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1. Introduction     

Flexible manipulators are finding their way in industrial and space robotics applications due 
to their lighter weight and faster response time compared to rigid manipulators.  Control of 
flexible manipulators has been studied extensively for more than a decade by several 
researchers (Book 1993, Cannon and Schmitz 1984, De Luca and Siciliano 1989, Siciliano and 
Book 1988, Vidyasagar and Anderson 1989, and Wang and etc. 1989).  Despite their 
applications, control of flexible manipulators has proven to be rather complicated.   
It is well known that stabilization of a flexible manipulator can be greatly simplified by 
collocating the sensors and the actuator, in which the input-output mapping is passive 
(Wang and Vidyasagar 1990), and a stable controller can be easily devised independent of 
the structure details.  However, the performance of this collocated feedback turns out to be 
not satisfactory due to a week control of the vibrations of the link (Chudavarapu and Spong 
1996).  This initiated finding other noncollocated output measurements like the position of 
the end-point of the link to increase the control performance (Cannon and Schmitz 1984).  
However, if the end-point is chosen as the output and the joint torque is chosen as the input, 
the system becomes a nonminimum phase one, hence possibly behave actively.  As a result, 
the small increment of the output feedback controller gains can easily make the closed-loop 
system unstable.  This had led many researchers to seek other outputs for which the 
passivity property is enjoyed.  
Wang and Vidyasagar (1990) proposed the so-called reflected tip position as such an output.  
This corresponds to the rigid body deflection minus the deflection at the tip of the flexible 
manipulator.  Pota and Vidyasagar (1991) used the same output to show that in the limit, for 
a non uniform link, the transfer function from the input torque to the derivative of the 
reflected tip position is passive whenever the ratio of the link inertia to the hub inertia is 
sufficiently small.  Chodavarapu and Spong (1996) considered the virtual angle of rotation, 
which consists of the hub angle of rotation augmented with a weighted value of the slope of 
the link at its tip.  They showed that the transfer function with this output is minimum 
phase and that the zero dynamics are stable.   

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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Despite the fact that these previous efforts have succeeded in numerous kinds of 
applications, the critical drawback was that these are model-based approaches requiring the 
system parameters or the dynamic structure information at the least.  However, interesting 
systems are uncertain and it is usually hard to obtain the exact dynamic parameters and 
structure information.  
In this paper, we introduce a different way of treating noncollocated control systems 
without any model information.  Recently developed stability guaranteed control method 
based on time-domain passivity control (Hannaford and Ryu 2002, Ryu, Kwon, and 
Hannaford 2002) is applied.   

2. Review of stability guaranteed control with time domain passivity 
approach 

2.1 Network model 

In our previous paper (Ryu, Kwon, and Hannaford 2002), the traditional control system 
view could be analyzed in terms of energy flow by representing it in a network point of 
view.  Energy here was defined as the integral of the inner product between the conjugate 
input and output, which may or may not correspond to a physical energy.  We partition the 
traditional control system into three elements, the trajectory generator (consisting of the 
trajectory generator), the control element (consisting of the controller, actuator and sensors) 
and the plant (consisting of the plant).  The connection between the controller element and 
the plant is a physical interface at which, suitable conjugate variables define the physical 
energy flow between controller and plant.  The connection between trajectory generator and 
controller, which traditionally consists of a one-way command information flow, is modified 
by the addition of a virtual feedback of the conjugate variable.  For a motion control system, 

the trajectory generator output would be a desired velocity ( )
d
v , and the virtual feedback 

would be equal to the controller output ( )τ  (Fig. 1). 

 

Trajectory

Generator
Controller

dv

Plantτ
+

−

v

τ
 

Fig. 1. Network view of a motion control system 

To show that this consideration is generally possible for motion control systems, we 

physically interpret these energy flows.  We consider a general tracking control system with 

a position PID and feed forward controller for moving a mass ( )M  on the floor with a 

desired velocity ( )
d
v .  The control system can be described by a physical analogy with Fig. 

2.  The position PD controller is physically equivalent to a virtual spring and damper whose 

reference position is moving with a desired velocity ( )
d
v .  In addition Integral Controller 

( )
I
u  and the feed forward controller ( )

FF
u  can be regarded as internal force sources.  Since 

the mass and the reference position are connected with the virtual spring and damper, we 
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can obtain the desired motion of the mass by moving the reference position with the desired 

velocity.  The important point is that if we want to move the reference position with the 

desired velocity ( )
d
v , force is required.  This force is determined by the impedance of the 

controller and the plant.  Physically this force is equivalent to the controller (PID and feed 

forward) output ( )τ .  As a result, the conjugate pair ( )τ and 
d
v  simulates the flow of virtual 

input energy from the trajectory generator, and the conjugate pair ( )τ and v  simulates the 

flow of real output energy to the plant.  Through the above physical interpretation, we can 

construct a network model for general tracking control systems (Fig. 1), and this network 

model is equivalently described with Fig. 3 whose trajectory generator is a current (or 

velocity) source with electrical-mechanical analogy.  Note that electrical-mechanical analog 

networks enforce equivalent relationships between effort and flow.  For the mechanical 

systems, forces replace voltages in representing effort, while velocities representing currents 

in representing flow. 

 

M

frictionF

dv

τ

v
Controller Plant

Trajectory

generator

FFI uu ,

 

Fig. 2. Physical analogy of a motion control system 

 

Trajectory

generator

dv C PlantController

 

Fig. 3. Network view of general motion control systems 
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2.2 Stability concept 
From the circuit representation (Fig. 4), we find that the virtual input energy from the 
trajectory generator depends on the impedance of the connected network.  If the connected 
network (controller and plant) with the trajectory generator is passive, the control system 
can remain passive (Desoer and Vidyasagar 1975) since the trajectory generator creates just 
the amount of energy necessary to make up for the energy losses of the connected passive 
network.  This is just like a normal electric circuit.  Thus we have to make the connected 
network passive to guarantee the stability of the control system since passivity is a sufficient 
condition for stability.   
In addition, the plant is uncertain and has a wide variation range of impedance or 
admittance (from zero to infinite).  Thus, the controller 2-port should be passive to 
guarantee stability with any passive plant. 

2.3 Time domain passivity approach 
A new, energy-based method has been presented for making large classes of control systems 
passive by making the controller 2-port passive based on the time-domain passivity concept.  
In this section, we briefly review time-domain passivity control. 
First, we define the sign convention for all forces and velocities so that their product is 
positive when power enters the system port (Fig. 4).  Also, the system is assumed to have 
initial stored energy at t = 0 of E(0).  The following widely known definition of passivity is 
used. 

N
+

−

+

−
1f 2f

1v 2v

 

Fig. 4. Two-port network 

Definition 1: The two-port network, N , with initial energy storage ( )0E  is passive if and only if, 

 ( ) ( ) ( ) ( )( ) ( ) 0       ,00
0

2211
≥∀≥++∫ tEdvfvf

t

τττττ   (1)  

for admissible forces ( )
21

, ff  and velocities ( )
21

,vv .  

Equation (1) states that the energy supplied to a passive network must be greater than 
negative E(0) for all time (van der Schaft 2000, Adams and Hannaford 1999, Desoer and 
Vidyasagar 1975, Willems 1972). 
The conjugate variables that define power flow in such a computer system are discrete-time 
values, and the analysis is confined to systems having a sampling rate substantially faster 
than the dynamics of the system so that the change in force and velocity with each sample is 
small.  Thus, we can easily “instrument” one or more blocks in the system with the 
following “Passivity Observer,” (PO) for a two-port network to check the passivity (1). 

 ( ) ( ) ( ) ( ) ( )( ) ( )0 
0

2211
EkvkfkvkfTnE

n

k

obsv
++Δ= ∑

=

  (2) 
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where ΔT is the sampling period. 

If ( ) 0≥nE
obsv

 for every n , this means the system dissipates energy.  If there is an instance 

when ( ) 0<nE
obsv

, this means the system generates energy and the amount of generated 

energy is ( )nE
obsv

− . 

Consider a two-port system which may be active.  Depending on operating conditions and 
the specifics of the two-port element’s dynamics, the PO may or may not be negative at a 
particular time.  However, if it is negative at any time, we know that the two-port may then 
be contributing to instability.  Moreover, we know the exact amount of energy generated 
and we can design a time-varying element to dissipate only the required amount of energy.  
We call this element a “Passivity Controller” (PC).  The PC takes the form of a dissipative 
element in a series or parallel configuration for the input causality (Hannaford and Ryu 
2002). 
 

N
2α1α

Series PC Series PC

+

−

+

−

+

−

+

−
1f 2f 3f 4f

1v 2v 3v 4v

 

Fig. 5. Configuration of series PC for 2-port network 

For a 2-port network with impedence causality at each port,  we can design two series PCs 
(Fig. 5) in real time as follows: 

   1) ( ) ( )nvnv
21

=  and ( ) ( )nvnv
43

=  are inputs  

   2) ( )nf
2

 and ( )nf
3

 are the outputs of the system. 

   3) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

32

2

213322
11111 −−+−−+++−= nvnnvnnvnfnvnfnWnW αα  is the 

PO 
Two series PCs can be designed for several cases  

4)  
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
−

−

=

3 1, case if0

4.1 case if
)( 

4.2 2, case if)( /)(

 )(
2

2

22

2

2

1
nv

nvnf

nvnW

nα   (3) 

5)  
( ) ( ) ( )( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
+−−

−

=

4.2 2, 1, case if0

4.1 case if
)(

1

3 case if)(/)(

 )(
2

3

33

2

3

2
nv

nvnfnW

nvnW

nα   (4) 

where each case is as follows: 
Case 1: energy does not flow out  

 ( ) 0≥nW  
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Case 2: energy flows out from the left port 

 ( ) ( ) ( ) ( ) ( ) 0 ,0 ,0
3322

≥<< nvnfnvnfnW  

Case 3: energy flows out from the right port 

 ( ) ( ) ( ) ( ) ( ) 0 ,0 ,0
3322

<≥< nvnfnvnfnW  

Case 4: energy flows out from the both ports: as we mentioned above, in this paper, we 
divide it into two cases.  The first case is when the produced energy from the right port is 
greater than the previously dissipated energy: 

 4.1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 ,0 ,0 ,0
333322

<+−<<< nvnfnWnvnfnvnfnW  

in this case, we only have to dissipate the net generation energy of the right port as the 
second line in Eq. (4).  The second case is when the produced energy from the right port is 
less than the previously dissipated energy: 

 4.2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 ,0 ,0 ,0
333322

≥+−<<< nvnfnWnvnfnvnfnW  

in this case we don’t need to activate the right port PC, and also reduce the conservatism of 
the left port PC as the fist line of Eq. (3). 

   6) output )( )()(  )(
2121

⇒+= nvnnfnf α  

   7) output )( )()(  )(
3234

⇒+= nvnnfnf α  

Please see (Ryu, Kwon and Hannaford 2002a, 2002b) for more detail about two-port time 
domain passivity control approach. 

3. Implementation issues 

This section addresses how to implement the time domain passivity control approach to 
flexible manipulator with noncollocated feedback.  Consider a single link flexible 

manipulator having a planar motion, as detailed in Fig. 6.  ev  is the end-point velocity, av  

is the velocity of the actuating position, and τ  is the control torque at the joint. 
 

 

Fig. 6. A Single-link flexible manipulator 

h
I

D.C. Motor

L  A    I
b
ρ

End Mass
ee

  JM

av

τ

ev
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3.1 Network modeling 

When we feedback end-point position to control the motion of the flexible manipulator, a 
network model (including causality) of the overall control system is depicted as in Fig. 7.  

ed
v  means a desired velocity of the end-point.  In this case, we have to consider one 

important thing.  If the input-output relation of the plant is active, the time domain passivity 
control scheme cannot be applied, since the time domain passivity control scheme has been 
developed in the framework that the input-output relation of the plant is passive.  If the 
end-point position is a plant output and joint torque is a plant input, the input-output 
relation of the plant is possibly active.  Thus the overall control system may not be passive 
even though the controller remains passive.  

 

 
 
 
 
 
 
 

Fig. 7. A network model of flexible manipulator with end-point feedback 

 
 
 
 
 
 
 
 
 
 

Fig. 8. A network model of flexible manipulator with end-point feedback 

To solve this problem, we make the above network model suitable to our framework.  The 

important physical fact is that the conjugate input-output pair ( )τ,
e
v  is not simulating 

physical output energy from the controller to the flexible manipulator, the energy flows into 

the flexible manipulator through only the place where the actuator is attached.  Even the 

controller use non-collocated sensor information to generate controller output, the actual 

physical energy that is transmitted to the flexible manipulator is determined by the 

conjugate pair at the actuating position.  Based on the above inspection, it is clear that the 

controlled result about the joint torque is joint velocity, and the joint velocity cause end-

point motion.  Therefore, we can extract a link dynamics from the joint velocity to the end-

point velocity from the flexible manipulator (which has noncollocated feedback) as in Fig. 8.  

The noncollocated (possibly active) system is then separated into the collocated (passive) 

system and a dynamics from the collocated output (joint velocity) to the noncollocated 

output (end-point velocity).  As a result, if it is possible, and it generally is, to use the 

Trajectory

Generator

End-point

Feedback

Controller

Flexible

Manipulator

edv

ev

τ

τ

Trajectory

Generator

End-point

Feedback

Controller Link

Dynamics

edv

evτ av

Plant

Controller

τ
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velocity information of the actuating position, we can construct the network model 

(controller and passive plant) that is suitable to our framework as in Fig. 8 by including the 

link dynamics that cause the noncollocation problem into the controller. 

3.2 Designing the PO/PC 

First, for designing the PO, it is necessary to check the real-time availability of the conjugate 

signal pairs at each port of the controller.  The conjugate pair at the port that is connected 

with the trajectory generator is usually available since the desired trajectory ( )
ed
v  is given 

and the controller output ( )τ  is calculated in real-time.  Furthermore, the conjugate pair is 

generally available for the other port that is connected to the plant since the same controller 

output ( )τ  is used, and the output velocity of the actuating position ( )
a
v  is measured in 

real-time.  Thus, the PO is designed as  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )nWTEkvkkvkTnE
n

k

aedobsv
⋅Δ=+−Δ= ∑

=

0 
0

ττ . 

After designing the PO, the causality of each port of the controller should be determined in 

order to choose the type of PC for implementation.  In a noncollocated flexible manipulator 

control system, the output of the trajectory generator is the desired velocity ( )
ed
v  of the end-

point, and the controller output ( )τ  is feedback to the trajectory generator.  Thus, the port 

that is connected with the trajectory generator has impedance causality.  Also, the other port 

of the controller has impedance causality because a motion controlled flexible manipulator 

usually has admittance causality (force input ( )τ  and joint velocity output ( )
a
v ).  Thus, two 

series PCs have to be placed at each port to guarantee the passivity of the controller (Fig. 9). 

From the result in (Ryu, Kwon and Hannaford 2002b), the initial energy of the controller is 
as follows: 

( ) ( )20
2

1
0 eKE

p
=  

where 
p

K  is a proportional gain and ( )0e  is the position error of the end-point at the 

starting time. 

 

Trajectory

Generator
Controller Plant

av

τ

τ

edv

1α
2α

Series PC

+

Series PC

+

 

 

Fig. 9. Configuration of PC for a flexible manipulator with end-point feedback 

www.intechopen.com



Control of a Flexible Manipulator with Noncollocated Feedback: Time Domain Passivity Approach 

 

401 

4. Simulation examples 

Many researchers have used a flexible manipulator for testing newly developed control 

methods due to its significant control challenges.  In this section, the proposed stability 

guaranteed control scheme for noncollocated control systems is tested for feasibility with a 

simulated flexible link manipulator.  

The experimentally verified single link flexible manipulator model (Kwon and Book 1994) is 

employed in this paper.  A single link flexible manipulator having a planar motion is 

detailed in Fig. 6.  The rotational inertia of the servo motor, the tachometer, and the 

clamping hub are modeled as a single hub inertia 
h
I .  The payload is modeled as an end 

mass 
e

M  and a rotational inertia 
e
J .  The joint friction is included in the damping matrix.  

The system parameters in Fig. 6 are given in Table 1.  The closed form dynamic equation is 

derived using the assumed mode method.  For the system dynamic model, the flexible mode 

is modeled up to the third mode, that is, an 8th order system is considered. 

In this section, a stable tip position feedback control is achieved for a flexible manipulator by 

using the PO/PC. 

The following PD controller gain is used 

30=
P
K ,  8.0=

D
K  

In this noncollocated feedback systems, the hub angle can be considered as a conjugate pair 

with joint torque to calculate physical energy output flow into the flexible manipulator (see 

Section 3.A).  

Without the PC turned on, tip-position tracking control is simulated (Fig. 10).  The desired 
tip-position trajectory is as follows: 

( ) ( )ttx
d

sin1.0=  

 

EI : stiffness (Nm2) 11.85 H : thickness (m) 47.63E-4 
Link 

ρ
 A : unit length mass (kg/m) 0.2457 L : length 1.1938 

Tip 
mass 

Me : mass (kg) 0.5867 
Je : rot. Inertia 

(kgm2) 
0.2787 

Hub Ih : rot. Inertia (kgm2) 0.016 

Table 1. Physical properties of a single-link flexible manipulator 

The tip-position can not follow the desired trajectory, tip position and control input have 
oscillation which increases with time (Fig. 10a,b), the PO (Fig. 10c) grow to more and more 
negative values. 
Stable tip-position tracking is achieved with the PC turned on.  Tip-position tracks the 
desired trajectory very well (Fig. 11a), and the PO is constrained to positive values (Fig. 11c).  
The PC at the both side is active only when these are required, and dissipate the just amount 
of energy generation (Fig. 11d) 
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5. Conclusions 

In this paper, we propose a stability guaranteed control scheme of noncollocated feedback 
control systems without any model information.  The main contribution of this research is 
proposing a method to implement the PO/PC for a possibility active plant due to the 
noncollocated feedback.  We separate the active plant into passive one and a transfer 
function from the collocated output to the noncollocated output.  Therefore, the control 
system can be fit to our PO/PC framework.  As a result, we can achieve stable control even 
for the noncollocated control system. 
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Fig. 10. Tip-position feedback without the PC 
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Fig. 11. Tip-position feedback with the PC 
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