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1. Introduction 
 

According to the United Nations, as of the year 2000 there were 70 million landmines 
planted in a third of the world’s nations affecting global causality rate of up to 20,000/year, 
(Anderson, 2002).  That is why landmine detection has attracted much attention by many 
research teams around the world during the last two decades; among them is our research 
team in Nagoya University.  Anti-personnel (AP) mine ranges from 5 to 15 cm in size; they 
can be metal, plastic, or wood.  AP mines are normally buried at shallow depth; detonated 
by very low pressure, and designated to kill or maim people.  PMN2, Type72 and PMN are 
examples, Fig. 1.  In real world clearance activities, AP mine suspect areas are divided into 1 
m grid squares, and each square meter is probed with a bayonet or plastic rod.  Probing is 
done at an oblique angle to the ground so that the rod will encounter the side of a land mine 
and not trip the fuse.  No need to say, this work is very dangerous and proceeds very slow, 
(Siegel, 2002). The need for a safer and more fast humanitarian demining action by replacing 
a manual sensing task by vehicle sensing task have motivated our research team to 
introduce a low-ground-pressure tires detection vehicle, (Hasegawa et al, 2004-A).  The 
unmanned vehicle that can move in mine field without detonating a group of AP mines will 
be presented in this chapter. 
One of the big challenges in demining process is detection.  If a mine is detected, deminers 
can explode, mark or move it to a pit for later detonation or defusing.  Conventional mine 
detection, by a metal detector, is often difficult for two reasons.  First, mines are increasingly 
being made of plastics, minimizing the more easily detectable metal components.  Second, 
mined areas are often equipped with metal scraps creating a high false alarm rate.  Because 
of the difficulty encountered in detecting the tiny amounts of metal in a plastic landmine 
with a metal detector, technology development has been extended to other sensors.  Ground 
penetrating radar (GPR) used for about 70 years for a variety of geophysical subsurface 
imaging applications including utility mapping and hazardous waste container has been 
actively applied to the problem of land mine detection for nearly the last two decades of 
research.  It provides sensing objects underground based on dielectric properties.  It senses 
the reflected electromagnetic wave by a buried object.  It is expected that GPR be a good 
alternative sensor and/or an important support sensor when fused with a metal detector for 

Source: Humanitarian Demining: Innovative Solutions and the Challenges of Technology, Book edited by: Maki K. Habib, ISBN 
978-3-902613-11-0, pp. 392, February 2008, I-Tech Education and Publishing, Vienna, Austria
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landmine detection.  However, one major source of error in GPR data is the reflection from 
the surface of the ground, (Daniels, 2004).  The problem becomes much more difficult for an 
undulating ground-surface.  As a general objective of signal processing as applied to GPR is 
to present an image that can be easily interpreted by the operator, it is important to adapt 
the signal processing technique for an undulating surface scanning.  In this chapter, ground-
surface-adaptive scanning and signal processing for ground-surface-adaptive scanning, 
(Hasegawa et al, 2004-B), applying a vector GPR, (Fukuda et al, 2006; Fukuda et al, 2007), 
will be presented. 
A metal detector is one of the most major sensors applied for current humanitarian 
demining.  It is simple and cost effective.  It is also reliable to find an anti-personal mine 
(APM) in a shallow subsurface.  However it suffers from the high false alarm rate, (about 
99.95%), as it senses all metal objects including metal fragments in the field other than land 
mines.  On the other hand, ground penetrating radar provides, (after processing), images for 
objects underground based on dielectric properties.  However it senses a land mine object as 
well as any other object as it senses dielectric discontinuities in metallic and/or non-metallic 
objects.  Fusion of GPR with MD is expected to minimize the false alarm rate significantly.  
In this chapter, fusion of both MD and GPR for APM detection in a shallow subsurface is 
presented.  A “feature in-decision out” fuzzy sensor fusion algorithm for GPR and MD is 
introduced, (Zyada et al, 2006-A).  The inputs to the fuzzy fusion system are features 
extracted from both GPR and MD measurements.  The output from the fuzzy fusion system 
is a decision if there is a land mine and at what depth it would be.  Fuzzy fusion rules are 
extracted from training data through a fuzzy learning algorithm.  Experimental test results 
are presented to demonstrate the validity of the proposed fuzzy fusion algorithm and hence 
its influence in minimizing the false alarm rate for mine detection, (Zyada et al, 2007). 
 

                
(a)                  (b)                (c) 

Fig. 1. Anti-personnel landmine samples: (a) PMN2; (b) Type72; (c) PMN. 
 
This chapter is organized as follows: Section 2 introduces a low-pressure-tire vehicle capable 
of moving inside a mine field without detonating a group of antipersonnel landmines.  This 
vehicle is applied as a sensor manipulator.  Section 3 presents the enhancement of landmine 
images through signal processing of a scanned undulating surface applying a vector 
frequency modulated continuous wave (FMCW) GPR.  Section 4 presents the fuzzy fusion 
algorithm of GPR with MD for antipersonnel landmine automatic detection.  Learning fuzzy 
fusion rules as well as experimental evaluation of the learnt fusion rule base, is also 
presented.  Section 5 presents conclusions and projected work. 

¶ 
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2. Low-pressure-tire Vehicle 
 

General demining method is exploring with a probe or with a metal detector by an operator, 
(Shimoi, 2002; Genève international centre, 2004). However, it is not few cases that the 
workers suffer damage during the demining process.  Then, robot-based demining in place 
of human-based demining has been investigated by many researchers.  Most of them move 
in the minefield evading the landmine (Nonami, 2002; Kato, 2001).  Complex mechanism 
and big cost is needed for building an evading robot. In contrast, a simple and low cost 
system is needed in affected areas.  In this section, a mine detection vehicle which can enter 
a minefield and detect landmines directly without detonating landmines is introduced. 

 
2.1 In-minefield Vehicle 

By this sub-title, it is meant that the vehicle can enter a mine field without detonating its 
landmines.  In order to enter a mine field, this system uses low landing pressure tires. 
Stiffness of these tires is much lower than that of ordinal ones, so that the area contacting the 
ground is very large and the load on the tire is distributed over the area.  Access Vehicle is 
made of a commercial available leisure cart. This vehicle equips 4 low landing pressure tires 
and electric motors for driving.  Figure 2 shows its appearance.  Access vehicle carries 
battery as power supply in order to work without any cable. It also carries 2 laptop PCs for 
the purpose of motor and GPR control. These PCs are used to receive commands from 

operator via wireless LAN (IEEE802.11b) ． On the other hand, Operator’s Instrument 

consists of a laptop PC and a laser total station for position measurement.  Operator’s 
Instrument communicates with access vehicle using PC, and acquires position of the Access 
Vehicle by the total station.  Data from sensor are stored to a PC on Access Vehicle 
temporally, transmitted to Operator’s Instrument timely, and recorded with position of 
vehicle to Information Management System, (Hasegawa et al, 2004-B). Utilizing a 
commercial available cart as a frame shortens the time period of development and reduces 
cost.  Access vehicle’s total weight including sensor and sensor manipulator is about 90 kgs, 
so load on each tire is about 22.5 kg. Low landing pressure tires for this vehicle are made by 
Roleez Wheels, Inc. in U.S.A. 

 
2.2 Subsurface Forces 

To check the validity of the access vehicle for entering a minefield without detonating 
landmines, a group of experiments have been executed.  A force sensor is buried under the 
ground surface for a range of 0~20 cm.  Subsurface forces as well as the detonating pressure 
force for a group of anti-personal landmines are shown in Fig. 3.  These values are average 
stress, load divided by the area of force sensor. Maximum pressure amounts to 0.063 
[kg/cm2]. This result means that landing pressure of this vehicle is less than that of small 
landmines such as Type-72 (0.19 [kgf/cm2]) and PMN2 (0.26 [kgf/cm2]), but almost the 
same as PMN (0.064 [kgf/cm2]), and bigger than PMA-1 (0.031 [kgf/cm2]). Considering 
these landmines’ small ignition force (3kgf, 5kgf), PMN or PMA-1 anti personnel landmine 
have large areas to receive force so it is very hard to apply low landing pressure vehicle to a 
minefield which contains these kinds of landmines. Clearly, even though this vehicle has a 
contact pressure smaller than many anti-personnel land mines ignition pressure, it cannot 
enter the minefield which contains some types such as PMA-1 and PMN.  The vehicle is 
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currently under developing its tires to distribute force to larger area.  Furthermore 
equipping two tires on one axle would raise its safety coefficient. 
 

GPR

Low pressure

tire

GPR manipulator

Laptop PC

 
Fig. 2. Low-pressure-tire vehicle 
 

 
Fig. 3.  Sub-surface pressure and ignition pressure for a group of anti-personnel mines 

 
3. Environmental-adaptive GPR Manipulation and Signal Processing 
 

Ground Penetrating Radar (GPR) is expected to be a good alternative sensor or support de-
vice of metal detector for humanitarian demining. GPR system measures the response time 
of reflected electromagnetic wave caused by buried objects, and it is originally used for 
archeological digging, detection of underground pipe and detection of lack in reinforced 
concrete. Though GPR performance is expected to be high for land-mine detection, there are 
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many problems encountered in the sening process.  Among them, (1) decrement of an 
electromagnetic wave becomes large, and performance turns worse by a water content of 
the soil; (2) reliability of detection result deteriorates when operation is conducted with non-
homogeneous soil; (3) if there are irregularities or a slant in a ground surface, they are 
projected onto an image of the underground.  As a result, it becomes difficult to distinguish 

a shallow underground object.  For the first problem, it can be overcomed by choosing the 

electromagnetic wave frequency that is hard to be absorbed by soil water content; fusion 
with a metal detector is effective for solving the second problem. However, because the last 
problem cannot be solved by fusion with metal detector beyond the maximum depth at 
which a metal detector can sense, it cannot be overcomed. Trying to solve the third problem, 
the enhancement of mine detection, applying a vector type ground penetrating radar 
(Kimura et al., 1992 ; Murasawa et al.., 1992), that is adaptively scanning the ground surface, 
(Fukuda et al, 2003; Hasegawa et al, 2004-B), is presented.  
In this section, an environmental-adaptive GPR manipulation and signal processing is 
presented.  First, the applied ground penetrating radar sensor and concept of geography 
adaptive scanning are introduced.  Then, image enhancement based on signal processing for 
geography adaptive scanning applying FMCW GPR and imaging results are introduced. 
 
3.1 Ground Penetrating Radar (GPR) Sensor 

A three-element vector stepped-frequency ground penetrating radar (GPR) system, Fig. 4, 
developed by Mitsui Engineering and Ship Building Company, (Japan), is applied in this 
study.  It is an ultra-wide bandwidth vector type GPR.  Its frequency bandwidth is 7.8125 
MHz – 2.0 GHz.  Its frequency is changed in 256 steps. 
 

 
Fig. 4. Ground Penetrating Radar (GPR) system 
 
3.2 Concept of Geography Adaptive Scanning 

Ground surface reflects most power of an electromagnetic wave transmitted by GPR 
antenna because of the big difference of permittivity of the atmospheric layer with respect to 
ground surface.  It is important to eliminate the ground surface effect.  Elimination of 
ground surface effect is done by letting the antenna trace the ground configuration.  The 
concept of geography adaptive scanning is shown in Fig. 5.  The ground configuration is 
measured by a laser range finder, as will be presented later in this section. 
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(a)    (b) 

Fig. 5. Scanning methods: (a) Flat scanning; (b) Geometric adaptive scanning 

 
3.3 GPR Images Enhancement for Geography Adaptive Scanning 

It is known that frequency modulated continuous wave FMCW radar systems have been 
used in preference to AM systems where the targets of interest are shallow and frequencies 
above 1 MHz can be used, (Daniels, 2004).  Since a GPR response signal is reflection 
intensity versus time, image reconstruction is required for easier extraction of mine suspects, 
for both easier interpretation and automatic detection, (Yilmaz, 1987). For this purpose, 
many signal processing methods have been proposed and applied to GPR imaging, but 
most of them have only considered a measuring system which maneuvers an antenna flatly 
regardless of geography. In this section, the signal processing technique applicable to 
geography adaptive antenna applying a vector GPR is summarized.  GPR signal processing 
includes two main steps to obtain image spatial distribution.  These steps are: suppression of 
reflection from ground surface and and migration. 
 
3.3.1 Suppression of reflection from ground surface 

A local average subtraction is applied for better clutter suppression.  The local average 

subtracted signal )(tiφ′ is given by )()()( ttt iii φφφ −=′  where )(tiφ  is the raw data and 

)(tiφ  is local average signal at sensing point i ; ∑
∈
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i t
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iK . 

A time series signal is obtained through Inverse Fast Fourier Transformation.  Given the 

frequency domain signal ( )fm,R,z,y,x, B

Svψ  measured by the wide range stepped 

frequency radar, we can get the time domain signal through Inverse Fourier Transform 
 

( ) ( ){ }

( )∫
∞

∞−

=

=

dfe

tmRzyx

ftj

v

v

B

Sv

πψ
π

ψφ

2B

S

B

Sf

fm,R,z,y,x,
2

1

fm,R,z,y,x,IFT,,,,,

   (1) 

www.intechopen.com



GPR Environmental-Based Landmine Automatic Detection 

 

157 

where ( )tmRzyx B

Sv ,,,,,φ  is the reflected wave; [ ]Tzyx ,, is the centre position of antenna; 

RB

S is the rotation matrix of center of sensor head; m is polarization mode; t is the time 

between emitting and receiving; z is the ground surface function, ( )yxzz g ,=  , (obtained 

through measurements); yx,  are its arguments. 

A 3-D GPR spatial signal is reconstructed from the time signal.  Kirchhoff migration is 
adopted to reconstruct the spatial distribution of subsurface reflectivity from a set of time 
series signals acquired on the ground surface by three-element vector radar. 
 

Sensing point rS

Imaging point r

Ground surface

Sensor head frame S

Base frame B
h(0)

h(1) h(2)

 
Fig. 6. Alignment of an antenna and imaging point 
 

xS

y

θoffset

2
3

π

Antenna element 0

Antenna element 1

h(0)

h(2)

h(1)

S

rAC

=Transmitter of mode 0

=Receiver of mode 2

=Transmitter  of mode 1

=Receiver of mode 0

Antenna element 2

=Transmitter  of mode 2

=Receiver of mode 1  
Fig. 7. Layout of antenna elements 

 
3.3.2 Migration 

Migration is a method to reconstruct the spatial distribution of subsurface reflectivity from a 
set of time-series signals acquired on the ground surface. This method has been studied in 
seismology (Yilmaz, 1987), and applied to GPR in some cases, (Feng and Sato, 2004).  
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Several kinds of migration are known, such as diffraction stacking, Kirchhoff migration, f-k 
migration, FD migration, and reverse time migration. Kirchhoff migration has been chosen 
here because it is easy to be implemented and to give physical meanings, (Schneider, 1978).  
The migration process will be summarized here.  Figure 6 shows coordinate system of GPR. 

Here, position of focused point under ground is indicated as
TzyxP ],,[= , and center 

position of three antennas at measurement point is indicated 

as
T

SSgSSS yxzyxP )],(,,[= .  Then, reflection rate ),,( zyxσ  is expressed as:  

 

                              ( )∑∫∫
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where, PPr S −= ; rPPyxn SSSg /)(),(cos −⋅=θ ; ),( SSg yxn is the unit vector 

of ground surface; Pt is the traveling time of electromagnetic wave and expressed as 

vPPPPt RTP /)( −+−= ; v is the propagation velocity of electromagnetic wave; 
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3.4 Imaging Results 

The validity of signal processing for geography adaptive scanning was investigated through 
experiments. A buried object as applied for this evaluation is a plastic case of the shape of 
Type 72 landmine, Fig. 8.  Dry sand with 3% water content inside a tank with its surface is 
formed with inclined plane.  Its surface data measured by a laser range finder is shown in 
Fig. 9.  The ground surface is flatly and adaptively scanned as shown in Fig. 5.  The results 
of flat and geography adaptive scans after signal processing are shown in Fig. 10.  As shown 
in Fig. 10(a), effect of ground surface remains and the shape of landmine deforms according 
to it. On the other hand, when scanned adaptively to ground surface, disturbance according 
to ground surface hardly remained and the target-clutter ratio enhances, especially for 
shallow buried object, Fig. 10(b). The effect of polar modes is shown in Fig. 12 and the 
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effectiveness of the synthesized modes for 3-antenna radar is shown Fig. 12d.  Appearance 
of adaptive scanning experiment is shown in Fig. 11. 

 
Fig. 8.  Buried object: plastic case of a landmine shape 
 

 
Fig. 9.  Shape of ground surface 
 

 
(a)                    (b) 

Fig. 10. C-scan results applying: (a)Flat scanning; (b)Geometric adaptive scanning 
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Fig. 11. Appearance of adaptive scanning experiment 
 

 
Fig. 12.  C-scan views processed with various polar modes 

 
4. GPR-MD Fuzzy Fusion 
 

In this section, an automatic sensor-fusion based detection algorithm of an anti-personnel 
land mine is presented.  A “feature in-decision out” fuzzy sensor fusion algorithm for a 
ground penetrating radar, (GPR), and a metal detector, (MD), for anti-personnel landmine 
detection is introduced.  The inputs to the fuzzy fusion system are features extracted from 
both GPR and MD measurements.  The output from the fuzzy fusion system is a decision if 
there is a land mine and at what depth it would be.  Fuzzy fusion rules are extracted from 
training data through a fuzzy learning algorithm.  Experimental test results are presented to 
demonstrate the validity of the proposed fuzzy fusion algorithm and hence its influence in 
minimizing the false alarm rate for humanitarian demining. 

 
4.1 Experimental System 

A six-degree of freedom serial manipulator of type PA10-7C, manufactured by Mitsubishi 
Heavy Industries, Japan, is applied as a sensor manipulator for GPR-MD sensor fusion.  
Manipulator based scanning facilitates a regular step scanning better than a manual based 
scanning, which leads to better signal processing results.  Another advantage is the safety 
achieved by automatic scanning as an operator can do his task from a remote place.  PA10 
manipulator holding a metal detector is shown in Fig. 13.  Avoiding the manipulator 
singularity points, it was possible to design the same path for both GPR and MD sensors.  
The test field is a tank full of dry and homogeneous river sand, as shown in Fig. 13.  Its 
water content is 4.0 %, (relative permittivity of about 3.29).  EM wave absorber covers all the 
sidewalls and the bottom of the tank to suppress the tank walls reflection during GPR 
measurements.  A dummy land mine of type PMN2 is the applied one for demonstrating 
the methodology of this study, Fig. 14.  It has the same dielectric constant and the same 
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metal content as the real one.  Its diameter and height is 122 and 54 mm, respectively.  The 
field is relatively flat and both the GPR antenna and MD sensing head scanned in a path 
parallel to the surface with a gap between the sensor head and the ground of 10 mm. During 
the experiments, the scanning area is 400x500 mm2.  The manipulator movement is in 20 mm 
steps in both Y-Z directions comprising a grid of 21x26 measurement points by both GPR 
and MD.  The scanning path is as shown in Fig. 15. 
 

 
Fig. 13.  Metal detector manipulation 
 

 
Fig. 14.  Dummy PMN2 landmine 
 

 
Fig. 15. Scanning path 
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4.2 Features Extraction 

The inputs to fusion algorithm are GPR and MD features while the output is a decision if 
there is a landmine or not and at what depth it would be.  In this subsection, extraction of 
GPR as well as MD features from the processed data is presented. 

 
4.2.1 GPR Features Extraction 

The migrated GPR data, (section 3), gives 3-D reconstructed image, from which horizontal 
slice image (C-scan), can be extracted.  A horizontal slice of reconstructed signal amplitude 
for a buried PMN2 dummy land mine at a depth of 20 mm is shown in Fig. 16.  We use the 
maximum amplitude from all the different horizontal slices as a feature of GPR 
measurements.  The amplitude as well as position is extracted from the 3-D reconstructed 
image.  It should be noted that A-scan, Fig. 17, for a buried object will have peaks at a depth 
different from that for a pure ground.  As shown in Fig. 17, the reflection intensity of a 
dummy landmine has two peaks near the surface and at another depth underground, (about 
7.0 cm), while that for a pure mine field, (without a landmine), has only one peak at the 
surface.  A peak of reflection intensity underground is an indication of a buried object. 

 
Fig. 16. C-scan of the reconstructed signal amplitude of a dummy PMN2 landmine, (buried 

at depth 2.0 cm) 
 

 
Fig. 17. A-scan of the mine field with and without a landmine 
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4.2.2 MD Features Extraction 
A dual frequency metal detector of type MINEX 2FD 4.500, Fig. 13, manufactured by 
Forster, (Germany), is applied.  The operating principle is based on continuous wave 
technique, comprising a transmitter coil and two symmetrical receiver coils in a gradient 
arrangement.  The transmitter coil sends one signal continuously at two frequencies. As a 
result of the induction effect in a conducting object and its return effect on the coil system, 
the coil impedance changes.  This change is evaluated and returned in the form of an 
acoustic signal.  In the current measurement system, the output signal is acquired through a 
direct wiring interface. 
The captured MD time-domain signal is transformed into frequency domain then the peak 
around the working frequency is captured.  For a scanned surface, the output signal is like 
that shown in Fig. 18.  The object position is exactly at the position of changing the sign of 
amplitudes from positive to negative.  We reform this signal to the cumulative sum in X-D, 
Fig. 19, so as to make it easier in deciding the position of scanned object which is directly at 
the peak cumulative sum.  We take this cumulative sum as an MD feature, (Zyada et al, 

2006-A).  Cumulative sum, iCS  at point i , is defined as: 

      ∑
=

=
=

=
iy

y
xxyxi ICS

1
,...,1,

max

     (4) 

It is the summation of the intensity, yxI ,  from the initial point ( )1=y to the current point 

( )iy = in y direction.  That is to be repeated for all values of x .  The cumulative sum of the 

measured signal according to the definition of equation (2) is shown in Fig. 19.  The peak 
amplitude in Fig. 19 as well as its position can be easily extracted.  This maximum 
amplitude is applied as MD-feature of a landmine. 

 
Fig. 18. Metal detector signal amplitude 
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Fig. 19. Cumulative sum of metal detector signal amplitude 

 
4.3 Fuzzy Fusion Rules Learning 

We use a fuzzy rule base for fusion of both GPR and MD sensors for humanitarian landmine 
detection.  The learning algorithm applies Wang-Mendel method, [10], for fuzzy rule 
learning from experimental data. 

 
4.3.1 Learning Fuzzy Rules from Experimental Data 

The chosen algorithm for our study, to learn rules from experimental data, is a simplified 
fuzzy algorithm.  It presents three characteristics that make it a good choice in view of our 
objectives: simplicity, simple one-pass to extract the rules, and flexibility with fast 
computational time to operate in a demining system.  Also, it is possible to collect the learnt 
rules from numerical data as well as heuristic rules in the same frame of work which may be 
needed in future development of the current work.  This learning algorithm is developed 
and applied to different applications, (Zyada et al, 2002; Branco and Dente, (1998; 2000-A; 
2000-B)). 
Fuzzy rules are first learnt from examples then the number of associated membership 
functions for every variable is optimized for the all learnt rules.  The best group of rules 
expressing data is then selected based on the overall average rules truth degree.  In the 
following, we describe the main steps and a simple example to illustrate the method of 
extracting fuzzy rule base with two inputs and one output: 

Step 1: Choose the Variables and Divide the Input and Output Spaces into Fuzzy Regions: 
Choose the variables that better characterize the system.  The input variables and the output 
will compose, respectively, the condition and the conclusion of the rule parts.  Assume that 

the domain intervals of variables ),( 21 xx and y  are ],[ 11

+− xx , ],[ 22

+− xx  and ],[ +− yy , 

respectively, where “domain interval” of a variable means that most probably this variable 
will lie in this interval.  Divide each domain interval into an odd number of regions.  This 
number of regions may be different from one variable to another.  Assign each region a 
fuzzy membership function.  Use symmetric triangular membership functions whose one of 
its vertices lies at the center of the region with a membership value of unity and the other 
two vertices lie at the centers of the two neighboring regions with membership values of 
zeros as shown in Fig. 20.  Other shapes of membership functions are possible.  However 
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authors of the current work applied the stated and examined triangular membership 
functions proposed by Wang-Mendel, (Wang and Mendel, 1992). 

Step 2: Generating Fuzzy Rules from Numerical Data: 
From the training set, take the kith numerical data pair 

)()(

2

)(

1 ),( kkk yxx →      (5) 

For each input value, ),( )(

2

)(

1

kk xx , and corresponding output one, 
)(ky , calculate their 

respective membership grades in the attributed fuzzy sets.  Hence it is constructed for each 

variable a raw vector denoted by )(),( )(

2

)(

1

kk xmxm
ff

 for the inputs and )( )(kym
f

for the 

output, with a number of elements equal to the fuzzy sets attributed in step 1. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 20. Divisions of the input and output spaces into fuzzy regions and the corresponding 

membership functions, (a) )( 1xm , (b) )( 2xm , (c) )(ym  

 
Choose for each variable their highest membership degree from the grades in the respective 

vectors, )(),( )(

2

)(

1

kk xmxm
ff

 and )( )(kym
f

.  The selected grades are max

)(

1 )]([ kxm
f

, 
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max

)(

2 )]([ kxm
f

 and max

)( )]([ kym
f

.  Now, a rule from the kith training pair is obtained.  The 

fuzzy sets attributed for the condition and conclusion parts of this rule are, respectively, the 

sets jA , jB and jC  in which the inputs ),( )(

2

)(

1

kk xx and the output 
)(ky  had maximal 

membership grades. 

Step 3: Assign a Truth Degree to Each Rule: 
A truth degree is assigned to each extracted rule as indicated in the following equation.  The 
degree is defined as the product of the highest membership degree of each vector calculated 
in step 2. 

.)]([)]([)]([))(( max

)(

max

)(

2max

)(

1

kkk ymxmxmkR
fff

⋅⋅=µ    (6) 

 
When two rules have the same fuzzy set in the IF part but a different fuzzy set in THEN 
part, the rules are called to be in conflict.  To resolve this problem, it is accepted only that 
rule with highest truth degree.  At last for this step, if it is not the end of the training data 
set, the algorithm goes again to the beginning of step 2 to pick up the next data pair. 
 
For completeness, we introduce here an example describing how the learning algorithm in 
the above three steps operates.  We consider for this example a simple case of a system with 

two input variables ( 21, xx ) and one output variable ( y ).  The variables are partitioned by 

a number of symmetric triangular membership functions as shown in Fig. 20.  Seven fuzzy 

sets were associated with variable 1x , five fuzzy sets to 2x and seven fuzzy sets to y . 

Suppose a first data pair 
)1()1(

2

)1(

1 ),( yxx → collected from the system, which is indicated in 

Fig. 9.  For each input value, compute its membership degree in fuzzy sets jA  or jB  

associated to its variable, and do the same for the output variable in its jC .  This procedure 

results in the following three vectors: 

]0.00.00.00.08.02.00.0[

],[)( 7654321

)1(

11

=

= AAAAAAAxm
f

 

]0.06.04.00.00.0[

],[)( 54321

)1(

22

=

= BBBBBxm
f

 

]0.00.00.00.06.04.00.0[

],[)( 7654321

)1(

=

= CCCCCCCym
f

   (7) 

 
Next, choose in each vector of the above three vectors, the fuzzy set with maximum 
membership degree, resulting in 
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.6.0)}(max{)]([

,6.0)}(max{)]([

,8.0)}(max{)]([

3

)1(

max

)1(

4

)1(

22max

)1(

22

3

)1(

11max

)1(

11

Cymym

Bxmxm

Axmxm

→→=

→→=

→→=

ff
ff
ff

 

 
From this procedure, the first rule, from the first data pair, (k=1) is extracted, being 

:)1(lR  IF ( 1x is 3A and 2x is 4B ) 

THEN y is 3C        (8) 

A truth degree is attributed to this rule, which is computed by multiplying the membership 
degrees.  That is 

.288.0

)6.0)(6.0)(8.0())1((

=

=lRµ
     (9) 

Suppose now a second data pair
)2()2(

2

)2(

1 ),( yxx → , indicated in Fig. 9 too, is to be 

acquired.  If we calculate their vectors and their respective maximum membership degrees, 
the new data pair has the same input fuzzy sets as the rule extracted from the first data pair, 
although producing an output fuzzy set different from that extracted from the first data 
pair.  In this case we choose the one with maximal degree. 

]00015.085.000[

],[)( 7654321

)2(

11

=

= AAAAAAAxm
f

 

  
]0006.04.000[

],[)( 7654321

)2(

=

= CCCCCCCym
f

                               (10) 

.6.0)}(max{)]([
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4

)2(

max

)2(

4

)2(

22max

)2(

22

3

)2(

11max

)2(

11

Cymym

Bxmxm
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→→=

→→=

→→=

ff
ff
ff

 

                                
.408.0

)6.0)(8.0)(85.0())2((

=

=lRµ
                                 (11) 

So we choose this rule in place of the above rule so that it will be 

:)1(lR  IF ( 1x is 3A and 2x is 4B ) 

THEN y is 4C                     (12) 

 

Step 4: Refining the Selection of Associated Membership Functions Set Numbers 
Calculate the average truth degree of all extracted rules as: 

niR
n

i

av /))((
1

∑
=

= µµ                                      (13) 
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where n  is the number of extracted rules. 

We change the number of fuzzy sets associated with each input and output variable and 
repeat the above steps for every possible combination for prescribed numbers of associated 

fuzzy sets for every variable.  The group which gives maximum average 
avµ  is chosen.  The 

learning algorithm with its 4 steps can be summarized as shown in the flow chart of Fig. 21.  
If we view this four step procedure as a block, then the inputs to this block are examples and 
the output is the best group of fuzzy rules expressing these examples with their associated 
membership functions, (Zyada et al, 2006-A). 

 
Fig. 21. Learning algorithm flow chart 

www.intechopen.com



GPR Environmental-Based Landmine Automatic Detection 

 

169 

4.3.2 Learning Fuzzy Rules for GPR-MD Fusion 

For the system described in section II, the scanning path is designed as shown in Fig. 15.  
The manipulator scanned the object, dummy PMN2 landmine, while it is buried at different 
depths.  The depth is changed from 0.0 to 70.0 mm in steps of 10 mm.  The depth is 
measured from the ground surface to the upper face of the dummy land mine.  The depth is 
limited to the maximum depth at which a land mine could be sensed by a metal detector, (70 
mm in our case).  The gap between the sensor head, (both GPR and MD), and the ground 
surface is kept constant at 10 mm during all experiments.    The sensors positioning 
variables are treated as crisp not as fuzzy variables in the current work.  The data is 
acquired for both GPR and MD scanning.  The signal for both sensors is processed as 
described in section III.  The output of processing is the values of GPR and MD features at 
different depths.  These values are input to the learning algorithm described in the first part 
of this section, as shown in Fig. 22.   
 

 IF Part THEN Part 

No. MD Feature GPR Feature  

1 A1 B1 C7 

2 A3 B3 C6 

3 A3 B4 C5 

4 A5 B6 C4 

5 A2 B7 C3 

6 A1 B8 C2 

7 A3 B9 C1 

Table 1. Learnt fuzzy fusion rules 
 
The output is a group of fuzzy rules that best express these GPR and MD features.  The 
output fuzzy rules are shown in Table 1, [18], where A’s, B’s and C’s fuzzy sets are changing 
from low to high, (i.e. A1 is smaller than A2, B1 is smaller than B2, C1 is smaller C2, and so 
on).  Because of the limited number of training data, the learnt fuzzy rules are few for 
association.  A solution for this problem is to increase the number of training data through 
interpolation.  We applied linear interpolation for the extracted features and re-applied the 
learning algorithm of Fig. 22.  The result is a better number of fuzzy rules suitable for rules 
association as shown in Table 2. 

C1C2B5

C4C3C3B4

C6C6C6C6C5B3

C7C7C7C8B2

C9B1

A7A6A5A4A3A2A1

GPR Variable

M
D

 V
ar

ia
b
le

 
Table 2. Learnt fuzzy fusion rules after interpolation 
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4.4 Experimental Evaluation 
The A decision making system, Fig. 23, is proposed for evaluating the learnt fuzzy fusion 
rules.  The inputs of the decision making system are the extracted features for both MD and 
GPR, the features positions as well as the learnt fuzzy fusion rules.  A tested object should 
fulfill three conditions to be decided as a land mine: 1) position of features of both GPR and 

MD should be near from each other.  MD feature position, ( PosMD _  ), to be near from 

GPR feature position, PosGPR _ , is defined as the following crisp expression with a 

specific offset. 

OffsetPosMDPosGPROffsetPosMD +≤≤− ___                        (14) 

 
In the decision making algorithm, the offset is chosen to be the land mine radius, 2) the 
object should be detected a landmine suspect by a GPR.  It means that GPR feature should 
be associated in the learnt fuzzy rule base, 3) the object should be detected as a land mine 
suspect by MD too.  The MD feature should be associated within the fuzzy rule base. 
In the following, three experimental tests and their results for evaluating the proposed fuzzy 
rule-based fusion system are presented.  
 

 
Fig. 22. Fuzzy rules learning algorithm for MD and GPR sensors fusion 

 
4.4.1 Tests 

Three tests are carried out with different objects.  The first object is the dummy land mine, 
Fig. 14, at a depth different from that specified in the training phase.  The second object is a 
plastic case, Fig. 8, having the same shape of a land mine in which a metal object, (bolt), is 
inserted.  The third object is a metal bolt only.  The three objects can be sensed by both metal 
detector and ground penetrating radar.  Each object is scanned by both MD and GPR.  Data 
is processed and the features as well as their positions are obtained.  The features, their 
positions, learnt fusion rules for a specific tested object are input to fuzzy decision making 
system, Fig. 23.  The positions of landmine suspect features are checked first.  If they were 
near from each other according to definition of (12), the decision making system proceed for 
fuzzy fusion.  The features are fuzzified with the same membership functions obtained in 
the learning phase.  The fuzzified values are compared with the final learnt fusion rules of 
Table 2 through an implemented MATLAB program.  It is based on input fuzzy sets 
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association, (Yen, 1999).  If there is an association then there is a PMN2 landmine and its 
depth is the output fuzzy rule.  If there is no association for any of the features, it means that 
the object is not the specified PMN2 landmine. 
 

 
Fig. 23. Decision making system 

 
4.4.2 Performance 

The The proposed algorithm could easily classify the first object, (the dummy land mine), 
and expect its depth to be around 2.3 cm (its surface was actually at a depth of 2.5 cm).  The 
second object, (a case with an inserted metal bolt), as well as the third object, (a metal bolt 
only), could be classified as a non-land mine object.  The second object was detected as a 
land mine suspect with GPR but not a land mine suspect with MD.  There was no 
association of the MD feature.  Also, the third object was not detected as a landmine suspect 
with either MD or GPR.  There was no association of both MD feature and GPR feature.  The 
fulfillment of the decision making conditions as well as the final decision are shown in Table 
3, where “O” means the condition is fulfilled and “X” means the condition is not fulfilled. 
The decision of the second and third object would be difficult if it to be done by a deminer 
from GPR images and/or MD sounds (or images).  It should be noted here that even though 
the MD feature of the 2nd object, Table 3, was not fulfilled by the decision making system, 
MD will give a sound, (or image).  Also, even though the GPR feature of the 3rd object, 
Table 3, was not fulfilled by the decision making system, it will give an image.  The features 
were not fulfilled because their values were outside the range leant during the learning 
phase.  Based on that, the proposed automatic detection algorithm will decrease the false 
alarm rate significantly.  One limitation of the algorithm is that it is based on the association 
of the input fuzzy rules, (i.e.: if the input fuzzy rules are outside the learnt rules, the 
algorithm will not give decision).  That is the need to modify the decision making to be 
based on implication in place of association, (Yen, 1999).  One more limitation is that the 
positions of GPR and MD features are treated as crisp variables because a PA10 
manipulator, (with its high positioning accuracy), is applied for sensor manipulation.  
However in a real field, if a mobile vehicle like that presented in section 2, is applied for 
sensor manipulation, the features’ positions are preferably treated as fuzzy variables as well.  
Fuzzy fusion development will include geography adaptive scanning based fusion in the 
future. 
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No
. 

Object Features 
position 
fulfillment 

MD feature 
fulfillment 

GPR feature 
fulfillment 

Decision 

1 Dummy 
land mine 

O O O A land mine at an 
expected depth 

2 Plastic 
case + a 
metal bolt 

O X O Not a land mine 

3 A metal 
bolt 

O X X Not a land mine 

Table 3. Decision making system results 

 
5. Conclusions 
 

In this chapter, GPR environmental-based landmine automatic detection is presented.  The 
contribution of the presented research can be summarized in: (1) introducing a low-
pressure-tire vehicle as a sensor manipulator.  It is capable to move inside a mine field 
without detonating a group of anti-personnel landmines; (2) introducing a signal processing 
technique for the enhancement of GPR images for an undulating surface. Signal processing 
for ground adaptive scanning and its image results are presented applying a vector FMCW 
GPR; (3) an automatic detection method of an anti-personal land mine based on fuzzy 
fusion rules for GRR-MD is presented.  Fuzzy technique is applied for learning a fuzzy rule-
base from examples. The proposed method is easy to be implemented in a real field and 
easy to be executed by a normal operator or a deminer.  It was possible to automatically 
differentiate between a land mine and other objects which would minimize the false alarm 
rate significantly. 
 

Prospects: 
The future work would include: (1) developing the low-pressure-tire vehicle through 
increasing the contact area between the tire and the ground; (2) extending the presented 
sensor fusion technique to geography adaptive scanned ground applying both MD and 
GPR; (3) treating sensors’ positions as fuzzy variables in the sensor fusion algorithm. 
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