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1. Introduction  

Efficient replenishment planning is a very important problem in Supply chain management. 
A poor inventory control policy leads to overstocking or stockout situations. In the former, 
the generated inventories are expensive and in the later there are shortages and penalties 
due to unsatisfied customer demands. 
Material Requirements Planning (MRP) is a commonly accepted approach for replenishment 
planning in major companies (Axsäter, 2006). The MRP software tools are accepted readily, 
the majority of industrial decision makers are familiar with them through all the existing 
production control system software. MRP software has a well developed information 
system and has been proven over time. 
However, MRP is based on the supposition that the demand and lead times are known. This 
premise of deterministic environment seems somewhat off base since most production 
occurs stochastically. Component and semi-finished product lead times and finished 
product demands are rarely forecasted reliably. This is because there are some random 
factors such as machine breakdowns, transport delays, customer demand variations, etc. 
Therefore, in real life, the deterministic assumptions embedded in MRP are often too 
limited.  
Fortunately, the MRP approach can be adapted for replenishment planning under 
uncertainties by searching optimal values for its parameters. This problem is called MRP 
parameterization under uncertainties.  
The planned lead times are parameters of MRP. For the case of random lead times, the 
planned lead times are calculated as the sum of the forecasted and safety lead times. These 
safety times are obtained as a trade-off between overstocking and stockout while 
minimizing the total cost. The search for optimal values of safety lead times, and, 
consequently, for planned lead times, is a crucial and challenging issue in Supply chain 
management with MRP approach. 
In this chapter, we present a methodology for optimal calculation of planned lead times in 
the MRP approach. This methodology was developed in our previous works (Dolgui et al., 
1995; Dolgui, 2001; Dolgui & Louly, 2002; Louly & Dolgui, 2002; Louly & Dolgui, 2004, 

Source: Supply Chain,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-22-6, pp. 558, February 2008, I-Tech Education and Publishing, Vienna, Austria
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Louly et al., 2007) for supply chains with random lead times where holding and backlogging 
costs are not negligible. 

2. Inventory control in supply chains 

Supply chain management is a collection of functional activities that are repeated many 
times throughout the process through which raw materials are transformed into finished 
products (Ballou, 1999). An illustration of a Supply chain is given in Fig. 1.  
 

 Demand 

Suppliers Production Assembly Customers 

Supplier
 lead time 

Production
 lead time 

Assembly
 lead time 

 
Figure 1. Supply chain 

As reported in number of papers, various sources of lead time uncertainties may exist along 

this chain. To avoid these uncertainties, the companies use safety stocks (safety lead times), 

which are rather expensive. Therefore, it is desirable to develop special methods of supply 

planning which focus on the stochastic properties of lead times (Maloni & Benton, 1997). 

Supply management in industrial applications is mainly based on Material Requirements 

Planning (MRP), which provides a framework for inventory control. In the MRP approach, 

an important distinction is drawn between demand for the end product, i.e. independent 

demand, and demand for one of its items, i.e. dependent demand (Baker, 1993). The 

independent demands are known or forecasted by the methods which are developed in the 

framework of "sales forecasting". The dependent demands can be calculated from the 

independent ones by using Bill of Material and planned lead times. 

Under MRP logic, time is viewed in discrete intervals called time buckets. The lead time is 

equal to the elapsed time buckets from the order release date to the delivery (procurement, 

production, etc.) of the corresponding item. The lot size is the quantity of items to be 

ordered. 

The MRP method is based on the deterministic calculation: all the orders of items are 

released at the latest possible moment, so total cost will automatically be minimal. But, if 

random factors exist, the meaning of "at the latest possible moment" is uncertain. In this 

case, for each specific value of MRP parameters (concretely: planned lead times) we can 

have a backlog or overstock probability. The larger the probability of backlog is, the bigger 

the average backlogging cost over time. The same is true for overstock, the larger the 

probability of overstock is, the greater the holding cost. Therefore, a challenging problem is 

MRP parameterization, in particular, the choice of optimal values for planned lead times. 
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3. Related works 

Yeung et al. (1998) propose a review on parameters having an impact on the effectiveness of 
MRP systems under stochastic environments. Yücesan & De Groote (2000) did a survey on 
supply planning under uncertainties, but they focused on the impact of the production 
management under uncertainty on the lead times by observing the service level. Process 
uncertainties are considered in (Koh et al., 2002; Koh & Saad, 2003). 
The problem of MRP parameterization under lead time uncertainties has been often studied 
via simulation. For example the study of Whybark & Williams (1976) suggests that a safety 
lead time’s mechanism may perform better than that of a safety stock in a multi-level 
production-inventory system when the production and replenishment times are stochastic. 
Nevertheless, Grasso & Taylor (1984) reached another conclusion and prefer safety stocks 
for both quantity and lead-time uncertainties. Weeks (1981) developed a single-stage model 
with tardiness and holding costs in which the processing time is stochastic and demand is 
deterministic. The author proves that this is equivalent to the standard “Newsboy” problem. 
Gupta & Brennan (1995) show that lead time uncertainty has a large influence on the total 
inventory management cost. Ho & Ireland (1998) illustrate that lead time uncertainty affects 
stability of a MRP system no matter what lot-sizing method used or demand forecast error 
obtained. The statistics from simulations by Bragg et al. (1999) demonstrate that the lead 
times influence the inventories substantially. Molinder (1997) study the problem of planned 
lead times (safety lead time/safety stock) calculation via simulation and proposes a 
simulated annealing algorithm to find appropriate safety stocks and/or safety lead times. 
The simulations show that the overestimated planned lead times is conducive to excessive 
inventory, and underestimated planned lead times introduce shortages and delays. 
(Grubbström, & Tang, 1999) study optimal safety stocks in single and multi-level MRP 
systems, assuming the time interval of end item demand to be stochastic. 
For serial multilevel production systems, i.e. where the previous level supplies the next and 
only one supplier is at each level, Yano (1987a,b) suggests an approach to determine optimal 
planned lead times for MRP. In this study, the lead times are stochastic, and finished 
product demand is fixed. The author presents a general procedure for two stage systems 
based on a single-period continuous inventory control model. The objective was to 
minimize the sum of inventory holding costs, rescheduling costs arising from tardiness at 
intermediate stages, and backlogging cost for the finished product. One of the main 
obstacles for this approach consists in the difficulties to express the objective function in a 
closed form for more than two stages.   
In assembly systems there are several suppliers at each stage, and so, there is dependence 
among the different component inventories at the same stage. Yano (1987c) considers a 
particular problem for two-level assembly systems with only two types of components at 
stage 2 and one type of components at stage 1. The delivery times for the three components 
are stochastic continuous variables. The problem is to find the planned lead times for MRP 
minimizing the sum of holding and tardiness costs. A single period model and an 
optimization algorithm were developed. Tang & Grubbström (2003) consider a two 
component assembly system with stochastic lead times for components and fixed finished 
product demand. This study is similar to (Yano, 1987c). However, here, the process time at 
level 1 is also assumed to be stochastic, the due date is known and the optimal planned lead 
times are smaller than the due date. The objective is to minimize the total stockout and 
inventory holding costs. The Laplace transform procedure is used to capture the stochastic 
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properties of lead times. The optimal safety lead times, which are the difference between 
planned and expected lead times are derived.  
Another interesting single period model was proposed in (Chu et al., 1993) which deals with 
a punctual fixed demand for a single finished product. The model gives optimal values of 
the component planned lead times for such a one-level assembly system with random 
component procurement times.  
Wilhelm & Som (1998) studied a two-component assembly system using queuening models 
and showed that a renewal process can be used to describe the end-item inventory level 
evolution. The optimization of several component stocks is replaced by the optimization of 
finished product stock. To perform this replacement, a simplified supply policy for 
component ordering was introduced. Another multi-period model is proposed in (Gurnani 
et al., 1996) for assembly systems with two types of components and the lead time 
probability distributions are limited to two periods. In (Dolgui & Louly, 2002; Louly & 
Dolgui, 2004), a similar one-level planning problem with random lead times and fixed 
demand is studied, but for a dynamic multi-period case. The authors give a novel 
mathematical formulation and propose a generalized Newsboy model which gives the 
optimal solution under the assumption that the lead times of the different types of 
components follows the same distribution probability, and the unit holding costs are 
identical. In Louly et al. (2007) the authors generalize their studies of 2002 and 2004. They 
present a more universal case, when the unit holding costs aren’t the same for all 
components and the component lead times are not i.i.d. random variables. 

4. MRP approach 

4.1 The basic principles of MRP systems 

The goal of MRP is to determine a replenishment schedule for a given time horizon. For 
example, let’s consider the following bill of materials - BOM (see Fig. 2) for a finished 
product. The needs for the finished product are given by the Master Production Schedule – 
MPS (Fig. 3), and those for the components are deduced from BOM explosion (Dolgui et al., 
2005). 
Let’s introduce the following notation: 

)(iI inventory for the period i , 

)(iN net needs for the period i ,  

)(iG gross needs for the period i ,  

)(iQ released orders for the period i , 

τΔ planned lead time.  

The available inventory  )1(I  for the period 1 is given. For each subsequent need, the value 

is calculated from the net needs of the previous period: 

 })1(,0{max)( −−= iNiI , (1) 

net needs of the period i  are obtained as follows: 

 )()()( iIiGiN −= ,  (2) 

The released order quantity: 
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 )}(,0{max)( τΔ−= iNiQ . (3) 

Finished good 
Lead-time = 2 

Component 3 
Lead-time = 2 

1 

1 

2

Component 2 
Lead-time = 2 

Component 1 
Lead-time = 3 

Quantity of 
components 

 Figure 2. Bill of materials 

Period 1 2 3 4 5 6 7 8 9 10 

Gross need (MPS)  0 0 0 50 10 40 20 30 50 60 

Available inventory 20 20 20 20 0 0 0 0 0 0 

Net need -20 -20 -20 30 10 40 20 30 50 60 

Level 0 
Finished good 
Lead time = 2 

Manufacturing/order 0 30 10 40 20 30 50 60 0 0 

            

Period 1 2 3 4 5 6 7 8     

Gross need (MPS)  0 30 10 40 20 30 50 60     

Available inventory 100 100 70 60 20 0 0 0     

Net need -100 -70 -60 -20 0 30 50 60     

Level 1 
Component 1 
Lead time = 3 

 
Manufacturing/order 0 0 30 50 60 0 0 0     

            

Period 1 2 3 4 5 6 7 8     

Gross need (MPS)  0 60 20 80 40 60 100 120     

Available inventory 140 140 80 60 0 0 0 0     

Net need -140 -80 -60 20 40 60 100 120     

Level 1 
Component 2 
Lead time = 2 

Manufacturing/order 0 20 40 60 100 120 0 0     

            

Quantity = 1 

 Quantity = 2 

Quantity = 1 

 
Figure 3. Master Production Schedule (MPS) 

4.2 MRP under uncertainties  

The main problem which often arises with MRP systems is derived from the uncertainties 
(Nahmias, 1997; Vollmann et al., 1997) especially demand and lead time uncertainty (see Fig. 
4). 
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Period 1 2 3 4 

 
5 

Gross need 
(MPS) 0 0 20 15

 
0 

Available inventory 20 20 20 0 
 
0 

Net needs -20 -20 0 15 0 

Level 0 
Finished Good 

 Lead time = 2 +/- 1
 

Manufacturing/order  15    

Lead-time 
uncertainty

Demand 
uncertainty 

Figure 4. Input data uncertainties 

The demand uncertainty means that the demand isn’t exactly known in advance and, so the 
planned quantities for a period may be different from the actual demand. The lead time 
uncertainty means that the actual lead time may be different from planned lead time, so an 
order planned for a period may not arrive at the appropriate date. 
As aforementioned, in literature, the majority of publications are devoted to the MRP 
parameterization under customer demand uncertainties. As to random lead times, the 
number of publications is modest in spite of their significant importance. The motivation of 
this chapter is to contribute to the development of new efficient methods for MRP 
parameterization under lead time uncertainties (see Fig. 5). 
 

 

MRP parameters: 
planned lead 
times 

Input

Data base:  
- Characteristics of lead times 

(distribution probabilities). 
- Penalties (holding costs, 

backlogging cost, etc.). 
- Objective service level. 
 

 

MRP software  
tool 

A mathematical model for the 
calculation of optimal planned 
lead times. 

 

Figure 5. Proposed approach for MRP parameterization 
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The core of this approach is the calculation of planned (safety) lead times. When we increase 
these parameters, the stocks increase also. However, stocks are expensive. In contrast, if the 
planned lead times are underestimated, the risk of stockout and consequently the 
backlogging cost increases along with decreasing the service level. The goal is to find the 
planned lead time values which provide a trade-off between holding and backlogging costs 
while minimizing the total cost under random actual lead times. In the next section, we 
suggest a mathematical model for this optimization. 

5. MRP parameterization 

5.1 Mathematical model description 
In the MRP approach, replenishment order dates, i.e. release dates, for each component are 
calculated for a series of discrete time intervals (time buckets) based on the demand and 
taking into account a fixed planned lead time: the release date is equal to the due date minus 
the planned lead time. For the case of random actual lead times, in industry, a supply 
reliability coefficient (≥ 1) is assigned to each supplier. The planned lead times for MRP are 
calculated by multiplying the contractual lead time by the corresponding supplier reliability 
coefficient. The choice of these coefficients (which give safety lead times) is based on past 
experience. However, this approach is subjective and can be non optimal if we need to 
minimize the total cost for an MRP system. The supplier reliability coefficients (safety lead 
times and so planned lead times) can be calculated more precisely taking into account 
inventory holding and backlogging costs, with a inventory control model. Such an inventory 
control model must be simple (to be solvable), but representative, integrating all major 
factors influencing the planned lead time calculation. 
For component planned lead time calculation for assembly systems with several types of 
components and random component lead times, we have introduced (Dolgui & Louly, 2002)  
the following model and assumptions. This model will help us to solve the considered 
problem of MRP parameterization, i.e. to find optimal planned lead times for components 
when the actual lead times are random variables. Fig. 6 gives an illustration of the suggested 
abstract model. 
 

 

Ln 

L2 

L1 

Component n 

Component 2 

Component 1 

b 

Finished product 

Assembly

Infinite capacityh1 

h2 

hn 

 

Figure 6. Inventory control model for component planned lead time calculation 
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For this model, we assume that the finished product demand per period is known and 
constant as well as the assembly capacity is infinite. Several types of components are needed 
to assembly one finished product. The unit holding cost per period for each type of 

component ( )ih  and the unit backlogging cost ( )b  for the finished product are known. The 

lead times ( )iL  for orders made at different periods for the same type of component  i  are 

independent and identically distributed discrete random variables. The distribution of 
probabilities for the different types of components can be not identical. These distributions 
are known, and their upper values are finite.  
The finished products are delivered at the end of each period and unsatisfied demands are 
backordered and have to be treated later (when sufficient numbers of components of each 
type are in stock). The supply policy for components is Lot for Lot: one lot of each type of 
component is ordered at the beginning of each period.  
Because the supply policy is the Lot for Lot and the demand is considered as constant, the 
same quantities of components are ordered at the beginning of each period. Thus, only 
planned lead times are unknown parameters for this model. Hence, they are the decision 
variables in our optimisation approach. The model considers random component lead times 
and also the dependence among inventories of the different components suitable for 
assembly systems (when there is a stockout of only one component, consequently, there is 
no possibility to assemble the finished product). 
To simplify the equations, without lost of generality, we assume that the finished product 
demand is equal to one unit per period, and that one finished product is assembled from 
one unit of each type of component.  
Let’s use the following model notations: 

f1  function equal to 1 if f is true, and 0 otherwise,  

n  number of types of components used for the assembly of one product,  

[.]E  mathematical expectation operator, 

ih  unit holding cost for the component i  per period, 

b  unit backlogging cost for the finished product per period, 

k  reference of a period (period index), 

iL  lead time of the components i  (discrete random variable), 

k
iL  lead time of the components i  ordered at period k (discrete random variable), 

iu  upper value of the lead time for components i  ( ii uL ≤≤1 ; ni ,...,2,1= ); 

 ( )i
ni
uu

...,,1
max
=

= , 

k
iN  number of orders for the component i  that have not yet arrived at the end of the 

 period k , 

iN  steady state number of orders for the component i  that have not yet arrived at the 

 end of a period, 

X  vector of the decision variables )...,,( 1 nxx , 

+Z  function equal to the maximum of Z and 0: )0,max(Z . 
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Note that:   
i. Considering that the component ordered quantities are the same for all periods, the 

planned lead time multiplied by the ordered quantity, which is equal to the finished 
product demand, gives also the initial inventory for the corresponding component.  

ii. The optimal planned lead times do not depend on the finished product demand (the 
same values of optimal planned lead times will be obtained for different demand 
amounts, if the demand is constant and other characteristics of the problem are fixed).  

iii.  Given the fact that the order quantities are constant, i.e. the same for all periods, the 
crossing of orders does not complicate the problem. 

iv.  Taking into consideration the objective of this study – to calculate optimal planned lead 
times for MRP controlled assembly systems under lead time uncertainties - the 
assumptions on the fixed demand and infinite assembly capacity are necessary and 
natural simplifications.  

v. Taking into account the assumptions on the constant demand and infinite capacity of 
the assembly system, we are in a Just in Time (JIT) environment, i.e. there is no stocking 
of finished products.  

vi. Considering that the component lead times cannot exceed iu ),...,2,1( ni = , the random 

variables k
iN  and iN  can have only the following values:  0, 1, 2, …, 1−iu .  

vii.  The orders are given at the beginning of each period and delivered components are 
used at the ends of periods (so an order made at period k can be used at the end of the 
same period k, if the actual lead time is equal to 1).  

Let’s introduce the following additional notations: 

)Pr()( jNjF iN i
≤= , 

( )nxxxX ,...,, 21=  are decision variables, the value 0=ix  signifies that the component i  is 

ordered at the beginning of the target period (i.e. when assembly must be made), 

∑+=
=

n

i
ihbH

1

. 

As shown in (Louly et al., 2007), the objective function and constraints for this multi-period 

model for the optimization of planned lead –times can be formulated as follows: 

 ),( NXC = ∑ −
=

n

i
iii NExh

1

)( )( ∑ ∏ +−+
≥ =0 1

)( )(1
j

n

i
iN jxFH

i
,  (4) 

subject to: 

 10 −≤≤ ii ux ni ,,2,1, K= .  (5) 

The maximal value of component i  lead time is equal to iu , so only the previous iu -1 

orders may not yet be received. Earlier orders have already arrived, therefore: 10 −≤≤ ii uN . 

 ∑1
1

1

−

=
>−=

u

j
jLi ju

i

N , ni ,,1L= , (6) 
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Search space reduction Heuristics 

(approximate solution)

Branch and Bound 

(exact solution) 

where  
s
iL  is s-th variable iL  (these variables are iid). 

The main difficulty of the optimization problems (4)–(5) is that the decision variables, ix , 

ni ,,1L= , are integers and the objective function is non linear. Thus, this is a complex 

optimization problem.  

5.2 Optimization algorithm 

For the problem (4) – (5), we propose the approach illustrated in Fig. 7. From practical point 
of view, an approximate solution of this problem can be sufficient. So we developed several 
techniques to calculate lower and upper limits for the value of decision variables. By 
applying these techniques we reduce the space of admissible values for these variables. 
Often, the obtained space is relatively small, so an approximate solution is relatively easy to 
find. 
 

 

 
 
 
 

 Figure 7. Optimization techniques 

The proposed techniques for reduction of the space of admissible values for decision 
variables are also useful as a pre-processing procedure for an exact optimization algorithm 
(Branch and Bound in our case). The smaller the search space for the exact procedure is, the 
quicker the solution can be found. 
Pre-processing procedure to reduce search space. 
We propose a pre-processing procedure which should be used before optimisation.  

Let’s present the space of all feasible solutions by [A, B], where A= ( 1a , 2a  ,…, na ), B = ( 1b , 

2b , …, nb ), where ia , ib  are minimal and maximal possible values for ix . We will show 

some techniques that reduce these intervals: iii bxa ≤≤ , ni ,,1L= . 

We proved (Louly et al., 2007) that the optimal solution X=  ( 1x , 2x  ,…, nx ) satisfies the 

following conditions:  

 )(),1max( ii
i xF
H

b

b

h
≤− , (7) 

 
H

h
xF i
ii −≤− 1)1( . (8) 

Therefore, the maximum value of ix  which satisfies the condition (8) gives a upper limit ib , 

and the minimum value of ix  which satisfies the condition (7) gives a lower limit ia  for this 

decision variable ix . Then, the optimal value of ix  must respect the following relation:  ia ≤ 

ix  ≤ ib .  
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The pre-processing procedure based on the verification of the conditions (7) and (8) can 
reduce the search space before applying any optimisation algorithm. 
Dominance properties. 

We use a Branch & Bound approach to find the optimal values of the parameters ix , 

iii bxa ≤≤ , ni ,,1L= . 

It is known that dominance properties can improve a Branch & Bound algorithm.  

In our previous works, we have introduced the following partial increment functions: 

 )(XGi
+  = ),...,1,...,( 1 ni xxxC + - ),...,,...,( 1 ni xxxC , (9) 

 )(XGi
−  = ),...,1,...,( 1 ni xxxC − - ),...,,...,( 1 ni xxxC . (10) 

The following two dominance properties (i) and (ii) were proved in (Louly & Dolgui,    
2007): 

 If 0)( <+ AGi , then each solution X of [A, B] with ix  = ia  is dominated. (11) 

 If 0)( <− BGi , then each solution X of [A, B] with ix  = ib  is dominated. (12) 

These dominance properties can be used to develop efficient cut procedures. Indeed, after 
the division of a node, in a Branch and Bound algorithm, two son-nodes (descendants) are 
created. For each son-node, some cuts can be applied to reduce again the corresponding 
search spaces before the next branching.  
Lower bounds on the objective function. 
Since, we use a Branch and Bound algorithm to solve the optimization problem (4) – (5), we 
need efficient Lower bounds for each tree node and root. In this sub-section, we develop 
these bounds.  
In (Louly et al., 2007), we have the two following Lower Bounds on the objective function in 
the space [A, B]: 

 1LB  = )(AC + ( )∑ −
=

−
+n

i
niiiii aabbGab

1
11 0),,...,,,...,(min)( , (13) 

 2LB  = )(BC + ( )∑ −
=

−
−n

i
niiiii bbaaGab

1
11 0),,...,,,...,(min)( , (14) 

 
⎪
⎩

⎪
⎨

⎧

>
<

<
=

, xif,)(

, if,)x(

, xif,)(

max0max

maxmin0

min0min

3

bbf

baf

aaf

LB  (15) 

where,  

=)(xf  ( )∑ −
=

n

i
iNExh

1

)(ˆ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏
=

+−++
≥0 1

)(ˆ1)ˆ(
k

n

i

kxFhnb , 
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i
ni

hh min
ˆ

,...,1=
= , 

)(max)(ˆ

,...,1

xFxF i
ni=

= , 

i
ni

aa min
,...,1

min
=

=  , 

.max
,...1

max ib
ni

b
=

=  

The parameter 0x  is the largest integer which verifies the following expression: 

( ) ( )xF
hnb

b
xF

n

ˆ
ˆ

1ˆ
/1

≤⎟
⎠

⎞
⎜
⎝

⎛

+
≤− . 

The following lower bound will be used in the Branch and Bound: 

 LB= max (LB1, LB2, LB3) (16) 

Node extension procedure.  
A Branch and Bound (B&B) algorithm is based on the design of an enumeration tree. In our 

algorithm, each node of the enumeration tree represents a set of feasible solutions. Let [A, B] 

be a node of this tree. The descendants of this node are obtained by dividing (partitioning) 

the corresponding space [A, B] into two smaller subspaces [A, B1] and [A1, B] as follows:  

- we choose i such that  i = arg max (bi-ai),  
- then, the descendent [A, B1] (respectively [A1, B]) is the subspace given by the vectors A 

and B1 (resp. A1 and B) for whom the i-th component satisfies 
2

ii
ii

ba
xa

+
≤≤  (resp. 

ii
ii bx
ba

≤≤+
+

1
2

).  

After applying this node extension procedure for the node [A, B] we obtain two son-nodes 

[A, B1] and [A1, B], each with smaller space of feasible solutions. 
Lower Cut and Upper Cut procedures.  
For each node before applying a node extension procedure some cuts are executed. The aim 
is to reduce the space of feasible solutions which is associated with the node to be divided.  
For our algorithm, the principle is simple, as mentioned above a node corresponds to a 

search space [A, B]. The cut procedure reduces the solution space [A, B] replacing A 

(respectively B) by a larger (respectively smaller) vector. This is equivalent to cutting a part 

of the search space [A, B]. We introduce two procedures: one for cutting small values 

(Lower Cut procedure) and second for cutting large values (Upper Cut procedure) of the 

corresponding decision variables. The reduction scheme is the same for these two 

procedures and they return "true" when the subset [A, B] is entirely dominated (i.e. by 

applying the cuts we completely eliminated the node [A, B]).  
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Upper bound calculation procedure. 
This procedure to calculate an Upper Bound is a variant of depth first search that consists in 

choosing the node [A, B] to be partitioned (divided) that has the best solution at one of its 

two extremities (A or B). 

6. Conclusion and further research 

We studied an MRP parameterization problem for assembly systems under component lead 

time uncertainties. This problem of inventory control and production planning under 

uncertainties is crucial for industry. Most publications are devoted to customer demand 

uncertainties. In contrast, lead time uncertainties seem not be sufficiently studied, in 

particular, for the control of component inventories for assembly systems with random 

component procurement times (lead times). Nevertheless, many of industrial applications 

exist where the component lead times are random. 

For the case of assembly systems with random lead times and a random demand, if the 

demand and component lead times are independent random variables, the following 

decomposition can be made. The finished product stock and the component stocks for 

assembly can be considered as independent. So, our approach is still valid for MRP 

parameterization: for the finished product a safety stock is calculated using the standard 

approaches, and the component planned lead times are deducted from the model proposed 

in this chapter.  

Of course, it would be better to develop a model which takes into account the dependence 

between the stock of the finished product and component stocks in the case of random 

demand and lead times. This will be one path for our future research, perhaps using the 

conjecture of (Kim et al., 2006). This conjecture, suggested for a single-item model, affirms 

that the behaviour of an inventory/production system where both demand and lead times 

are random can be evaluated by modelling for three particular cases with: (i) deterministic 

demand and lead time, (ii) random demand and deterministic lead time, and (iii) random 

lead time and deterministic demand.  

Further research should be focused on the development of a more effective Branch- and- 

Bound procedures for the general case of these single-level assembly systems. Another path 

for future work would deal with multilevel assembly systems, i.e. with multi-level bill of 

material. Logically, difficulty will increase because of dependence among levels in addition 

to the dependence among inventories. 
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