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1. Introduction     

There are mainly two types of the manipulators: serial manipulators and parallel 
manipulators. The serial manipulators are open-ended structures consisting of several links 
connected in series. Such a manipulator can be operated effectively in the whole volume of 
its working space. However, as the actuator in the base has to carry and move the whole 
manipulator with its links and actuators, it is very difficult to realize very fast and highly 
accurate motions by using such manipulators. As a consequence, there arise the problems of 
bad stiffness and reduced accuracy. 
Unlike serial manipulators their counterparts, parallel manipulators, are composed of 
multiple closed-loop chains driving the end-effector collectively in a parallel structure. They 
can take a large variety of form. However, most common form of the parallel manipulators 
is known as platform manipulators having architecture similar to that of flight simulators in 
which two special links can be distinguished, namely, the base and moving platform. They 
have better positioning accuracy, higher stiffness and higher load capacity, since the overall 
load on the system is distributed among the actuators.  
The most important advantage of parallel manipulators is certainly the possibility of 
keeping all their actuators fixed to base. Consequently, the moving mass can be much 
higher and this type of manipulators can perform fast movements. However, contrary to 
this situation, their working spaces are considerably small, limiting the full exploitation of 
these predominant features (Angeles, 2007).  
Furthermore, for the fast and accurate movements of parallel manipulators it is required a 
perfect control of the actuators. To minimize the tracking errors, dynamical forces need to be 
compensated by the controller. In order to perform a precise compensation, the parameters 
of the manipulator’s dynamic model must be known precisely.  
However, the closed mechanical chains make the dynamics of parallel manipulators highly 
complex and the dynamic models of them highly non-linear. So that, while some of the 
parameters, such as masses, can be determined, the others, particularly the firiction 
coefficients, can’t be determined exactly. Because of that, many of the control methods are 
not efficient satisfactorly. In addition, it is more difficult to investigate the stability of the 
control methods for such type manipulators (Fang et al., 2000). 
Under these conditions of uncertainty, a way to identify the dynamic model parameters of 
parallel manipulators is to use a non-linear adaptive control algorithm. Such an algorithm 
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can be performed in a real-time control application so that varying parameters can 
continuously be updated during the control process (Honegger et al., 2000).  
Another way to identify the dynamic system parameters may be using the artificial 
intelligence (AI) techniques. This approach combines the techniques from the fields of AI 
with those of control engineering. In this context, both the dynamic system models and their 
controller models can be created using artificial neural networks (ANN).  
This chapter is mainly concerned with the possible applications of ANNs that are contained 
within the AI techniques to modeling and control of parallel manipulators. In this context, a 
practical implementation, using the dynamic model of a conventional platform type parallel 
manipulator, namely Stewart manipulator, is completed in MATLAB simulation 
environment (www.mathworks.com). 

2. ANN based modeling and control 

Intelligent control systems (ICS) combine the techniques from the fields of AI with those of 
control engineering to design autonomous systems. Such systems can sense, reason, plan, 
learn and act in an intelligent manner, so that, they should be able to achieve sustained 
desired behavior under conditions of uncertainty in plant models, unpredictable 
environmental changes, incomplete, inconsistent or unreliable sensor information and 
actuator malfunction. 
An ICS comprises of perception, cognition and actuation subsystems. The perception 
subsystem collects information from the plant and the environment, and processes it into a 
form suitable for the cognition subsystem. The cognition subsystem is concerned with the 
decision making process under conditions of uncertainty. The actuation subsystem drives 
the plant to some desired states. 
The key activities of cognition systems include reasoning, using knowledge-based systems 
and fuzzy logic; strategic planning, using optimum policy evaluation, adaptive search, 
genetic algorithms and path planning; learning, using supervised or unsupervised learning 
in ANNs, or adaptive learning (Burns, 2001). 
In this chapter it is mainly concerned with the application of ANNs that are contained 
within the cognition subsystems to modeling and control of parallel manipulators.  

2.1 ANN overwiev 

ANN is a network of single neurons jointed together by synaptic connections. Such that they 
are organized as neuronal layers. Each neuron in a particular layer is connected to neurons 
in the subsequent layer with a weighted synaptic connection. They attempt to emulate their 
biological counterparts.  

2.1.1 Perceptrons 

McCulloch and Pitts was started first study on ANN in 1943. They proposed a simple model 
of neuron. In 1949 Hebb described a technique which became known as Hebbian learning. 
In 1961 Rosenblatt devised a single layer of neurons, called a perceptron that was used for 
optical pattern recognition (Burns, 2001) 
Perceptrons are early ANN models, consisting of a single layer and simple threshold 
functions. The architecture of a perceptron consisting of multiple neurons with Nx1 inputs 
and Mx1 outputs is shown in Fig. 1. As seen in this figure, the output vector of the 
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perceptron is calculated by summing the weighted inputs coming from its input links, so 
that 

 u  =  W p +  b    (1) 

 q  =  f(u)  (2) 

where p is Nx1 input vector (p1, p2, ... pN), W is MxN weighting coefficients matrix (w11, w12 ,... 
w1N ; .....;wj1, wj2, ..., wjN; ....; wM1, wM1,...,wMN), b is Mx1 bias factor vector, u is Nx1 vector 
including the sum of the weighted inputs (u1, u2, ... uM) and bias vector, q is Mx1 output 
vector (q1, q2, ... qM),, and f(.) is the activation function. 
 

N
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Fig. 1. The architecture of a perceptron 

In early perceptron models, the activation function was selected as hard-limiter (unit step) 
given as follows:  
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uf
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where i = 1,2,…,M denotes the number of neuron in the layer, ui weighted sum of its 
particular neuron, and qi its output. However, in any ANN the activation function f (ui) can 
take many forms, such as, linear (ramp), hyperbolic tangent and sigmoid forms. The 
equation for sigmoid function is: 

 f (ui) = 1 / (1 + e-u
i)  (4) 

The sigmoid activation function given in Equation (4) is popular for ANN applications since 
it is differantiable and monolithic, both of which are a requirement for training algorithms 
like as the backpropagation algorithm.  
Perceptrons must include a training rule for adjusting the weighting coefficients. In the 
training process, it compares the actual network outputs to the desired network outputs for 
each epoch to determine the actual weighting coefficients: 

 e  =  qd – q   (5) 

 Wnew   = Wold + e pT   (6) 
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 bnew   = bold + e  (7) 

where e is Mx1 error vector, qd is Mx1 target (desired) vector, the upscripts T , old and new 
denotes the transpose, the actual and previous (old) representation of the vector or matrix, 
respectively (Hagan et al., 1996).  

2.1.2 Network architectures 

There are mainly two types of ANN architectures: feedforward and recurrent (feedback) 
architectures. In the feedforward architecture, all neurons in a particular layer are fully 
connected to all neurons in the subsequent layer. This generally called a fully connected 
multilayer network. Recurrent networks are based on the work of Hopfield and contain 
feedback paths. A recurrent network having two inputs and three outputs is shown in Fig. 2. 
In Fig. 2, the inputs occur at time (kT) and the outputs are predicted at time (k+1)T, where k 
is discrete time index and T is sampling time, respectively. 
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Fig. 2. Recurrent neural network architecture 
Then the network can be represented in matrix form as:  

 q(k+1)T  =  f (W1 p(kT) + W2 q(kT) +  b)  (8) 

where b is bias vector, f(.) is activation function, W1 and W2 are weight matrix for inputs and 
feedback paths, respectively.  

2.1.3 Learning   
Learning in the context of ANNs is the process of adjusting the weights and biases in such a 
manner that for given inputs, the correct responses, or outputs are achieved. Learning 
algorithms include supervised learning and unsupervised learning.  
In the supervised learning the network is presented with training data that represents the 
range of input possibilities, together with associated desired outputs. The weights are 
adjusted until the error between the actual and desired outputs meets some given minimum 
value. 
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Unsupervised learning is an open-loop adaption because the technique does not use 
feedback information to update the network’s parameters. Applications for unsupervised 
learning include speech recognition and image compression.  
Important unsupervised learning include the Kohonen self-organizing map (KSOM), which 
is a competitive network, and the Grossberg adaptive resonance theory (ART), which can be 
for on-line learning. 
There are multitudes of different types of ANN models for control applications. The first 
one of them was by Widrow and Smith (1964). They developed an Adaptive LINear Element 
(ADLINE) that was taught to stabilize and control an inverted pendulum. Kohonen (1988) 
and Anderson (1972) investigated similar areas, looking into associative and interactive 
memory, and also competitive learning (Burns, 2001).  
Some of the more popular of ANN models include the multi-layer perceptron (MLP) trained 
by supervised algorithms in which backpropagation algorihm is used.  

2.1.4 Backpropagation 

The backpropagation algorithm was investigated by Werbos (1974) and futher developed by 
Rumelhart (1986) and others, leading to the concept of the MLP. It is a training method for 
multilayer feedforward networks. Such a network including N inputs, three layers of 
perceptrons, each has L1, L2, and M neurons, respectively, with bias adjustment is shown in 
Fig. 3. 
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Fig. 3. Three-layer feedforward network 

First step in backpropogation is propagating the inputs towards the forward layers through 
the network. For L layer feedforward network, training process is stated from the output 
layer: 

q0  =   p   

 ql+1  =  fl+1 (Wl+1 ql + bl+1)  ,     l = 0 , 1, 2,…., L-1  (9) 

q  = qL 

www.intechopen.com



 Parallel Manipulators New Developments 

 

26 

where l is particular layer number; fl and Wl represent the activation function and weighting 
coefficients matrix related to the layer l, respectively. 
Second step is propagating the sensivities (s) from the last layer to the first layer through the 
network: sL, sL-1, sL-2,…, sl…, s2, s1. The error calculated for output neurons is propagated to 
the backward through the weighting factors of the network. It can be expressed in matrix 
form as follows: 

 )-(  ( qquFs dLLL ) 2
•

−=    ,  11(  )( ++
•

= lllll sWuFs T)  ,  for l = L-1,…, 2, 1  (10) 

where )( ll uF 
•

 is Jacobian matrix which is described as follows 
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(11) 

 

Here N denotes the number of neurons in the layer l. The last step in backpropagation is 
updating the weighting coefficients. The state of the network always changes in such a way 
that the output follows the error curve of the network towards down: 

 Wl (k+1) =  Wl (k) - α sl (ql-1)T  (12) 

 bl (k+1) =  bl (k) - α sl  (13) 

where α represents the training rate, k represents the epoch number (k=1,2,…,K). By the 
algorithmic approach known as gradient descent algorithm using approximate steepest 
descent rule, the error is decreased repeatedly (Hagan, 1996). 

2.2 Applications to parallel manipulators 

ANNs can be used for modeling various non-linear system dynamics by learning because of 
their non-linear system modelling capability. They offer highly parallel, adaptive models 
that can be trained by using system input-output data.   

ANNs have the potential advantages for modeling and control of dynamic systems, such 
that, they learn from experience rather than by programming, they have the ability to 
generalize from given training data to unseen data, they are fast, and they can be 
implemented in real-time.  
Possible applications using ANN to modeling and control of parallel manipulators may 
include: 
• Modeling the manipulator dynamics,  
• Inverse model of the manipulator,  
• Controller emulation by modeling an existing controller,  
• Various intelligent control applications using ANN models of the manipulator and/or 

its controller. Such as, ANN based internal model control  (Burns, 2001). 
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2.2.1 Modeling the manipulator dynamics   

Providing input/output data is available, an ANN may be used to model the dynamics of 
an unknown parallel manipulator, providing that the training data covers whole envelope 
of the manipulator operation (Fig. 4). 
However, it is difficult to imagine a useful non-repetitive task that involves making random 
motions spanning the entire control space of the manipulator system. This results an 
intelligent manipulator concept, which is trained to carry out certain class of operations 
rather than all virtually possible applications. Because of that, to design an ANN model of 
the chosen parallel manipulator training process may be implemented on some areas of the 
working volume, depending on the structure of chosen manipulator (Akbas, 2005). For this 
aim, the manipulator(s) may be controlled by implementation of conventional control 
algorithms for different trajectories. 
 

 
 

Fig. 4. Modelling the forward dynamics of a parallel manipulator 

If the ANN in Fig. 4 is trained using backpropagation, the algorithm will minimize the 
following performance index: 
 

 ( ) ( )( ) ( ) ( )( )( )∑
=

−−=
N

n

t
kTqkTqkTqkTqPI

1

ˆˆ    (14) 

where q and  
^

q  denote the output vector of the manipulator and ANN model, respectively.  

2.2.2 Inverse model of the manipulator  

The inverse model of a manipulator provides a control vector τ(kT), for a given output 
vector q(kT) as shown in Fig. 5. So, for a given parallel manipulator model, the inverse 
model could be trained with the parameters reflecting the forward dynamic characteristics 
of the manipulator, with time. 
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Fig. 5. Modelling the inverse dynamics of parallel manipulator 

As indicated above, the training process may be implemented using input-output data 
obtained by manipulating certain class of operations on some areas of the working volume 
depending on the structure of chosen manipulator. 

2.2.3 Controller emulation  

A simple application in control is the use of ANNs to emulate the operation of existing 
controllers (Fig. 6).  
 

 
Fig. 6. Training the ANN controller and its implementation to the control system  

It may be require several tuned PID controllers to operate over the constrained range of 
control actions. In this context, some manipulators may be required more than one emulated 
controllers that can be used in parallel form to improve the reliability of the control system 
by error minimization approach. 

2.2.4 IMC implementation  

ANN control can be implemented in various intelligent control applications using ANN 
models of the manipulator and/or its controller. In this context the internal model control 
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(IMC) can be implemented using ANN model of parallel manipulataor and its inverse 
model (Fig. 7). 
 
 

 
Fig. 7. IMC application using ANN models of parallel manipulator 

In this implementation an ANN model model replaces the manipulator model, and an 
inverse ANN model of the manipulator replaces the controller as shown in Fig. 7. 

2.2.5 Adaptive ANN control  

All closed-loop control systems operate by measuring the error between desired inputs and 
actual outputs. This does not, in itself, generate control action errors that may be 
backpropagated to train an ANN controller. However, if an ANN of the manipulator exists, 
backpropagation through this network of the system error will provide the necessary 
control action errors to train the ANN controller as shown in Fig.8. 
 
 

 
 

Fig. 8. Control action generated by adaptive ANN controller 

3. The structure of Stewart manipulator 

Six degrees of freedom (6-dof) simple and practical platform type parallel manipulator, 
namely Stewart manipulator, is sketched in Fig. 9. These type manipulators were first 
introduced by Gough (1956-1957) for testing tires. Stewart (1965) suggested their use as 
flight simulators (Angeles, 2007). 
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Fig. 9. A sketch of the 6-dof Stewart manipulator  

In Fig. 9, the upper rigid body forming the moving platform, P, is connected to the lower 
rigid body forming the fixed base platform, B, by means of six legs. Each leg in that figure 
has been represented with a spherical joint at each end. Each leg has upper and lower rigid 
bodies connected with a prismatic joint, which is, in fact, the only active joint of the leg. So, 
the manipulator has thirteen rigid bodies all together, as denoted by 1,2…..13 in Fig. 9. 

3.1 Kinematics 

Motion of the moving platform is generated by actuating the prismatic joints which vary the 
lengths of the legs, qLi , i = 1….6. So, trajectory of the center point of moving platform is 
adjusted by using these variables.  
For modeling the Stewart manipulator, a base reference frame FB (OBxByBzB) is defined as 
shown in Fig. 10. A second frame FP (OPxPyPzP) is attached to the center of the moving 
platform, OP , and the points linking the legs to the moving platform are noted as Qi , i = 
1….6, and each leg is attached to the base platform at the point Bi , i = 1….6. 
The pose of the center point, OP , of moving platform is represented by the vector 

 x = [xB  yB  zB  ǂ  ǃ  Ǆ]T  (15) 

where xB, yB, zB are the cartesian positions of the point OP relative to the frame FB and ǂ, ǃ, Ǆ 
are the rotation angles, namely Euler angles, representing the orientation of frame FP 

relative to the frame FB by three successive rotations about the xP, yP and zP axes, given by 
the matrices Rx(ǂ), Ry(ǃ), Rz(Ǆ)  respectively (Spong & Vidyasagar, 1989). Thus, the rotation 
matrix between the FB and FP frames is given as follows: 

 )( )( )( = ǄRǃRǂRR zyx
P
B

  (16) 
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Fig. 10. Assignments for kinematic analysis of the Stewart manipulator 

Then we can analyze the inverse kinematics of Stewart manipulator by the representation of 
any one of its legs. For a given pose of the center point of moving platform, OP, the defining 
vectors are shown in Fig. 11.  
 

 
Fig. 11. Defining the vectors for a given pose of the moving platform 
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By using the rotation matrix given by equation (16), the position vector of the upper joint 
position, Qi, connecting the moving platform to the leg i, qQ i can be transformed to the 
frame FB as follows: 

 
i

P
B

OQ
i R dpq  + =              i = 1….6  (17) 

where pO represents the position vector of the center point of moving platform, OP , relative 
to the frame FB , di is the position vector of the point Qi , i = 1….6, relative to the frame FP .  
Then the vector qA i representing the leg legths between the joint points Bi and Qi can be 
transformed to the frame FB as follows: 

 Q
ii

A
iii QB qa q  +-== 

→
         i = 1….6  (18) 

where ai represents the position vector of the point Bi , i = 1….6, relative to the frame FB .  
The leg lengths qAi  , i = 1….6, is then obtained by Euclidean norm of the leg vector given 
above. So, using equation (17) and (18) we can write (Zanganeh et al., 1997) 

 )  ()  ( ) 2
i

P
B

O
i

T
i

P
B

O
i

A
i RRq dpadpa ++=     ++(   ,  i = 1….6  (19) 

The leg lengths related to a given pose of moving platform can be obtained for a trajectory 
defined by the pose vector, x, given in equation (15). Considering a circular motion depicted 
as in Fig. 12, the trajectory of moving platform with zero rotation angles ([ǂ ǃ Ǆ] = [0 0 0]) is 
given as follows: 

 
Fig. 12. A circular motion trajectory of the moving platform 

 x = [(pO)T 0 0 0]T = A(t) x0  (20) 

where pO = [xB  yB  zB ]T denotes the 3x1 position vector of the center point of moving 
platform, A(t) is a 6x6 matrix and x0  is a 6x1 coeeficient vector given as below 
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 x0 = [0  r  h  0  0  0]T  (22) 

where O denotes the 3x3 zero matrix, h is the hight of the center point of moving platform 
with respect to base frame, and r is the radius of the circle. 
The Jacobian matrix that gives the relation between the prismatic joint velocities and the 
velocity of the center point of moving platform, OP, can be derived using the partial 
differentiation of the inverse geometric model of the manipulator given in equation (19). 

3.2 Dynamics 

As descripted in Fig. 9, Stewart manipulator has thirteen rigid bodies. The Newton-Euler 
equations of the manipulator can be derived in a more compact form as described below 
(Fang et al., 2000; Khan et al., 2005):  
Let the 6x6 matrix Mi , denoting the mass and moment of inertia properties of the rigid body 
i be 

                                                      
⎥⎦
⎤

⎢⎣
⎡

×
=

10
0

i

i
i m

I
M  ,  i = 1….13 (23) 

 
where O and 1 denote the 3x3 zero and identity matrices; Ii is inertia matrix defined with 
respect to the mass center, Ci , of the body i ; mi  is the mass of the body i.  Let ci and ċi denote 
the position and velocity vectors of Ci , and ωi denote the angular velocity vector of Ci. Then 
the wrench vector ti is defined in terms of the angular and linear velocities as follows: 
 

                                                            
⎥
⎥

⎦

⎤
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⋅=
i

i

i

c

t

ω  
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Let the 6x6 matrix ΩI , denoting the angular velocity of the rigid body i be 
 

                                                  ⎥⎦
⎤

⎢⎣
⎡=Ω

00
0i

i

ω  ,  i = 1….13 (25) 

where, O  denotes the 3x3 zero matrix. The generalized matrices given in equation (23) and 
(25) are block symmetrical, as follows: 

 ( ) ( )13211321 ,......,,,,......,, ΩΩΩ=Ω= diagMMMdiagM   (26) 

Then, the generalized wrench matrix t can be expressed as follows 

 t=[t1Tt2T......t13T ]T  (27) 

For the system having constraint on velocity, the constraint of velocity can be expressed by 
following equation: 

  Dt=0 (28) 

Let T be the natural orthogonal complement (NOC) of the coefficient matrix D related to the 
constraint equation (28) of velocity. Hence, employing the joint coordinates 6R∈q  as 
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generalized coordinate vector, we can get the dynamic model of system, which don’t 
contain the constraint forces. 
 

τqGqqq,CqqM  =)( + )( + (
����

)  (29) 

where M(q) is a symmetrical and positive definition matrix as given below; 

 6x6R  =)( ∈   TMTqM T   (30) 

C is the coefficient matrix of the vectors of Coriolis and centripetal force as given below; 

 MTT TMTqq,C  C Ω + = )(=
��

TT  (31) 

q is the generalized coordinate vector, 6R∈τ  is the generalized force (driving force) vector, 
respectively. G(q) is the gravity vector as given below; 

 gg WTqτqG T  = )( = )(   (32) 

where Wg are wrenches vector due to gravity: 

                                TTTTTT
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g
2

g
1

g    (33) 

where 0 is 3x1 zero vector, g is the vector of acceleration of gravity. 

4. Controller emulation by using Elman networks  

In this stage, it is aimed to implement an application of ANN to emulate the operation of an 
existing PID controller in a Stewart manipulator control system. This system is given as a 
control system example for MATLAB applications (www.mathworks.com). The block 
diagram of the control system is given in Fig. 13.  
 

 
Fig. 13. Srewart manipulator control system using PID controller 

As shown in this figure, trajectory generator calculates the leg lengths, which are desired leg 
lengths formed as a 6x1 qD vector feeding the PID controller input, by using the inverse 
kinematic model of Stewart manipulator. PID controller produces a 6x1 control vector, τ, 
consisting of the leg forces applied to the prismatic joint actuators of the manipulator. In 
response, the dynamic model of the manipulator produces two 6x1 output vectors, qA and 
ċ=.qA, which include actual leg lengths and actual linear leg velocities, respectively. These 
are fed back to the controller. So, the controller has 18 inputs and 6 outputs totally. PID 
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controller compares the actual and desired leg lengths to generate the error vector feeding 
its proportional and integral inputs. In the same time, the velocity feedback vector feeds the 
derivative input of the controller. 
Designing an ANN emulation of controller generalized for the whole area of working space 
is more difficult task. It is also difficult to imagine a useful non-repetitive task that involves 
making random motions spanning the entire control space of the manipulator system. This 
results an intelligent manipulator concept, which is trained to carry out certain class of 
operations rather than all virtually possible applications (Akbas, 2005). 
On the other hand, since the parallel manipulators have more complex dynamic structures, 
training process may be required much more data then other type plants. So, it can be 
taught to design more than one ANN controller trained by different input-output data sets, 
and use them in a parallelly formed controller structure instead of unique ANN controller 
structure. This can improve the reliability of the controller. Because of that, three ANN 
controllers are trained and they are used in parallel form in this case study. 

4.1 Training 
Due to its profound impact on the learning capability and networking performance, Elman 
network having recurrent structure is selected for training. Three of them, each have 18 
inputs and 6 outputs, are trained by using PID controller input-output data. For this aim, 
input-output data are prepared during the implementation of the PID controller to the 
Stewart manipulator.  
During the data log phase, manipulator is operated in a constrained area of its working 
space. For this aim, the manipulator is controlled by implementation of different trajectories 
selected uniformly in a planar sub-space, created as given example in equations (21) and 
(22) also as given in Fig. 12. Load variations are taken into consideration to generate the 
training data. 
Three sets of input-output data each have 5000 vectors are generated by MATLAB 
simulations for each of Elman networks. MATLAB ANN toolbox is used for off-line training 
of Elman networks. Conventional backpropagation algorithm, which uses a threshold with a 
sigmoidal activation function and gradient descent error-learning, is used. Learning and 
momentum rates are selected optimally by MATLAB program. The numbers of neurons in 
the hidden layers are selected experimentally during the training. These are used as 40, 30 
and 50, respectively for each network.  

4.2 Implementation 
After the off-line training, three of Elman networks are prepared as embedded Simulink 
blocks with obtained synaptic weights. To improve the reliability of the controller by error 
minimization approach, they are used in a parallel structure and embedded to the control 
system block diagram (Fig. 14). In this figure, parallely-implemented Elman ANN controller 
is represented in a block form. Its detailed representation is given in Fig. 15. 
In this implementation, the force values generated by three Elman networks are applied to 
the inputs of the corresponding manipulator’s dynamic model. Error vector is computed for 
each of the ANN by using the difference between the actual leg lengths generated by 
manipulator’s dynamic model and the desired leg lengths. The results are evaluated to 
select the network generating the best result. Then it is assigned as the ANN controller for 
actual time step, and its output is assigned as the force output of the parallely-implemented 
Elman ANN controller output driving the manipulator’s dynamic model (instead of a real 
manipulator, in this case). 
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Fig. 14. ANN controller implementation to the manipulator control system 

4.3 Simulation results 

To compare the performance of the created ANN controller, the Srewart manipulator 
control system is operated both by the PID controller, and the parallelly-implemented 
Elman ANN controller for T=4 s. simulations. For these operations, a trajectory like as given 
with equations (21) and (22) is created with the parameter assignments: h = 2 m, r = 0.02 m. 
Also θ(t) parameter is used as follows: 

                                                       T   ¡Ü     ¡Ü0         ,
T

2
= tt

π
 θ(t)   (34) 

During the simulations, the sampling period is chosen, as 0.001 s. So, totally 4000 steps are 
included in each simulation.  
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An example of the variations of the force outputs generated by both controllers is shown in 
Fig. 16, for the first leg of the manipulator. Fig. 16a and Fig. 16b show the force output of the 
PID controller and parallely-implemented Elman ANN controller, respectively. In these 
simulations, it has been observed that, the error between the two controller outputs is a little 
more at the starting phase of the simulations then the remaining times. 
However, it can be said that, ANN controller emulates the PID controller successfully as a 
whole for the given trajectory. 

 
(a) 

 
(b) 

Fig.16. Force outputs of the controllers applied to the first leg of the Stewart manipulator  
(a)-PID controller output, (b)-ANN controller output 

Similar adaptations are obtained for the control system output. For the given trajectory, 
position errors obtained by averaging the sum of the square errors relative to the desired 
position of the center point of moving platform both for the PID controller and ANN 
controller is given in Table 1.  As seen in this table obtained position error values due to the 
xB, yB and zB variations have too small changes. 
 

 
Table 1. The sum of the squares of the position errors obtained by PID and ANN 
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During simulations, variations of the xB, yB and zB positions of the center point of moving 
platform are given in Fig. 17, so that, Fig. 17a and Fig. 17b show the variation of actual xB, yB 
and zB positions obtained simulations using PID controller and parallely-implemented 
Elman ANN controller, respectively. As seen, the tracing error between the two control 
modes is a little more at the starting phase only. This is due to instantaneous big difference 
between the desired yB position and its starting value. However, tracing the desired 
positions by PID controller is well emulated by parallely-implemented Elman ANN 
controller, as a whole. 

 

 

 
(a) 
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(b) 

Fig.16. Variation of actual position of the center point of moving platform, in simulations 
(a)-Obtained by the PID controller, (b)- Obtained by the ANN controller 

5. Conclusion  

This chapter is mainly concerned with the application of ANNs to modeling and control of 
parallel manipulators. A practical implementation is completed to emulate the operation of 
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an existing PID controller in a Stewart manipulator control system. It can be said that, 
excepted results has been achieved for this case study.  
Since the parallel manipulators have more complex dynamic structures, depending on the 
chosen type of applications training process it may be required much more data then in this 
case. So, designing an ANN for applications including the whole area of working space is 
more difficult task. It is also difficult to imagine a useful non-repetitive task that involves 
making random motions spanning the entire control space of the manipulator system.  
However, for a succesfull study, it may have an important role selecting the type and 
structure of ANN by experience, depending on the requirements of the chosen application. 
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