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Control of Cable Robots for  
Construction Applications 

Alan Lytle, Fred Proctor and Kamel Saidi 
National Institute of Standards and Technology 

United States of America 

1. Introduction 

The Construction Metrology and Automation Group at the National Institute of Standards 
and Technology (NIST) is conducting research to provide standards, methodologies, and 
performance metrics that will assist the development of advanced systems to automate 
construction tasks.  This research includes crane automation, advanced site metrology 
systems, laser-based 3D imaging, calibrated camera networks, construction object 
identification and tracking, and sensor integration and process control from Building 
Information Models. The NIST RoboCrane has factored into much of this research both as a 
robotics test platform and a sensor/target positioning apparatus. This chapter provides a 
brief review of the RoboCrane platform, an explanation of control algorithms including the 
NIST GoMotion controller, and a discussion of crane task decomposition using the Four 
Dimensional/Real-time Control System approach. 

1.1 The NIST RoboCrane 

RoboCrane was first developed by the NIST Manufacturing Engineering Laboratory’s 
(MEL) Intelligent Systems Division (ISD) in the late 1980s as part of a Defense Advanced 
Research Project Agency (DARPA) contract to stabilize crane loads (Albus et al., 1992). The 
basic RoboCrane is a parallel kinematic machine actuated through a cable support system. 
The suspended moveable platform is kinematically constrained by maintaining tension due 
to gravity in all six support cables. The support cables terminate in pairs at three vertices 
attached to an overhead support. This arrangement provides enhanced load stability over 
beyond traditional lift systems and improved control of the position and orientation (pose) 
of the load. The suspended moveable platform and the overhead support typically form two 
opposing equilateral triangles, and are often referred to as the “lower triangle” and “upper 
triangle,” respectively.  
The version of RoboCrane used in this research is the Tetrahedral Robotic Apparatus 
(TETRA). In the TETRA configuration, all winches, amplifiers, and motor controllers are 
located on the moveable platform as opposed to the support structure. The upper triangle 
only provides the three tie points for the cables, allowing the device to be retrofitted to 
existing overhead lift mechanisms. Although the TETRA configuration is presented in this 
chapter, the control algorithms and the Four Dimensional/Real-time Control System 
(4D/RCS), for 3D + time/Real-time Control System, task decomposition are adaptable to 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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many different crane configurations. The functional RoboCrane design can be extended and 
adapted for specialized applications including manufacturing, construction, hazardous 
waste remediation, aircraft paint stripping, and shipbuilding. Figure 1 depicts the 
RoboCrane TETRA configuration (a) and the representative work volume (b). Figure 2 
shows additional retrofit configurations of the RoboCrane platform, and Figure 3 shows 
implementations for shipbuilding (Bostelman et al., 2002) and aircraft maintenance. 
 

 
(a) (b) 

Fig. 1. RoboCrane – TETRA configuration (a); Rendering of the RoboCrane environment. 
The shaded cylinder represents the nominal work volume (b). 

 

Fig. 2. Illustrations of RoboCrane in possible retrofitted configurations: Tower Crane (top), 
Boom Crane (lower left) and Gantry Bridge Crane (lower right). 

1.2 Motivation for current research 

Productivity gains in the U.S. construction sector have not kept pace with other industrial 
sectors such as manufacturing and transportation. These other industries have realized their 
productivity advances primarily through the integration of information, communication, 
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automation, and sensing technologies. The U.S. construction industry lags these other 
sectors in developing and adopting these critical, productivity-enhancing technologies. 
Leading industry groups, such as the Construction Industry Institute (CII), Construction 
Users Roundtable (CURT) and FIATECH, have identified the critical need for fully 
integrating and automating construction processes.  
Robust field-automation on dynamic and cluttered construction sites will require advanced 
capabilities in construction equipment automation, site metrology, 3D imaging, construction 
object identification and tracking, data exchange, site status visualization, and design data 
integration for autonomous system behavior planning. The NIST Construction Metrology 
and Automation Group (CMAG) is conducting research to provide standards, 
methodologies, and performance metrics that will assist the development, integration, and 
evaluation of these technologies. Of particular interest are new technologies and capabilities 
for automated placement of construction components. 
 

  

(a) (b) 

Fig. 3. The NIST Flying Carpet – a platform for ship access in drydocks (a) and the NIST 
Aircraft Maintenance Project (AMP)  – a platform for aircraft access in hangars (b). 

2. RoboCrane kinematics 

From (Albus et al., 1992), given an initial condition where the overhead support and the 

suspended platforms are represented by parallel, equilateral triangles with centers aligned 

along the vertical axis Z, (see Figure 4), the positions of the upper triangle with vertices A, B, 

and C and lower triangle with vertices D, E, and F are expressed as 
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With the positions of the vertices of triangles ABC and DEF as described in equations (1), 
when the lower platform is moved to a new position and orientation (D´E´F´) through a 
translation of 
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and a rotation of 
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the cable lengths can be expressed as  
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and
ij

Q represents an element in the following rotation matrix: 
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Therefore, for any new desired pose of the moving platform described by equations (2) and 
(3), the required cable lengths to achieve that pose can be calculated by the inverse 
kinematic equations shown in equations (4). 
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Fig. 4. Graphical representation of the RoboCrane cable support structure. 

3. Measuring RoboCrane pose 

The controller's estimate of the actual pose of RoboCrane differs from the actual pose due to 
several sources of error. Position feedback is provided through motor encoders that measure 
rotational position. Cable length is computed by multiplying the rotational position by the 
winch drum radius, with a suitable scale factor and offset. 
However, the winch drum radius is not constant, but varies depending on the amount of 
cable that has already been wrapped around the drum, increasing its radius. It is possible to 
keep track of this and change the radius continually, by building a table that relates motor 
rotational position with effective radius.  
Another source of error is that the cable length is affected by sag due to gravity. This sag 
depends on the pose of the platform and its load. Compensation can be achieved using an 
iterative process that begins with the nominal cable lengths, computes the platform pose 
using the forward kinematics equations, and determines the tensions on each of the cables 
using the transpose of the Jacobian matrix and the weight of the platform. The tensions can 
be used to generate the actual catenary curve of the cable, taking its nominal length as the 

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

6 

length of the hanging catenary curve. This process is repeated iteratively, with the nominal 
cable length as the fixed arc length of the catenary, and the chord between its endpoints as 
the continually revised length used by the forward kinematics.  
Calibration errors in the mounting points of the ends of the cables further contribute to pose 
error. In practice these are not fixed points, but vary as the angles of the cables change the 
contact point to the pulleys or eye bolts that affix the ends. Even if these contact points were 
constant, their actual locations can be difficult to measure with precision, given their large 
displacement over a typical work volume.  
Given these many sources of error, it is desirable to be able to measure the pose of the 
platform directly. There are many commercial systems for this purpose. An initial approach 
to external measurement implemented on RoboCrane uses a laser-based, large-scale, site 
measurement system (SMS). 

3.1 The site measurement system (SMS) 

A laser-based site measurement system (SMS) is used to track RoboCrane’s pose and to 
measure object locations within the work volume. The SMS uses stationary, active-beacon 
laser transmitters and mobile receivers to provide millimeter-level position data at an 
update rate of approximately 20 Hz. This technology was chosen based upon a combination 
of factors including indoor/outdoor operation, accuracy, update-rate, and support for 
multiple receivers. 
Each SMS transmitter emits two rotating, fanned laser beams and a timing pulse. Elevation 
is calculated from the time difference between fanned beam strikes. Azimuth is referenced 
from the timing pulse. The field of view of each transmitter is approximately 290° in 
azimuth and ± 30° in elevation/declination.   
Similar to GPS, the SMS does not restrict the number of receivers. Line-of-sight to at least 
two transmitters must be maintained by each receiver in order to calculate that receiver’s 
position. The optical receivers each track up to four transmitters and wirelessly transmit 
timing information to a base computer for position calculation.  
For tracking RoboCrane’s pose, four laser transmitters are positioned and calibrated on the 
work volume perimeter, and three SMS receivers are mounted on RoboCrane near the 
vertices of the lower triangle. The receiver locations are registered to the manipulator during 
an initial setup process in the local SMS coordinate frame. A transmitter and an optical 
receiver are shown in Figure 5. The SMS receivers mounted on RoboCrane are shown in 
Figure 6.  
 

  
(a) (b) 

Fig. 5. An SMS laser transmitter (a) and an SMS optical receiver (b). 
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The drawback of these systems is the added cost, and the need to maintain lines-of-sight 
between the platform and transmitters, potentially interfering with intended use. The 
benefits of accurate pose measurement are often significant enough to warrant their use.  
In the first implementation of the SMS to track RoboCrane, position estimates were obtained 
at several stopping points during RoboCrane’s trajectory, and these estimates were used as 
coarse correction factors for the encoder positions.  Current work is focused on a dynamic 
tracking approach to eliminate the need for stopping points. 
 

 

Fig. 6. The SMS on RoboCrane showing a close-up view of one of the three receivers. 

3.2 Dynamic pose measurement 

A commanded pose will generally result in a different actual pose due to various sources of 

system error such as those discussed previously. This relationship is depicted as 

 → →N X A  (7) 

or, in matrix form,  

 =NX A  (8) 

where N  is the commanded pose, X  is the perturbation that includes all the sources of 

error, and A  is the actual pose that results. The effects of X  can be cancelled by 

commanding an adjusted pose, ∗
N , where 

 ∗ = -1N NX  (9) 

Using the adjusted pose allows us to achieve the original desired pose since 

 ∗ =N X N  (10) 

In general, most of the sources of error are unknown and variable, so computing -1X apriori 

is not feasible. However, -1X can be estimated by comparing a previously commanded 
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adjusted pose, ∗
N , with the resulting actual pose, ∗A , as measured by the SMS. For time 

step, (i-1) 

 * *

1 1 1i i i− − −=N X A  (11) 

And the inverse of 1i−X  can be calculated as 

 ( ) ( ) 1
* *

1 1 1i i i

−

− − −=
-1

X A N  (12) 

For the current time step, (i), the commanded adjusted pose can be calculated as 

 ( )*

1i i i−=
-1

N N X  (13) 

where iN is the desired pose for the current time step and 1i−X is the perturbation from the 

previous time step. Therefore, 

 *

i i i≈N X N  (14) 

If the platform is moving, then the cancellation is not perfect, since we are trying to cancel 

this time step's unknown perturbation transform with the inverse from the previous time 

step, which will be slightly different. If the platform is stationary, the two converge and the 

cancellation becomes perfect.  

Platform motion has a more pronounced practical effect due to measurement latency forA . 

When computing -1X , it is important that theN and A poses are synchronized. If the 

measured A pose lags the nominalN pose, then the compensation will have the effect of 

leading the motion. When speed slows, this leading will become an overshoot, and the 

platform will oscillate.  

In the presence of measurement latency, one solution is to only compute the compensating 

transform -1X when the platform is stationary. With this method, the platform is moved into 

an area of interest, held stationary for at least the latency period, and -1X is computed. From 

that point, iteration is suppressed, and the compensating transform is constant. As the 

platform moves away from the compensation point, its accuracy diminishes.  

If the latency is constant and can be measured, a solution is to keep a time history of 

nominal poses and their associated inverse transforms, and look back into this history by the 

amount of latency to associate a pairN and -1X to the latent A measurement. If the 

measurements can be timestamped, then the same technique can be supplemented with 

timestamps to make the association. This technique can be used in the presence of variable 

measurement latency.  

Controller latency also has an effect on the accuracy of the compensating transform. Figure 7 

shows the magnitude of the translation portion of the compensating transform during tests 

with four different trajectory cycle times. In each test, the platform speed varied from 

1 cm/s to 10 cm/s. These tests were done with a simulated measurement system that 

simulates actual position from the servo position run through the forward kinematics. In 

this case, the compensating transform should be small, and in fact it goes to zero as the 
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motion pauses between each speed setting. It is apparent from these figures that as the 

platform speed increases, the magnitude of the compensating transform increases, as is 

expected from servo lag. It is also apparent that as cycle time increases, so does the 

magnitude of the transform. This is due to the uncertainty between when nominal position 

is registered by the controller, and when it is read out some fraction of a period later.  

 

 

 
 

Fig. 7. Compensating transform magnitude (translation only) for four different trajectory 
cycle times. As the trajectory cycle time increases, the magnitude increases, and becomes 
more noisy as a result of the increased uncertainty in the latency between control output and 
compensation. (Note: Figures intended as qualitative examples of cycle time effects.) 

Whenever a new -1X transform is written to the controller, it has the potential to cause a 

jump in motion. To prevent this, transforms are “walked in” according to speed and 

acceleration limits. A large change in the transform will appear as a relatively quick but 

controlled move to the new, more accurate position. The effect of compensation is illustrated 

in Figure 8. The square path in the lower left of the figure is the uncompensated path, which 

is offset and slightly skewed from the ideal path due to kinematic miscalibration. Shortly 

after the second pass around the square path, compensation was turned on and its effects 

walked in over several seconds. This interval appears as the two line segments connecting 

the square paths. The square path in the upper right is the compensated path, whose 

adherence to the nominal edges at 0 cm and 10 cm is quite good.  
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Fig. 8. Effect of in-process compensation The lower left square path is uncompensated and 
differs due to kinematic miscalibration. The upper right path is compensated. The 
connecting path results applying the compensation over time to avoid impulsive jumps. 

When compensation is turned off, the last compensating transform remains in use. As the 

platform moves away from the point at which this transform was calculated, the 

compensation becomes less accurate. This is shown in Figure 9. 
 

 

Fig. 9. Trajectory drift after cancelling in-process compensation.  The correction was made at 
location (0,0), and no further updates were performed. 

4. RoboCrane control 

4.1 GoMotion controller description 

The RoboCrane controller is a two-level hierarchy. The bottom level is servo control, which 

takes position setpoints for the cable lengths at a period of 1 millisecond, and runs a 

proportional-integral-derivative (PID) controller using feedback from encoders mounted on 

the motors to generate drive signals. The top level is trajectory planning, which takes 

desired goal poses and plans smooth Cartesian motion along a linear path, taking into 

account speed, acceleration and jerk constraints. The trajectory planner executes at a period 

of 10 milliseconds, calculating intermediate poses that are run through the inverse kinematic 
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equations to generate cable lengths sent to the servo controllers. Joint mode control is also 

possible, with goals specified in terms of desired cable lengths. The inverse kinematics are 

not needed in this case.  

Servo control is divided among six similar modules, each running PID control with 
extensions that handle velocity and acceleration feedforward terms, output biasing, 
deadband and saturation detection for anti-windup of integral gain. A software application 
programming interface (API) localizes how the servo modules connect to specific hardware 
such as commercial input/output boards for encoder feedback and digital-to-analog 
conversion, open-loop stepper motors or distributed input/output. The servo modules run 
periodically at 10 times the period of the trajectory planner. Interpolation between setpoints 
sent by the trajectory planner is done using either linear, cubic or quintic polynomial 
interpolation of the setpoint over time, depending on application needs.  
Trajectory planning is done following S-curve velocity profiling with specified velocity, 

acceleration and jerk. S-curve profiling has the advantage of bounding jerk, when compared 

with trapezoidal velocity profiling with abrupt changes in acceleration. S-curve profiling has 

seven motion phases, as shown in Figure 10.  
 

 

Fig. 10. S-curve velocity profile. 

Here, 3v , 1a  and 0j are the specific maximum velocity, acceleration and jerk, respectively. At 

each trajectory time step, the distance increment is computed as the area under the S-curve 

for that time interval.  

In joint position control mode (individual cable actuation), trajectory planning is done for 

each cable independently. Given a desired target cable length, the S-curve profile is 

computed and distances are computed each trajectory period. These distances are sent to the 

servo module for that joint for interpolation and tracking. Coordinated joint position control 

is possible, in which a set of six target cable lengths comprises the goal. Six trajectory 

profiles are computed, and five of the six are scaled so that their final arrival time matches 

the time of the longest move.  

In Cartesian position control mode, motion control is split into translation and rotation 

vectors. The translation vector is a three-element vector with X, Y and Z components 

pointing to the target location, with associated velocity, acceleration and jerk along the path. 

The rotation vector is a three-element vector about which the overall rotation from the 

current orientation to the target orientation takes place. The magnitude of this vector is the 

amount of rotation. Angular velocity, acceleration and jerk are used to generate a profile for 

this portion of the move. One of the two profiles is scaled to match the time of the longer of 

the two so that the translation and rotation arrive at the same time. At each trajectory cycle, 
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the translation and rotation are computed, run through the inverse kinematics equations, 

and sent as a set of target cable lengths for interpolation and tracking by the servo modules.  

Motion along circular arcs is also supported. Rotational motion is planned as before. 
Translational motion is planned along the arc, where the distance under the S-curve profile 
is the distance along the arc. Aside from this geometric distinction, circular motion is the 
same as linear motion.  

4.2 Initialization 

When the controller begins executing, it assumes that the cable length measurements are 
uncalibrated. Cable length limits are invalid, as is any notion of the Cartesian pose of the 
platform or its limits. The controller allows individual cables to be moved independently, 
but inhibits Cartesian motion and cable length limit checking. Before any of these can take 
place, the platform must be “homed” to establish the offset between the initial arbitrary 
measurement of cable length (typically zero) and its true length. 
In systems that lack a way to absolutely measure either cable lengths or Cartesian pose at 
startup, a homing procedure is used. There are several variations in this method. In one, 
fiducial marks are made on each cable, which when aligned with an associated mark on the 
platform denote that the cable is at a known length. The operator must manually jog each 
cable to align the marks, and indicate that the home condition has been met. The controller 
then computes an offset that is added to the raw feedback from the motor encoder to yield 
the known length value.  
Another homing technique is to bring the platform to a known Cartesian location, such as 
level and oriented properly atop a mark on the floor. This requires manually moving the 
platform by adjusting cable lengths, which is unintuitive. In practice, the operator moves 
each cable so that the platform is relatively close to the home location, and falsely indicates 
that the cables are homed. Cartesian motion is then enabled, and the operator moves in 
Cartesian space for the final alignment. During this falsely-homed period, the platform 
motion will be skewed, but is usually close enough for intuitive positioning. 
Homing is a time-consuming manual procedure. If the platform's Cartesian pose can be 
measured directly, such as with the SMS, then homing is not necessary. In this case, the 
controller is provided with the actual Cartesian position, which it runs through the inverse 
kinematics to get the cable lengths. The difference between these computed cable lengths 
and the uncalibrated lengths from the motor encoders is the offset used to calibrate the 
feedback. 

4.3 Control modes 
The RoboCrane controller supports various control modes. Teleoperation allows an operator 
to drive the platform directly, using a keyboard, mouse or joystick. Automatic control 
allows the execution of scripted trajectories. 
Teleoperated Control: In teleoperated control, the operator uses a convenient input device, 
such as a keyboard, mouse or joystick, to move the platform directly. Typically a joystick is 
used, since it is most intuitive. This can be performed in either joint (i.e., cable lengths) or 
Cartesian space. With cable lengths, the operator selects a cable, and shortens or lengthens 
the cable according to the deflection of the joystick. If the controller has been homed, the 
Cartesian position is continually updated using the forward kinematics. Cable length 
motion is typically used only when homing the platform, since it results in unintuitive 
platform motion.  
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In Cartesian space, the operator uses the joystick to drive the platform in any of the X, Y and 
Z directions, or to rotate about these directions. The controller supports two reference 
frames: the world frame, with coordinates affixed to the unmoving ground; and the 
platform (or tool) frame, with coordinates affixed to the moving platform. World mode is 
typically used to position the platform near an area of interest, or to drive it along features 
in the world, such as the floor or walls. Tool mode is used to position the platform by 
driving it along axes aligned with grippers or tooling, so that approaches and departures 
can be made along arbitrary directions. The controller supports the definition of arbitrary 
tool coordinate systems, so that one tool can be dropped off, another picked up, and motion 
with respect to the new tool axes can be accomplished.  
In world mode, Cartesian speeds from the joystick are converted into cable speeds using the 

inverse Jacobian. Given a desired Cartesian velocity of RoboCrane,V , and using the inverse 

Jacobian1 matrix, -1
J , the cable speed vector, $L , can be calculated as  

 =$ -1L J V  (15) 

where $L  is the 6x1 cable speed matrix, -1J is the 6x6 inverse Jacobian transform matrix, and 

V is the 6x1 Cartesian velocity vector (Tsai, 1999). The calculated cable speeds are 

transformed into winch motor rotation rates that are sent to the winches. Each motor 

encoder keeps track of the number of motor shaft revolutions and that number is directly 

related to cable length. The six cable lengths are then used to calculate a new Jacobian 

matrix, which is used the next time velocity commands are sent. 

Since the inverse Jacobian matrix is calculated based on the instantaneous Cartesian pose of 

RoboCrane, the initial pose of RoboCrane must be known. This initial pose can be calculated 

by directly measuring the cable lengths and performing the forward kinematic calculations, 

or by placing RoboCrane in a predefined home pose at the beginning of each teleoperation 

session and initializing the cable lengths to preset values.  

Speed changes are clamped to lie within acceleration limits, so that abrupt changes in 

joystick position do not impart abrupt changes in motor speed. Cartesian position and 

orientation limits are applied, so that attempts to drive the platform outside a limit will be 

inhibited. 

Automatic Control: With automatic control, motions in either cable or Cartesian space can 

be scripted in programs. These programs can be written by hand, or generated by off-line 

programming systems that can automate the generation of complex tasks throughout a large 

work volume. This is accomplished through a third level in the hierarchy, the Job Cell level. 

This level interfaces to the motion controller using the same interface as the teleoperation 

application, but sending discrete moves instead of teleoperation speeds.  

There are two basic modes of automatic control, either in cable space or in Cartesian space. 

Cable space motions are less common, and would be used to drive individual cables during 

maintenance activities. Cartesian space motions are primarily used in applications. As with 

                                                 
1 The Jacobian transform (or simply Jacobian), J relates the velocities of the joints of a 

manipulator to the velocities (translational and rotational) of its end-effector,  $x = J $q , 

where $q and  $x are the velocity vectors of the joints and end-effector, respectively (Tsai, 

1999). 
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Cartesian teleoperation, programed Cartesian moves can be done either with respect to the 

world frame or the tool frame. A representative program is 
 

 # rotate to 30-degree yaw at 1, -2, 3 
 movew 1 -2.0 3.0 0 0 30.0 
 # move along the tool's Y axis 10 cm 
 movet 0 0.1 0 0 0 0 
 

World motions are absolute (although they can be incremental), while tool motions are 
strictly incremental, since the tool origin moves along with the tool. 

5. High level control 

5.1 4D/RCS overview 

The NIST RCS (Albus, 1992) methodology describes how to build control systems using a 
hierarchy of cyclically executing control modules.  In (Bostelman et al., 1996), RCS was 
applied to a RoboCrane implementation.. At the lowest level of the hierarchy, each control 
module processes input from sensors, builds a world model, and generates outputs to 
actuators in response to commands from its supervisory control module. These functional 
components of a control module are termed sensory processing (SP), world modeling (WM) 
and behavior generation (BG), respectively. The servo control of a motor is a common 
example of a control module at the lowest level. Here, the sensor may be a motor shaft 
position encoder, the actuator is the motor shaft, the command is a desired setpoint for the 
shaft position, and the behavior may be the execution of a simple PID control algorithm. The 
SP function may simply be reading and scaling input from the encoder device, and the WM 
function may be maintaining a filtered estimate of the shaft position. Typical cycle times for 
such control modules are on the order of a millisecond.  
One or more of these lowest-level control modules may be subordinate to a control module 
at the next level up in the hierarchy, termed the supervisor. In our example, the SP function 
at this level may simply provide each motor shaft position to the WM function, which 
would compute the overall position and orientation of the device’s controlled point, perhaps 
the tool on a robot. The BG function may smoothly transform goal points to motor 
trajectories based on speed, acceleration and jerk. Here, goal points may arrive at variable 
intervals from the higher-level supervisor, one that may be reading them from a program 
file. Cycle times increase by about an order of magnitude for control modules that are one 
level higher in the hierarchy. For this trajectory planner, the cycle time would be about 10 
ms.  
A full RCS hierarchy would include additional lower-level control modules for individual 
tools, and control modules at higher levels of the hierarchy may coordinate the actions of 
many robots and auxiliary equipment. RCS has found its richest application in the area of 
mobile robotics. Here the SP functions include not just motors but cameras, 3D imaging 
systems (e.g. laser scanner), GPS and other navigation sensors. WM functions build maps of 
various resolutions and maintain symbolic representations of the world. BG functions 
reason on the symbolic representations, planning optimal paths around known features and 
reacting to sensed obstacles.  
An RCS design differs from functional design or object-oriented design in that it begins with 
a task analysis of the system to be controlled. Here the designer identifies the tasks to be 
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performed at the top level, and then breaks each task down into subtasks that are performed 
by the subordinates. Usually the designer does not have complete freedom to determine the 
task breakdown, as some of the components that make up the system may have been reused 
from prior projects. In this case, the tasks must be expressed in terms of the available 
subtasks. Task analyses are helped enormously by considering scenarios that include system 
startup, shutdown, normal use and changes between various modes of operation. Often 
these scenarios bring to light the need for tasks that are not apparent from the original 
conception of the system. 
An example of a comprehensive task analysis for the design of an automatic road vehicle 
controller can be found in (Barbera et al., 2004). The designers considered hundreds of 
scenarios listed in a manual of military driving, including lane changes, passing and 
intersection rules. What is made obvious by this analysis is that the top- and bottom-level 
tasks are relatively simple, while the tasks in the middle are the most complex. Other 
examples of task analyses for unmanned vehicle systems can be found in the latest version 
of RCS (known as 4D/RCS) (Albus et al., 2002). 
Implementation of RCS control modules is done conceptually using state tables, which can 
then be programmed in any general-purpose computer language using conditionals or 
switch statements. The NIST RCS Library documents the software tools available for 
programming in C++ or Java. A detailed handbook (Gazi, 2001) covers the entire RCS 
analysis, design and programming using several examples and the RCS Library tools.  

5.2 Crane task decomposition 

Designing a new RCS-based controller for RoboCrane began by first identifying the 
requirements of the controller. The overall goal of the RoboCrane controller was defined as 
follows: to plan and execute tasks required for automated construction-material handling 
and/or building construction. 
Controller Requirements: In order to accomplish its goal the RoboCrane controller needed to 
provide the following: 

• Autonomous, semi-automated, and teleoperated modes of operation  

• RoboCrane tool-point (i.e., platform) position and velocity control modes 

• RoboCrane tool-point motion in joint, Cartesian, as well as other user-definable 
coordinate systems 

• Cross-platform code portability (but still dependent on the real-time operating system) 

• Adaptability to other robot/crane hardware 

• Sensor-based collision avoidance  
System Scope: Although the motivation for developing a controller was to be able to use it 
to control various cable-driven robots and to accomplish various tasks, the initial scope of 
the controller was limited to the following: 

• Smooth and stable motion of the NIST RoboCrane 

• Perform a steel beam pick and place task 

• Construct a structure whose shape is limited by RoboCrane’s current range of motion 

• Connect the beam to the holder using drop-in connectors 

• Carry beams whose size falls within RoboCrane’s current load-carrying capabilities 

• Communicate to RoboCrane using the current field bus architecture 

• Operate under a real-time Linux operating system 
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• Use the built-in incremental winch motor encoders as well as the laser-based 
positioning system to determine RoboCrane’s pose, but include the ability to add other 
sensors for pose determination in the future 

• Acquire the steel beam and holder poses using the current laser-based positioning 
system 

Task Decomposition: The next step in the RCS controller design process is to conduct a task 
decomposition of the controller’s overall goal. RoboCrane’s overall goal was divided into 
several subtasks, which were consequently also broken down into smaller tasks. This 
process continued until the lowest level tasks involved sending commands to the 
RoboCrane hardware (e.g., setting motor voltages). This is the lowest level of control that 
the controller can provide. 
Figure 11 shows a sample task tree diagram resulting from the task decomposition process. 

In this figure the physical task of picking and placing a steel beam (as part of a steel erection 

sequence) is decomposed into 3 levels of subtasks. In keeping with the RCS architecture, 

each sublevel is responsible for planning and executing a smaller portion of the overall pick-

and-place task. The lowest level is responsible for maintaining a commanded joint (or 

motor) velocity (or position). The next level up is responsible for generating and executing a 

series of n waypoints (i.e., positions and orientations in time) for the RoboCrane platform. 

The next higher level generates and executes the necessary commands to accomplish a 

segment of the pick-and-place operation. Finally, the highest level in Figure 11 is responsible 

for coordinating the execution of the segments that make up the overall pick-and-place task. 

This highest level also receives commands from higher levels (not shown in Figure 11) 

which coordinate the pick-and-place task with other tasks such as attaching a beam to a 

structure, picking and placing a column, and etc. 
 

 

Fig. 11. Task tree diagram for the pick-and-place next beam task. 

In addition to the physical tasks represented in the task tree diagram of Figure 11, other 

non-physical tasks are required in order to accomplish a pick-and-place operation. These 
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include tasks such as detecting obstacles, calculating collision free paths, etc. These tasks 

were also captured and broken down into 3 levels of subtasks, but are not included in 

Figure 11 

State Tables: Following the task decomposition process the commands going into and out of 

each task, that are represented in the task tree diagram of Figure 11, are listed in a state table 

format. A state table (or state transition table) describes all possible input and output states 

(and actions) of a finite state machine. Table 1 shows a state table for the pick and place next 

beam task. The command that starts the execution of this task has the same name as the task 

itself and is also the title of the state table. The state table columns (from left to right) 

represent the input state numbers, the conditions that must be met to change the state, the 

output state numbers, and the output commands that are sent to lower level tasks, 

respectively. 

When the pick and place next beam command is issued by a higher level task, the controller 

examines the state table shown in Table 1. The initial state of the pick and place next beam 

task is S0 and the first condition that is checked is whether the received command is new. If 

it is a new command, the state of the task is changed to S1 and the status of the task is 

changed to indicate that it is executing. 
 

Pick and Place Next Beam 

S0 New Command S1 Hold – Status=Executing 

S1 Conditions Good to Move to Pre-Pick Pose S2 Move to Pre-Pick Pose 

S1 Timed out S0 Hold – Status=Error 

S2 Conditions Good to Move to Pick Pose S3 Move to Pick Pose 

S3 Conditions Good to Grasp S4 Grasp Beam 

S4 Conditions Good to Pre-Load Crane S5 Pre-Load Crane 

S5 Conditions Good to Move to Pre-Place Pose S6 Move to Pre-Place Pose 

S6 Conditions Good to Move to Place Pose S7 Move to Place Pose 

S7 Conditions Good to Unload Crane S8 Unload Crane 

S8 Conditions Good to Release S9 Release Beam 

S9 Conditions Good to Move to Post Place Pose S10 Move to Post Place Pose 

S10 At Post Place Pose S0 Hold - Status=Done 

Table 1. State table for the pick and place next beam task. 

The next time the above state table is checked (i.e., during the next execution cycle of its 
corresponding control module) the new state of the task is S1, and the conditions that must 
be met are whether it is acceptable to move RoboCrane to the beam’s pre-pick pose, or 
whether enough time has elapsed that something must be wrong. There may be one or more 
sub-conditions that must be satisfied in order to determine whether it is acceptable to 
proceed, but these can be aggregated into one description in the state table. If the conditions 
are met, the state of the task is changed to S2 and the command to move to the pre-pick pose 
is sent to a lower-level task. If time has expired, the state of the task is changed to S0 and an 
error is reported. Each lower level task that receives an output command reports its status 
back to the higher level task that issued the command until it finishes executing or 
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encounters an error. This process continues until all of the commands in the state table have 
been executed, at which point the pick and place next beam task is considered completed 
and the state of the table is reset to S0. For brevity, only a single timeout condition is shown 
in Table 1. In practice, numerous checks of this sort are made throughout the state table. 
Once the state tables for all of the tasks identified through the task decomposition process 
are completed they are organized into control modules as described next and implemented 
in software following the RCS guidelines. 
Control Modules: As indicated in the prior RCS description, the commands in the task tree 

diagram of Figure 11 are organized into multiple levels. Each level’s tasks may be grouped 

together into one or more modules responsible for coordinating and executing the tasks 

within it. Some of the critical modules (such as the servo algorithms) run as real-time 

processes within the operating system, while other less critical modules (such as long term 

path planning) run as non-deterministic processes. 

Figure 12 shows the control architecture for the RoboCrane controller. The four levels above 

the software/hardware demarcation line in Figure 12 correspond to the four levels of 

Figure 11. The tasks have been grouped into the control modules shown. For example, the 

bottom level tasks of Figure 11 are grouped into the six “Servo” modules in Figure 12.  
 

 

Fig. 12. RoboCrane controller architecture diagram. 
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Each of these modules are responsible for executing a servo algorithm which accepts the 

actual and desired positions (or velocity) of a winch motor as inputs and calculates a 

command voltage which maintains the desired position (or velocity). An alternate 

configuration would be to group the six servo modules into one. 

Figure 12 also shows that the RoboCrane controller is part of a larger control architecture 

which includes four higher-level modules. For example, at the level above the RoboCrane 

controller would be a Pick-and-Place Manager that would actually command RoboCrane to 

perform the pick-and-place operation. The commands sent down by each module to a 

lower-level module are shown in the light gray boxes on the right. Some of the functions (or 

non-physical tasks) that each module performs are also shown in the light gray boxes on the 

left. The control modules above the Pick-and-Place Manager are also included in the figure. 

Finally, Figure 12 also includes modules for controlling the 3D imaging systems. These 

modules are responsible for coordinating the sensor orientations with the RoboCrane 

platform’s motion in order to maintain a desired part of RoboCrane’s environment within 

the combined sensors’ field of view. 

6. Conclusion 

This chapter presented new research developments at NIST in control algorithms and 
controller design for parallel robots applied to Construction applications. In particular, this 
research focused on the NIST RoboCrane platform for automated placement of construction 
components. This work was the first to demonstrate the use of a laser-based site 
measurement system for 6 degree-of-freedom tracking of a robotic crane, and presented new 
methods for incorporating pose estimation errors in a compensation transform for the NIST 
GoMotion controller.  Finally, this work presented task decomposition approaches for 
analyzing and automating construction crane operations based on a NIST 4D/RCS 
approach. 
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