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  Neural Network Solutions for Forward 
Kinematics Problem of HEXA Parallel Robot 

M. Dehghani, M. Eghtesad, A. A. Safavi, A. Khayatian, and M. Ahmadi 
Shiraz University 

 I.R. Iran 

1. Introduction 

Forward kinematics problem of parallel robots is a very difficult problem to solve in 
comparison to the serial manipulators due to their highly nonlinear relations between joint 
variables and position and orientation of the end effector. This problem is almost impossible 
to be solved analytically. Numerical methods are the most common approaches to solve  
this problem. Nevertheless, the possible lack of convergence of these methods is the main 
drawback.  In this chapter, two types of neural networks – multilayer perceptron (MLP) and 
wavelet based neural network (wave-net) - are used to solve the forward kinematics 
problem of the HEXA parallel manipulator. This problem is solved in a typical workspace of 
this robot. Simulation results show the advantages of employing neural networks, and in 
particular wavelet based neural networks, to solve this problem. 

2. Review of forward kinematics problem of parallel robot 

The idea of designing parallel robots started in 1947 when D. Stewart constructed a flight 
simulator based on his parallel design (Stewart, 1965). Then, other types of parallel robots 
were introduced (Merlet, 1996). Parallel manipulators have received increasing attention 
because of their high stiffness, high speed, high accuracy and high carrying capability 
(Merlet, 2002). However, parallel manipulators are structurally more complex, and also 
require a more complicated control scheme; in addition, they have a limited workspace in 
compare to serial robots. Therefore, parallel manipulators are the best alternative of serial 
robots for tasks that require high load capacity in a limited workspace. 
A parallel robot is made up of an end-effector that is placed on a mobile platform, with n 
degrees of freedom, and a fixed base linked together by at least two independent kinematic 
chains (Tsai, 1999). Actuation takes place through m simple actuators, (see Fig.  1).  
Similar to serial robots, kinematic analysis of parallel manipulators contains two problems: 
forward kinematics problem (FKP) and inverse kinematics problem (IKP). In parallel robots 
unlike serial robots, solution to IKP is usually straightforward but their FKP is complicated. 
FKP involves a system of nonlinear equations that usually has no closed form solution 
(Merlet, 2001). 
 Traditional methods to solve FKP of parallel robots have focused on using algebraic 
formulations to generate a high degree polynomial or a set of nonlinear equations. Then, 
methods such as interval analysis Merlet, 2004), algebraic elimination (Lee, 2002), Groebner 

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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basis approach Merlet, 2004) and continuation (Raghavan, 1991) are used to find the roots of 
the polynomials or to solve nonlinear equations. The FKP is not fully solved just by finding 
all the possible solutions. Further schemes are needed to find a unique actual position of the 
platform among all the possible solutions. Use of iterative numerical procedures (Merlet, 
2007), (Wang, 2007) and auxiliary sensors (Baronet et al., 2000) are the two commonly 
adopted schemes to further lead to a unique solution. Numerical iteration is usually 
sensitive to the choice of initial values and nature of the resulting constraint equations. The 
auxiliary sensors approach has practical limitations, such as cost and measurement errors. 
No matter how the forward kinematics problem may be solved, direct determination of a 
unique solution is still a challenging problem. 
Artificial neural networks (ANNs) are computational models comprising numerous 
nonlinear processing elements arranged in patterns similar to biological neural networks. 
These computational models have now become exciting alternatives to conventional 
approaches in solving a variety of engineering and scientific problems. Traditional neural 
networks are back propagation networks that are trained with supervision, using gradient-
descent training technique which minimizes the squared error between the actual outputs of 
the network and the desired outputs. Two common types of them are multilayer perceptron 
(MLP) and radial basis function (RBF) are used in modeling of different problems. Recently 
wavelet neural networks have been presented by Zhang et al. in 1992 based on wavelet 
decomposition (Zhang et al., 1992). The proposed wavelet neural network (WNN) inspired 
by feed forward neural networks and wavelet decompositions is an efficient alternative to 
multilayer perceptron (MLP) and redial basis function (RBF) neural networks for process 
modeling and classifying problems. The structure of proposed WNN is similar to that of the 
radial basis function (RBF) networks, except that their main activation function is replaced 
by orthogonal basis functions with simple network topology (Zhang, 1995). The WNN can 
further result in a convex cost index to which simple iterative solutions such as gradient 
descent rules are justifiable and are not in danger of being trapped in local minima when 
choosing the orthogonal wavelets as the activation functions in the nodes (Zhang et al., 
1992). Wave-nets are a class of wavelet-based neural networks with hierarchical 
multiresolution learning. Wave-nets were introduced by Bakshi and Stephanopoulos 
(Bakshi & Sephanopolus, 1993). Then, their nature and applications were thoroughly 
investigated by Safavi (Safavi & Romagnoli, 1997). There have also been other attempts at 
using wavelets for NNs, with the learning algorithms that are different from wave-nets (Szu 
et al., 1992).  
Some researchers have tried using neural networks for solving the FKP of parallel robots 
(Geng et al., 1992), (Yee, 1997). Almost all of prior researches have focused on using ANNs 
approach to solve FKP of Stewart platform. Few of them have also applied this method to 
solve FKP of other parallel robot (Ghobakhlo et al., 2005), (Sadjadian et al., 2005). In this 
chapter, we focus on HEXA parallel robot, first presented by Pierrot (Pierrrot et al.,1990), 
whose platform is coupled to the base by 6 RUS-limbs, where R stands for revolute joint, U 
stands for universal joint and S stands for spherical joint (see Fig.  2). Complete description 
of HEXA robot is presented in Section 2.  
The solution of IKP of HEXA was first presented in (Pierrrot et al., 1990) by F. Pierrrot who 
solved the system of nonlinear equations and obtained a unique solution for the problem. A 
numerical solution for FKP of HEXA parallel robot was presented by J.P. Merlet in (Merlet, 
2001). FKP of this robot has no closed form solution and at most 40 assembly modes 
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(assembly modes are different configurations of the end-effecter with given values of joint 
variables) exist for this problem. He suggested iterative methods for solving HEXA FKP. 
But, these methods have some drawbacks, such as being lengthy procedures and giving 
incorrect answers (Merlet, 2001). Utilization of the passive joint sensors; however, enables 
one to find closed form solutions. In (Last et al., 2005) it has been shown that a minimum 
number of three passive joint sensors are needed for solving the FKP analytically. 
 In this chapter, two neural network approaches are used to solve FKP of HEXA robot. To 
carry out this task, we first estimate the IKP in some positions and orientations -posses- of 
the workspace of the robot. Then a multilayer perceptron (MLP) network and a wave-net 
are trained with data obtained by solving IKP. We test the networks in the other positions 
and orientations of the workspace. Finally the simulation results will be presented and these 
two networks will be compared. 
 

 

Fig.  1. A typical RUS parallel robot (Bonev et al., 2000) 

The rest of the chapter is organized as follows: Section 2 contains HEXA mechanism 
description. Kinematic modeling of the manipulator is discussed in Section 3 where inverse 
and forward kinematics are studied and the need for appropriate method to solve forward 
kinematics is justified. MLP network and wave-net method to solve FKP are discussed in 
section 4. In section 5 the results of solving FKP for HEXA parallel manipulator robot by 
these networks are presented. Comparison of these networks and conclusion are discussed 
in section 6. 

3.  Mechanism description 

There are different classes of parallel robots. Undoubtedly, the most popular member of the 
6-RUS class is the HEXA robot (Pierrrot et al., 1990), of which an improved version is already 
available. The first to propose this architecture, however, was Hunt in 1983 (Hunt, 1983). 
Some other prototypes have been constructed by Sarkissian in 1990 (Sarkissian et al., 1990), 
by Zamanov (Zamanov et al. 1992) and by Mimura in 1995 (Mimura, 1995). The latter has 
even performed a detailed set of analyses on this type of manipulator. Two other designs 
are also commercially available by Servos & Simulation Inc. as motion simulation systems 
(Merlet, 2001). Finally, a more recent and more peculiar design has been introduced by 
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Hexel Corp., dubbed as the “Rotary Hexapod” (Merlet, 2001). Among these different 
versions, Pierrrot’s HEXA robot is considered in this chapter (see Fig.  2). 
 

 

Fig. 2. Pierrrot’s HEXA robot (Pierrrot et al., 1990) 

All types of HEXA robots are 6-DOF parallel manipulators that have the following 
characteristics: 
a) With multiple closed chains, it can realize a greater structural stiffness. 
b) To prevent the angular error of each motor from accumulating, it can realize a higher 
accuracy of the end-effecter position. 
c) As all the actuators can be placed collectively on the base, it can realize a very light 
mechanism. 
Consequently, HEXA enjoys the advantages of faster motions, better accuracy, higher 
stiffness and greater loading capacities over the serial manipulators (Uchiyama et al., 1992). 

4. Kinematic modeling 

As in the case of conventional serial robots, kinematics analysis of parallel manipulators is 

also performed in two phases. In forward or direct kinematics the position and orientation 

of the mobile platform is determined given the leg lengths. This is done with respect to a 

base reference frame. In inverse kinematics we use position and orientation of the mobile 

platform to determine actuator lengths. For all types of parallel robots, IKP is easily solved. 

For HEXA parallel robot this problem was solved by Pierrrot (Pierrrot et al., 1990). Brief 

solution of IKP is presented by Bruyninckx in (Bruyninckx, 1997). Fig. 3 shows one 

mechanical chain in HEXA design. In each chain, M specifies the length of the crank which 

is the mechanical link between the revolute and universal joints, and L gives the length of 

the rod which connects universal and spherical joints. Other parameters, H, h and a, are 

introduced as shown in Fig.  4 The relationship between the joint angles θ i,j (i=1,2,3 and 

j=1,2), robot parameters and position and orientation of the end-effector can be obtained 

from the following procedure. The joint angle θ i,j  moves the end point of crank of ith leg to 

the position pi given by 
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In this equation, the joint angle θi,j is the only unknown variable. The positions pi are 

connected to a mobile platform pivot point ti by links of known length L. Matrix i
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In each chain, a loop closure formulation can be adopted as follows (see Fig.  3): 

 iiiiii bpptbt +=  (3) 

with 

 Mpb ii =   (4) 

   Lpt ii =   (5) 

It is possible to solve (3), (4), (5), for θi,j  : 
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And [ ]Tjijiji 1,,, μρλ  is the position vector of the pivot point ti in the reference frame 

constructed in the actuated R joint (Pierrrot et al., 1990). The same equations can be used to 

derive the HEXA forward kinematic model, but the closed form solution to FKP can not be 

found. So, we propose to use numerical schemes by neural network approach for solving 

FKP in the workspace of the robot. 
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5. Artificial neural networks 

The inspiration for neural networks comes from researches in biological neural networks of 
the human brains. Artificial neural network (ANN) is one of those approaches that permit 
imitating of the mechanisms of learning and problem solving functions of the human brain 
which are flexible, highly parallel, robust, and fault tolerant. In artificial neural networks 
implementation, knowledge is represented as numeric weights, which are used to gather the 
relationships between data that are difficult to realise analytically, and this iteratively 
adjusts the network parameters to minimize the sum of the squared approximation errors 
using a gradient descent method. Neural networks can be used to model complex 
relationship without using simplifying assumptions, which are commonly used in linear 
approaches. One category of the neural networks is the back propagation network which is 
trained with supervision, using gradient-descent training technique and minimizes the 
squared error between the actual outputs of the network and the desired outputs. 

 

 

Fig. 3. A typical chain of the HEXA design. The joint angle θi,j is variable and measured; the 
lengths L and M of the “base” and “top” limbs of each chain are constant; the angles of all 
other joints are variable but not measured. Note that the joint between L and M is two 
degrees of freedom universal joint, so that the link L does not necessarily lie in the plane of 
the figure. 

5.1 Multilayer perceptron (MLP)  

The MLP is one of the typical back propagation ANNs and consists of an input layer, some 
hidden layers and an output layer, as shown in Fig.  5. 
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MLP is trained by back propagation of errors between desired values and outputs of the 
network using gradient descent or conjugate gradient algorithms. The network starts 
training after the weight factors are initialized randomly. Valid data consisting of the input 
vector and the corresponding desired output vector is fed to the network and the difference 
between the output layer result and the corresponding desired output result is used to 
adjust the weights by back propagation of the errors. This procedure continues until errors 
are small enough or no more weight changes occur. A first challenge in training the back 
propagation neural network is the choice of the appropriate network architecture, i.e. 
number of hidden layers and number of nodes of each layer. There is no available 
theoretical result which such choice may rely on. This can only be determined by user’s 
experience (Medsker et al., 1994). 

Fig. 4. Top views of the base and mobile platforms 
 

 

Fig.  5. Schematic of the MLP network (Geng et al., 1992) 
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5.2 Wavelet based neural network (wave-net) 

The hierarchical multiresolution wavelet based network, namely wave-net, was first 

introduced by Bakhshi (Bakshi and Sephanopolus, 1993) and was further investigated by 

Safavi (Safavi and Romagnoli, 1997). There has been another approach to develop wavelet 

based neural network with almost an MLP structure presented by Zhang (Zhang et al., 

1992). However, the latter type of neural network lacks an efficient use of the capabilities of 

wavelets and multiresolution analysis and therefore is not considered in this chapter. 

5.2.1  Wavelets and multiresolution analysis (MRA) 

Wavelets are a new family of localized basis functions and have found many applications in 

quite a large area of science and engineering (Daubechies, 1992). These basis functions can 

be used to express and approximate other functions. They are functions with a combination 

of powerful features, such as orthonormality, locality in time and frequency domains, 

different degrees of smoothness, fast implementations, and in some cases compact support. 

Wavelets are usually introduced in a multiresolution framework developed by Mallat 

(Mallat, 1989). These are shortly explained in the following. Consider a function F(X) in 

L2(R), where L2(R) denotes the vector space of all measurable, square integrable one-

dimensional functions. The function can be expressed as 
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Here, the function φm,k (not to be confused with the orientation angle φ)is called a scaling 

function of the multiresolution analysis (MRA) and a family of scaling functions of the MRA 

is expressed as; 
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Where 
m−

2 and k correspond respectively to the dilation and translation factors of the 

scaling function, and 
2/

2
m−

is an energy normalization factor. The wavelets, denoted by ψm,k 

(not to be confused with the orientation angle ψ), can easily be obtained from φm,k. A family 

of wavelets may be represented as: 

 
)()( /
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2ψψ

   Zkm ∈,   (14) 

To gain a thorough understanding of the role of scaling functions and wavelets within the 

multiresolution approximation framework see (Daubechies, 1992). 
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5.2.2 Wave-net learning  

Equation (11) describes the basic framework of a wave-net in that it explains how each 

wavelet co-operates in the whole approximation scheme. It also shows that the scaling 

functions are only used at the earliest stage of approximation to produce F0, after which the 

approximation scheme uses only wavelets. Fig. 6 depicts a typical wave-net structure. The 

hierarchical nature of the scheme is also obvious. Once the first approximation to a function 

F is obtained, that is F0, one can get a better approximation, namely F-1, by including 

wavelets of the same dilation factor as the scaling function, here m=0. Adding wavelets of  

the next highest resolution, here m= -1, leads to an approximation F-2 , finer than the 

previous one F-1. This process is continued until the original function is reconstructed or an 

arbitrary degree of accuracy for the approximation is obtained. 

In the above hierarchical approach, wavelets with different dilations and translations are 

incorporated.  

The approaches to find the network coefficients, am,k and dm,k are presented by Safavi (Safavi 

and Romagnoli, 1997).  

 

 

Fig. 6. The wave-net structure 

6. Neural network solution for FKP 

In order to model HEXA FKP with neural networks, first, a typical workspace for the robot 

is determined. Then, IKP is solved in some points of the workspace and finally the MLP and 

wave-net are trained with the data of IK solution in the typical robot workspace.  

6.1 The workspace analysis 

It is well known that parallel manipulators have a rather limited and complex workspace. 

Six parameters consisting of three coordinates of position of center of mass for mobile 

platform in the base frame (X, Y, Z) and three RPY orientation angles of mobile platform 

with respect to the base frame (three angles of mobile platform orientation in space consist 

of φ, ψ and θ angles, see Fig.  3) vary in the HEXA workspace. 
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Complete analysis of HEXA workspace is presented in (Bonev et al., 2000) by A. Bonev. We 

use a typical workspace shown in Fig.  7. In this workspace, end-effector can move 300 

millimeters in both directions of X and Y axes; also it can move 600 millimeters in positive Z 

direction. In all positions of the workspace, mobile platform can rotate in the range of [-π/3, 

π/3] for φ, ψ and θ angles. Fig. 7 shows the typical workspace which is used in this chapter. 

The geometric parameters of the robot are given in Table 1. 

 

H h M L a 

360mm 51mm 220mm 280mm 51mm 

Table1. Geometric parameters of HEXA parallel robot 

 

 

Fig.  7. A typical workspace for the HEXA parallel robot 

6.2   Neural network solution for FKP 

Now a MLP network can be trained with the data generated by the solution of IKP. In order 

to model the FKP in terms of 6 variables of positions and orientations of the mobile 

platform, a MLP network with a configuration of 6×13×13×13×13×13×6 has been 

developed with the smallest error and has been used to model FKP. In other words, the 
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ANN model has 6 inputs consisting of 6 joint angles, 5 hidden layers with  13 neurons in 

each layer,  and 6 neurons in the output layer. The activation functions used in the hidden 

layers and the output layer are logarithmic and pure linear, respectively. The number of 

patterns used for training and test are 17500 and 35000, respectively. The network is trained 

over 1200 epochs with error back propagation training. Each network is evaluated by 

comparing the predictions and the true outputs, resulting in a prediction error for each 

orientation angle. The autocorrelation coefficients are also computed for the predicted error 

of each orientation angle.   

6.3 Wave-net solution for FKP 

In order to model the FKP with wave-net, MRA framework is used to approximate this 

process in different resolutions. Inputs, outputs and the number of patterns used for 

training and test are similar to the MLP network. The network is trained in resolutions 

m=0,-1 and -2 and the best results of modeling are reached at resolution -2. Figure 10 shows 

the training results for the successive resolutions zero, -1 and -2 for the X, Y, Z positions. For 

φ, ψ and θ angles the results are not represented due to the similarity and also to save space. 

6.4 Modeling results 

In this section the result of modeling FKP are presented. Error parameters in the tables are: 

mse ; maximum squared error performance function 

mae ; maximum absolute error performance  function 

nrmse ; normalized root minimum square error 

Figures 8-11 show the modelling error and the correlations between the outputs of networks 

and the target outputs. 

6.4.1 Modeling results with the MLP network 

Table 2 and Figs. 8 and 9 show the results of FKP solution by MLP; Table 2 shows the 

resulted errors of FKP modeling.  

It is apparent from Table 2 that  mse , mae  and nrmse  in all joints are less than 2*10-5, 0.01 

and 0.01 respectively, in test data. mae indicates maximum absolute error of modeling; 

therefore, maximum error of position and orientation of mobile platform is not bigger than 1 

millimeter in position and 0.1 degrees in orientation in the worst case. mse  shows the 

maximum of the average of errors in all points and so the average error of FKP solution in 

the typical workspace is less than 2*10-5. R in Table 2 indicates linear regression between 

output of the network and the target data. The closer regression to 1, the better the modeling 

is. The linear regression of all joints is more than 0.99 which shows very good quality 

modeling results. Fig. 9 shows the error of modeling in 1000 sample test points of typical 

workspace. For these sample posses the errors of modeling in position and orientation are 

very small and can be neglected. 

6.4.2 Modeling results with wave-net 

Figures 10 and 11 show the results of FKP solution by wave-net. Table 3 shows the resulted 

errors of FKP modeling. In Table 3 mse and mae in all joints are less than 10-6, 10-2, 
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respectively, for test data. Therefore, maximum error orientation of mobile platform is not 

greater than 10-2 degrees in orientation for the worst case. Besides, the average error of FKP 

solution in the typical workspace is less than e-6. R (linear regression) in Table 3 of all joints 

is more than 0.999 which shows good modeling results. So, comparing the results of the 

MLP network and wave-net, wave-net model has smaller prediction error for FKP modeling 

of HEXA robot. 

7. Comparison of MLP and wave-net results 

In section 6 two approaches were used to model the FKP of HEXA robot – MLP network 

and wavelet based neural network. Though both neural network approaches showed great 

potential for this study, some comparison between these two approached are presented 

here. It is apparent from the results that errors of modelling by wave-net is less than MLP 

network, also the required time for modeling by wave-net is smaller than MLP; therefore, 

the wave-net modeling shows superior results in comparison to the MLP. Table 4 shows the 

results of modeling with these networks. 

Figure 11 shows the linear regression between target X and Y positions and wave-net 

outputs. The same regressions can be obtained for φ, θ and ψ angles and Z position which 

are omitted here because of the similarity. 

 

Variable mse mae nrmse R 

X 1.3232e-005 0.0089 0.01 0.999 

Y 5.76992e-006 0.0076 0.0094 0.999 

Z 1.79034e-005 0.0091 0.0045 0.999 

φ 5.77768e-006 0.01 0.0073 0.988 

θ 1.20364e-006 0.009 0.0034 0.988 

ψ 2.1676e-006 0.0087 0.0045 0.999 

 

Table 2. The resulted errors of FKP modeling by test data with MLP network 
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                                Fig 8.a                                                                        Fig 8.b 

         
                                 Fig 8.c                                                                        Fig 8.d 

    
                                 Fig 8.f                                                                        Fig 8.e 

Fig.  8. The results of HEXA parallel robot modeling with ANN for X,Y,Z axes and φ, ψ , θ 
angles, from 8-a to 8-f, respectively. 
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                                       Fig 9.e                                                                        Fig 9.f 
 

Fig.  9. The error of HEXA parallel robot modeling with ANN for X,Y,Z axes and φ, ψ , 

θ angles, from 9-a to 9-f, respectively.  
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Fig. 10 – Modeling results of X, Y, Z positions in resolution 0,-1 and -2 by the trained data, 
respectively 
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                                        a                                                                             b 

Fig. 11 – Modeling results of X and Y positions with the wave-net, a is X model and b is Y 
model. 
 

         Variable        mse        mae       R 

         Ψ           8.2568e-010   2.5947e-004 1 

         Y             2.6346e-013      4.6090e-006             1 

        Z             1.2103e-006       4.7103e-002          0.9999 

        Φ           1.1402e-09       2.9911e-004          0.9999 

        Ө           8.2568e-09       2.5947e-003             1 

        X            1.8501e-015       3.1252e-008             1 

 Table 3. The resulted errors of FKP modeling by test data with wave-net 
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Wave-net MLP 
    

Training time 33 min Training time 123 min 

      Variable          mse        mae    R          mse       mae    R 

        Ψ     8.26e-010 2.60e-004   1 1.33e-005 0.0089   1 

       Y        2.64e-013 4.61e-006     1 5.77e-006 0.0076     1 

       Z       1.21e-006 4.71e-002 0.999 1.79e-005 0.0091  0.999 

        Φ       1.15e-09 2.99e-004 0.999 5.78e-006      0.01  0.999 

       Ө       8.26e-09 2.60e-003     1        1.20e-006       0.009     1 

      X      1.85e-015 3.13e-008     1        1.85e-015  3.13e-008     1 

Table 4. The comparison between results of modeling by wave-net and MLP 

8. Conclusion 

In this chapter, we proposed to use neural networks for FK solution of HEXA robot, which 
can be elaborated to generate the best estimation of forward kinematics of the robot. The 
research results in this chapter are quite important as they solve a problem for which there is 
no known closed form solution. Besides, the presented solution in this research has the 
better prediction and obtains smaller error in compare to the other works which have 
studied FKP of HEXA robot to the best of our knowledge. 
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