individuals, resulting in
a faster convergence of the optimization process.
Since the quality of the model used for fitness prediction has a big effect on the
convergence rate of the Model Assisted Evolution Strategy, mechanisms for controlling
the impact of the model will be explained. The chapter closes with the results and
comparisons of the walk learning process of the standard Evolution Strategy and its
model assisted modifications.

Source: Frontiers in Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education
and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Frontiers in Evolutionary Robotics

210

2. The Standard Evolution Strategy

The Evolution Strategy (ES) has been developed by Schwefel (Schwefel, 1975) and
Rechenberg (Rechenberg, 1973) for the optimization of technical problems. It is inspired by
the biological evolution and is working with a population of individuals. Each individual
represents a point x

r
in the real-valued search space; the point x

r
is encoded in the object

parameters 1, , nx xK of the individual and represents its genes. In terms of Evolution
Strategies each individual can be assigned a function value ()f x

r
 (in this case scalar)

representing the quality of the solution, the so called fitness which has to be optimized. The
process of the evolution is shown in Fig. 1. An amount of µ individuals constitute the parent
population and create a new offspring population of the next generation with λ individuals.
An offspring individual is created by recombining the real-valued genes of ρ randomly
selected parents followed by a random mutation of each object parameter such that the
offsprings differ in their genes from their parents. The fitness of each individual in the
offspring generation will be measured and the selection operation chooses the µ best
individuals to establish the new parent generation.

Figure 1. Optimization cycle of the standard Evolution Strategy

Offspring individuals are generated by means of recombination from the parent individuals.
They can be recombined in a discrete or intermediate way. In case of the discrete
recombination each object parameter ix is selected randomly from the according object
parameter ip from one out of the ρ parents. The intermediate recombination on the other
hand creates the components ix out of the mean value of all ip of the ρ parents. In both
recombination variants the ρ parents are chosen randomly from the parent population, their
fitness does not affect the probability to be chosen.
The leading part in the genetic modification of individuals is played by the mutation
operator. The mutation operator is executed after the recombination. Each object parameter

ix is modified by adding a normally distributed random value ()20, iN σ with expected value
0 and standard deviation iσ :

 ()20,i i ix x N σ= +% . (1)

The standard deviation conforms to the mutation strength: the bigger the standard
deviation, the higher is the probability of a greater mutation and vice versa. Each object
parameter ix has its own mutation strength iσ . The values of the mutation strengths iσ have a
big effect on the progress speed of the evolution process. With a mutation strength chosen

Selection
Best offsprings are selected

as new parents

Reproduction
Genes are copied, mixed

and mutated

Parents
Properties defined by

genes

Offsprings
New properties due to

different genes

www.intechopen.com

Learning to Walk with Model Assisted Evolution Strategies

211

too big, the chance to overshoot the optimum rises, while small mutation strengths increase
the probability to get stuck in a local optimum and furthermore the speed to approach the
optimum is unnecessary small. Hence it is very important to adapt the mutations strengths
to the current situation. For that reason Rechenberg developed the 1 5 rule for an Evolution
Strategy with 1 parent and 1 offspring. He proved for two models that the mutation strength
is optimal if 1 out of 5 generated offsprings is fitter than the previous parent (Rechenberg,
1973). In case of a bigger success rate the mutation strength is too small and has to be
increased, otherwise it is too big and has to be decreased.
Schwefel improved the control of the mutation strengths and extended it to Evolution
Strategies with more than 1 offspring (Schwefel, 1975). Each object parameter carries its own
mutation strength (strategy parameter). These strategy parameters are also included in each
individual and are selected and inherited together with the individual’s assignments for the
object parameters. Thus, they have a higher probability to survive when they encode object
parameter variations that produce fitter individuals. This adaptation of the mutation
strength is called self-adaptation (Beyer, 1996). The recombination of the strategy
parameters can be discrete or intermediate. The mutation of the strategy parameters is
executed before the mutation of the object parameters with

 () ()()exp 0,1 0,1i i iN Nσ σ τ τ′= ⋅ ⋅ + ⋅% . (2)

The mutation consists of the random number ()0,1Nτ ′ ⋅ which is equal for all variances iσ

of the individual while the random number ()0,1iNτ ⋅ is varied for each iσ . Schwefel

recommends τ ′~ 1 2n฀ and τ ′~1 2 n for an n-dimensional search space.

After the fitness values of the offspring individuals have been assigned, the selection
operator selects the parents for the next generation. In case of the so called “+” strategy it
chooses the µ best individuals out of the offspring and the parent population, while in case
of the ”,” strategy only the best µ individuals out of the offspring population are selected to
become the parents of the next generation. Additionally the lifetime of an individual can be
limited to κ generations in case of the + selection, creating a mixture of the + and , selection.
The evolution loop can be stopped after a satisfying solution has been found, a number of
generations have passed or the fitness does not improve over a number of generations,
indicating a convergence.

3. Model Assisted Evolution Strategies

The basic idea of a Model Assisted Evolution Strategy (MAES) is to generate a higher
amount of offsprings pλ with pλ λ> and to preselect the most promising candidates. Out of
the pλ offsprings the λ best ones will be preselected based on their predicted fitness. The
fitness is predicted from a model which takes the previously measured fitness values into
account. The λ preselected individuals will afterwards be evaluated and the µ best chosen as
parents for the next generation like in the standard Evolution Strategy, Fig. 2 visualizes this
extension to the standard Evolution Strategy. Notice that the fitness of the offsprings which
are available to become parents is always evaluated on the real problem and therefore the
individuals are always assigned the true fitness. This way a convergence to a wrong
optimum caused by wrong fitness predictions by the model is excluded.

www.intechopen.com

Frontiers in Evolutionary Robotics

212

If the model manages to sort out the worst candidates and to preselect the best ones, the
convergence of the Evolution Strategy is accelerated, even though the number of real fitness

evaluations is the same as in the case of the standard Evolution Strategy. The following
section will explain the three models used in this work for fitness approximation.

Figure 2. Evolution loop of a Model Assisted Evolution Strategy

3.1 Modelling the Search Space

During the evolution process the fitness measurements give an indication for the structure
of the search space, they represent known scalar function values. Based on these known
function values the model has to be able to make predictions of function values of
unobserved points. Mathematically speaking the model must approximate the function

 based on d previously observed data points which are stored (with the
according measured fitness values) in the data base D for any query point q D∉

r
. The

estimated function value will be called ()f̂ q
r

 and should be close to the real (unknown)
function value ()f q

r
.

Principally the model can be global or local. Global models are valid for the whole search
space and can be used for estimation of any query point q

r
. They have only to be calculated

when new points are integrated in the underlying data base D, i.e. for Evolution Strategies
after each generation. The biggest problem for global models is the typically small number
of points in D relative to the dimension of the usually multimodal search space, leading to a
poor general approximation. Local models on the other hand are only valid for a small
region around a query point q

r
and have to be recalculated for each approximation of ()f̂ q

r
.

Local models normally only take a subset of points in D closest to q
r

into account since these
points carry the most information about ()f̂ q

r
. Notice that the data base D grows during the

evolution process: each individual whose true fitness is evaluated is added with its
measured fitness value.
The simplest model is the Nearest Neighbour approximation. It estimates the function
value of a query point q

r
with the function value of its nearest neighbour among the

previously measured points in the data base D. The distance ∆ between two points x
r

and q
r

can be the Euclidian distance

 ()2

1

(,)

n

i i

i

x q x q

=

∆ = −∑r r
 (3)

Selection
Best offsprings are selected

as new parents

Reproduction
Genes are copied, mixed

and mutated

Parents
Properties defined by

genes

Pre-offsprings
New properties due to

different genes

Offsprings
Better properties than

pre-offsprings

Preselection
Most promising offsprings
selected for real evaluation

www.intechopen.com

Learning to Walk with Model Assisted Evolution Strategies

213

which is appropriate if each dimension has the same scaling and a comparable gradient. If
the dimensions have different scales, they can be standardized to have a standard deviation
of 1 to make them comparable. For distance calculation each dimension i then has to be
scaled by the reciprocal of the standard deviation ()()var ,1l

i ix l dσ = ≤ ≤ with the
weight 1i iw σ=

 ()()
2

1

(,)

n

i i i

i

x q w x q

=

∆ = −∑r r
. (4)

In case of this Nearest Neighbour model the approximated function value ()f̂ q
r

is given by

 () () (){ }()
min min

1, ,

ˆ , argmin ,l

l d

f q f x x x q
=

= = ∆
K

r r r r r
 (5)

This model is computationally very efficient; however it has the disadvantage that it does
not interpolate between measured points which could lead to the problem that several
offsprings will be assigned the same fitness value and the preselection operation can not
distinguish their quality.
The polynomial model uses linear regression to fit the measured points in D to a
polynomial function to overcome this problem. At first the standard linear regression will be
explained and then extended to the weighted linear regression.
An n-dimensional polynomial of second-order is specified by

 () 0 1

1 1

ˆ
i i n i j i j

i n i j n

f x a a x a x x− + +

≤ ≤ ≤ ≤ ≤

= + +∑ ∑r
 (6)

with the coefficients ia . The problem in regression is now to determine the coefficients ia
such that ()f̂ x

r
approximates ()f x

r
in all d points of the data set D as good as possible. In

mathematical notation the squared error function

 () () ()()
2

() ()

1

ˆ
d

i i

i

a f x f xε
=

= −∑r r r
 (7)

has to be minimized. Written as a matrix equation with the measured function values
(1) (), , dy yK in D

 (1) (), ,
T

dy y y⎡ ⎤= ⎣ ⎦
r

K (8)

and the matrix X representing the second-order polynomial

()

()

2
(1) (1) (1)
1 2

2
() () ()
1 2

1

X

1

n

d d d
n

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

M M M O M

L

 (9)

the equation

 Xy a= ⋅
r r

 (10)

holds for an exact approximation.

www.intechopen.com

Frontiers in Evolutionary Robotics

214

If the polynomial can not approximate the function values exactly, an error term v
r

has to be

added:

 Xy a v= ⋅ +
r r r

. (11)

As mentioned before, the error term ()aε
r

has to be minimized and equation (7) can be
written in matrix notation as

 () () ()() () ()
2

() ()

1

ˆ X X

d
Ti i T

i

a f x f x v v y a y aε
=

= − = ⋅ = − ⋅ − ⋅∑r r r r r r r r r
. (12)

For the minimization of ()aε
r

it is sufficient to postulate that ()() 0aε∇ =
r

, resulting in the
solution for the coefficients a

r

 ()
1

X X XT Ta y
−

=
r r

. (13)

This regression method can be used to build a global model if all points in D are used to
estimate the coefficients a

r
. The disadvantage is that an underlying multimodal search space

requires a polynomial of high order to be approximated closely. Unfortunately the number
of coefficients rises disproportionately with the order of the polynomial; a polynomial of
second order already has ()()1 2 2n n+ + coefficients (Jin, 2003) and still can only
approximate the function with a unimodal polynomial. This least square method requires at
least as many samples in the data base D as coefficients exist.
This problem can be overcome with a local model. The model becomes local if the distances
to the query point are weighted and represent the fact that the close points carry more
information about the query point q

r
than points which are further away. All points in D can

be taken or, since far points would get a weight close to 0, only a subset of the k closest
points. The weight lw is a function of the distance between the query point q

r
and the l-th

measured point ()lx
r

in the data base. As suggested in (Hoffmann & Hölemann, 2006) the
weight is determined by a Gaussian kernel function

 ()() ()
2

() (), exp ,l l
lw x q x q

⎛ ⎞∆ = −∆⎜ ⎟
⎝ ⎠

r r r r
. (14)

The distance is measured as suggested in equation (4).
For the local model a polynomial of first order will be used which is given for an n-
dimensional space by

 () 0

1

ˆ
n

l l

l

f x a a x

=

= +∑r
 (15)

with the coefficients 0 1, , na a +K . The weights for the k points are stored in the diagonal matrix

1

2

0 0

0
W

0

0 0 k

w

w

w

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

O M

M O O

L

 (16)

and the error function (12) results in the weighted case to

www.intechopen.com

Learning to Walk with Model Assisted Evolution Strategies

215

 () () ()X W X
T

a y a y aε = − ⋅ − ⋅
r r r r r

. (17)

The optimal coefficients then can be calculated with

 ()
1

X WX X WT Ta y
−

=
r r

. (18)

Another used model is the approximation with a Gaussian Process. The Gaussian Process is
a probabilistic model which can calculate besides the predicted value also a confidence
value representing the certainty of the prediction. In this work the implementation of
Rasmussen with automatic relevance determination has been used. Explaining prediction
with a Gaussian Process in detail would go beyond the scope of this chapter, very good
detailed descriptions of Gaussian Processes are given in (Gibbs & MacKay, 1997; Rasmussen
& Williams, 2006).

3.2 Controlling the Model Impact

Theoretically the Model Assisted Evolution Strategy already converges faster than the
standard Evolution Strategy when the model performs better than a random preselection of
the individuals would perform (Ulmer et al., 2004). However for a model which performs
worse than a random selection, the progress speed can be reduced or optima might even not
be reached because the individuals leading towards the optimum always get sorted out by
the preselection. For that reason it makes sense to control the impact of the model based on
the capability of the model to preselect the individuals.

For the preselection process the capability of the model to select the most promising
individuals is of importance, while the ability to estimate the exact fitness value is of little
interest. Thus the quality of the model is defined according to (Ulmer et al., 2004; Jin et al.,
2003), as follows: Since only the real fitness values of the λ offsprings are known, the quality
will be evaluated based on the comparison of the selected µ individuals based on the real
fitness measurement and the best µ individuals that would have been selected based on the
predicted fitness. The λ offsprings are sorted according to their true fitness and a weight

()iλ − with i representing their position is assigned to each individual. Thus the individual
with the best fitness would get a weight ()1λ − , the second best ()2λ − etc. Now the
weights for the individuals that would have also been selected by the fitness estimated by
the model are summed up:

 ()
µ

λ
=

= −∑
1

i

i

Q g i (19)

with ig =1 if the individual would have been selected and ig =0 otherwise. This quality
measure takes the true rank of the individuals into account and reflects the fact that a
wrongly classified best individual is punished more than for example a missed second best.
The maximum quality as a result is given by

 ()
()

1

1

2

max

i

Q i

µ
µ µ

λ µλ
=

+
= − = −∑ (20)

and the quality of a random preselection is defined by

www.intechopen.com

Frontiers in Evolutionary Robotics

216

()()

()
()

µ λ µ
µ µ

µ

λ

µ

µ λ µ
λ

µ λ

−

−

= =

− −
= ⋅ − =∑ ∑

2

1 1

1 2 1

2

i irand

i i

Q i i . (21)

Two approaches based on the current quality of the preselection to influence the impact of
the model will be used in this work.

The Controlled Model Assisted Evolution Strategy (C-MAES) adapts the influence of the
model by varying the amount of offsprings pλ which will be evaluated by the model. A good
quality of the model results in a bigger trust in the model and pλ can be increased, while for
a poor model quality pλ has to be decreased. After each generation t the selection
quality ()tQ gets re-evaluated and (1)t

pλ + adapted according to the control law suggested by
(Ulmer et al., 2004). If the quality is better than the random quality, the amount of offsprings
is increased by

()

(1) ()

p

max t
t t
p p max rand

Q Q

Q Q
λλ λ δ+ −

= + ⋅
−

, (22)

if the quality on the other hand is worse than the random quality, the model impact is
decreased by

()

(1) ()

p

max t
t t
p p rand

Q Q

Q
λλ λ δ+ −

= − ⋅ . (23)

The factor
pλδ denotes the adaptation rate.

Hoffmann and Hölemann suggest the adaptation of the size of the offspring generation λ in

order to have a better control over the model impact (Hoffmann & Hölemann, 2006). This

variant is called λ-Controlled Model Assisted Evolution Strategy (λ-CMAES). Here the

amount of offsprings pλ that is undergoing the preselection is kept constant. The idea is that in

case of a good quality of the preselection only a smaller amount of offsprings λ has to be

evaluated on the real problem, since in case of a good model already the best individuals from

the pλ have been preselected. The amount of offsprings (1)tλ + for the next generation 1t + is

updated according to the following control laws: if the current model quality is better than a

random model, i.e. ()t randQ Q> , the (1)tλ + is decreased, giving more trust in the model by

()

(1) ()max ,
rand t

t t

rand

Q Q

Q
λλ λ δ µ+

⎛ ⎞−
= − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
. (24)

If the model actual quality is worse than the quality of the random model, the trust in the
model is decreased by increasing (1)tλ + according to

()

(1) ()min ,
max t

t t
pmax rand

Q Q

Q Q
λλ λ δ λ+

⎛ ⎞−
= + ⋅⎜ ⎟⎜ ⎟−⎝ ⎠

. (25)

A particularity to be mentioned is that the previously explained quality calculation becomes
unstable for λ µ= since all individuals would always be selected correctly. To ensure a
sufficient statistical basis, µ used in the quality calculation is replaced by 2µ λ=% if λ drops
below 2µ (Hoffmann & Hölemann, 2006).

www.intechopen.com

Learning to Walk with Model Assisted Evolution Strategies

217

4. Learning to Walk with Evolution Strategies

The performance of the different Evolution Strategies will be evaluated for a robot learning
to walk. The problem of learning to walk is reduced to optimizing parameters for a given
parameterized model which generates walk movements for a robot.
The used robot platform for the presented research is a simulated model of the formerly
commercially available Sony Aibo ERS-7 shown in Fig. 3. The Aibo is a quadruped robot
with three degrees of freedom in each leg, i.e. a hip abduction, a hip flexion and a knee
flexion joint. SimRobot (Laue et al., 2006) has been used as the simulator. It is a general robot
simulator using the OpenDynamicsEngine for the physical simulation. The physical
properties of the simulated robot like maximum force and maximum speed of the motors in
the joints have been specially trained to behave like the joints of the real robot.

Figure 3. Sony Aibo robot ERS-7

The most significant achievement concerning the walk on this robotic platform has been
presented by Hengst et al. with the so-called PWalk (Hengst et al., 2002) which achieves a
very good stability using a particular posture of the front legs, where the contact point with
the ground is located on the forearm instead of the paw. As shown in Fig. 4., this approach
moves the robot’s legs on predefined loci. The required joint angles for the movement of the
legs are then calculated using inverse kinematics. Following a trot gait, the two diagonal
opposite legs are always moved at the same time, i.e. two legs are in the air while the other
two legs remain in contact with the ground. The loci defining the foot movement are
represented in a parameterized form (Hebbel et al., 2006). Each locus is defined by four 3-
dimensional points 1 4, ,P PK both for the front and hind legs (see Fig. 4.). The time parameter

stept defines the total time for a complete step. Additionally 3 timing parameters 1 2 3, ,t t t are
used for each locus to specify the relative amount of time needed for the foot to travel from
vertex iP to 1iP+ for1 4i≤ < . These relative times sum up to 1, consequently the time 4t to
travel from 4P to 0P is defined by 4 1 2 31t t t t= − − − . Thus, each locus is well-defined by
the 3 4⋅ parameters 1 4, ,P PK , the 3 timing parameters 1 2 3, ,t t t and one global timing
parameter stept , summing up to 16 parameters for one locus. The loci of the front and hind
legs are specified separately, but the global time parameter stept is shared, hence the total
amount of parameters is 31.
Optimizing these 31 parameters by hand is not feasible and it has become state-of-the-art to
use machine learning algorithms to optimize the walk parameters (Kohl & Stone, 2004;
Röfer 2004; Hebbel et al., 2006). The criterion to be optimized is the walk speed of the robot.
In this case only the straight forward walk is optimized. An individual defines with its 31
object parameters the walk movement and its fitness is evaluated by letting the (simulated)

www.intechopen.com

Frontiers in Evolutionary Robotics

218

robot walk for an amount of time and measure its speed. Individuals which result in a walk
which is either not straight or lets the robot fall on its side are assigned the worst fitness
value, zero. The offsprings have been evaluated in parallel on a compute cluster with 60
nodes, allowing an acceptable simulation time.

Figure 4. Schematic representation of the leg movement

5. Results

For all experiments the basic settings of the ()5,30 Evolution Strategy have been used: the
population size of the parents was 5, the size of the offspring generation 30. The selection
was a comma selection which ensures a good performance of the self-adaptation of the
mutation strengths. The recombination was intermediate and the first parent generation was
randomly initialised. Each strategy has been run until 7000 fitness evaluations have been
exceeded and repeated with exactly the same settings at least 15 times. The resulting fitness
curves of the runs have been averaged to suppress random fluctuations.
At first the performance of the not controlled Model Assisted Evolution Strategies has been
compared to the standard Evolution Strategy. The size of pλ has in this experiment been
constantly set to 2 60pλ λ= = . In case of the polynomial model the 150 closest neighbours to
the query point q

r
have been used to build the local polynomial model. The Gaussian Process

was trained with the 2λ most recently measured fitness evaluations (Ulmer et al., 2003).
Fig. 5 shows the results: all model assisted strategies converge much faster towards an
optimum fitness of approximately 66 than the standard Evolution Strategy. All model
assisted strategies have found the optimum at the latest after 5000 fitness evaluations. The
standard Evolution Strategy however has not reached this optimum after 7000 fitness
evaluations. Apparently the capability to model the search space is reflected in the
convergence speed. The Gaussian Process model converges fastest closely followed by the
polynomial model and the nearest neighbour model.
In the next experiment the effect of the Controlled Model Assisted Evolution Strategy and
the λ-Controlled Model Assisted Evolution Strategy was analyzed. For this experiment the
polynomial model has been used even though it is slightly inferior to the Gaussian Process
model but is a lot faster to be calculated. The adaptation parameters

pλδ in equation (22) and
(23) is set to 10

pλδ = and λδ from equation (24) and (25) is set to 2 2.5λδ µ= = . The general
strategy parameters are set as before. Fig. 6 shows the results of the controlled MAES
compared to the not controlled MAES, notice that the ordinate in the graph has a different
range than in Fig. 5. Both the C-MAES and the λ-CMAES show a slightly faster convergence

1
FrontP

2
FrontP

3
FrontP 4

FrontP

1
HindP

2
HindP

3
HindP 4

HindP

www.intechopen.com

Learning to Walk with Model Assisted Evolution Strategies

219

than the uncontrolled MAES. This happens because already after 500 fitness evaluations the
model in both cases is good enough to preselect the most promising individuals and thus
the impact of the model is increased. A meaningful difference between the C-MAES and the
λ-CMAES is not observable for this problem.

Figure 5. Comparison of the fitness curves of the Standard Evolution Strategy and the Model
Assisted Evolution Strategies with different models

Figure 6. Comparison of the fitness curves of the uncontrolled Model Assisted Evolution Strategy
and the controlled Model Assisted Evolution Strategies with different control mechanisms

6. Conclusion

Evolution Strategies are well suited to optimize the parameters of this practical problem.
However the MAES outperform the standard ES by far and lead to a much faster
convergence. The controlled MAES variants in this case can improve the convergence speed

 45

 50

 55

 60

 65

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000

MAES

C-MAES

Fitness Evaluations

A
v

er
ag

ed
 F

it
n

es
s

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000

Standard ES

Nearest Neighbour

Polynomial Model

Gaussian Process

Fitness Evaluations

A
v

er
ag

ed
 F

it
n

es
s

www.intechopen.com

Frontiers in Evolutionary Robotics

220

compared to the uncontrolled strategies a bit more. But since they do not perform worse
they should by preferred over the uncontrolled strategies making sure that in case of a bad
model quality the model impact is reduced and the Evolution Strategy does not perform
worse than a strategy without model assistance.

7. References

Beyer, H.-G. (1996). Toward a theory of evolution strategies: Self-adaptation, Evolutionary
Computation, Vol. 3, No. 3, pp. 311-347

Gibbs, M. & MacKay, D. (1997). Efficient implementation of gaussian processes, Technical
Report, Cavendish Laboratory, Cambridge, UK

Hebbel, M.; Kosse, R. & Nisticò, W. (2006). Modeling and learning walking gaits of biped
robots, Proceedings of the Workshop on Humanoid Soccer Robots of the IEEE-RAS
International Conference on Humanoid Robots, pp. 40-48, Genoa, December 2006

Hebbel, M., Nisticò, W. & Fisseler, D. (2006). Learning in a high dimensional space: fast
omnidirectional quadrupedal locomotion. RoboCup 2006: Robot Soccer World Cup X,
Lecture Notes in Artificial Intelligence, Springer

Hengst, B.; Ibbotson, D.; Pham, S.B. & Sammut, C. (2002). Omnidirectional locomotion for
quadruped robots. RoboCup 2001: Robot Soccer World Cup V, pp. 368-373, Lecture
Notes in Computer Science, Springer

Hoffmann, F & Hölemann, S. (2006). Controlled model assisted evolution strategy with
adaptive preselection, Proceedings of 2nd International Symposium on Evolving Fuzzy
Systems, pp. 182-187, Ambleside, September 2006

Jin, Y.; Hüsken, M. & Sendhoff, B. (2003). Quality measures for approximate models in
evolutionary computation, Proceedings of GECCO Workshops: Workshop on
Adaptation, Learning and Approximation in Evolutionary Computation, pp. 170-174

Jin, Y. (2003). A comprehensive survey of fitness approximation in evolutionary
computation, Soft Computing, Vol. 9, No. 1, 2005, pp. 3-12

Kohl, N. & Stone, P. (2004). Policy gradient reinforcement learning for fast quadrupedal
locomotion. Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA)

Laue, T.; Spiess, K. & Röfer, T. (2006). SimRobot - A general physical robot simulator and its
application in RoboCup. RoboCup 2005: Robot Soccer World Cup IX, pp. 173–183,
Lecture Notes in Artificial Intelligence, Springer

Rasmussen, C. E. & Williams, C. K. I. (2006). Gaussian processes for machine learning, MIT
Press, ISBN 0-262-18253-X

Rechenberg, I. (1973). Evolutionsstrategie. Friedrich Fromm Verlag, Stuttgart
Röfer, T. (2004). Evolutionary gait-optimization using a fitness function based on

proprioception. RoboCup 2004: Robot Soccer World Cup VIII, LNAI, Springer
Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Dr.-Ing. Dissertation,

Technische Universität Berlin, Fachbereich Verfahrenstechnik
Ulmer, H.; Streichert F. & Zell, A. (2003). Evolution strategies assisted by gaussian processes

with improved pre-selection criterion, Proceedings of IEEE Congress on Evolutionary
Computation (CEC’03), pp. 692-699, Canberra, Australia, December 2003

Ulmer, H.; Streichert, F. & Zell, A. (2004). Evolution Strategies with Controlled Model
Assistance, Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp.
1569-1576, Portland, Oregon, June 2004

www.intechopen.com

Frontiers in Evolutionary Robotics

Edited by Hitoshi Iba

ISBN 978-3-902613-19-6

Hard cover, 596 pages

Publisher I-Tech Education and Publishing

Published online 01, April, 2008

Published in print edition April, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presented techniques and experimental results which have been pursued for the purpose of

evolutionary robotics. Evolutionary robotics is a new method for the automatic creation of autonomous robots.

When executing tasks by autonomous robots, we can make the robot learn what to do so as to complete the

task from interactions with its environment, but not manually pre-program for all situations. Many researchers

have been studying the techniques for evolutionary robotics by using Evolutionary Computation (EC), such as

Genetic Algorithms (GA) or Genetic Programming (GP). Their goal is to clarify the applicability of the

evolutionary approach to the real-robot learning, especially, in view of the adaptive robot behavior as well as

the robustness to noisy and dynamic environments. For this purpose, authors in this book explain a variety of

real robots in different fields. For instance, in a multi-robot system, several robots simultaneously work to

achieve a common goal via interaction; their behaviors can only emerge as a result of evolution and

interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Matthias Hebbel and Walter Nistico (2008). Learning to Walk with Model Assisted Evolution Strategies,

Frontiers in Evolutionary Robotics, Hitoshi Iba (Ed.), ISBN: 978-3-902613-19-6, InTech, Available from:

http://www.intechopen.com/books/frontiers_in_evolutionary_robotics/learning_to_walk_with_model_assisted_e

volution_strategies

www.intechopen.com

www.intechopen.com

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

