
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

7

Use of Petri Nets for Modeling an Agent-Based
Interactive System: Basic Principles and Case

Study

Houcine Ezzedine and Christophe Kolski
LAMIH, University of Valenciennes

France

1. Introduction

Several architecture models of interactive systems have been put forward by researchers

over the past twenty years. Two main types of architecture can be distinguished:

architectures with functional components: Langage (Foley & Vandam, 1982), Seeheim (Pfaff,

1985) and ARCH (Bass et al., 1991) and architectures with structural components: PAC

(Coutaz, 1987), PAC-Amodeus (Nigay, et al., 1997), MVC (Goldberg, 1983), AMF (Tarpin-

Bernard & David, 1999), H4 (Guittet, 1995),…. The approaches currently used in interactive

system design adopt a modular structuring aimed towards a better apprehension of the

reactivity, flexibility, maintainability and re-use. Agent-based approaches are promising in

this way.

In the agent-based architecture proposed, we suggest using a division into three functional

components: the application agents which handle the field concepts and cannot be directly

accessed by the user; the interactive agents (or interface agents, or presentation agents) which ,

unlike the application agents, are in direct contact with the user (they can be seen by the

user); the dialogue control agents which are also called mixed agents (Ezzedine & Trabelsi,

2005). Each agent therefore plays a role within its group; this role can be expressed in the

form of the services it offers in the interactive system.

We use so-called agent Petri Nets (PN) to model a priori the services offered by each

interface agent: a service is defined as being a quadruplet S ={E, C, R, P}, with E: the event

which triggers the service, C: the conditions to be met in order to perform this service, R: the

resources necessary for the service to be performed, P: the property of this service, which

can be either an operation concerning the agent alone (with or without a change of state for

the interactive agents), or a call for the service of another agent. The succession of various

calls for services gives rise to the succession of page-screens in the human-computer

interface.

This chapter begins with a state of the art about the use of Petri nets in Human-Machine

Interaction. Then we explain the problem relating to agent-based architectures of interactive

systems, and we propose a solution for the modeling of the interface agents of such

architectures. Lastly, we illustrate our approach by a case study.

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 132

2. Use of PN in the field of human-computer interaction

Petri nets allow the modeling and visualization of behaviors comprising parallelism,
synchronization and resource sharing. Their power lies in their formal aspect; they allow the
modeling of discrete systems evolving in parallel, which represents a great contribution for
the modeling of various facets relating to human-machine interactions, particularly in
complex systems. Various complementary approaches are found on this subject in the
literature, based on the use of various types of PN in the field of human-machine
interaction, a subject which has been developed ever since the end of the Eighties (Williem
& Biljon, 1988). They are given here in a list which is not intended to be exhaustive, but
rather to be representative.
Thus, PN were used: (1) before design phases (with an aim of human-computer interaction
specification), for task modeling (also called prescribed or theoretical task); it corresponds to
the task, envisaged by the designer(s), to be carried out by the user and/or the machine (a
priori modeling); (2) for the modeling of the human activities (a posteriori modeling); this
modeling follows the phase of evaluation of the interactive system in a real or simulated
situation with users. By a confrontation of the a priori and a posteriori models, and by an
analysis of the differences between these two complementary sets of PN, it is possible to
detect design errors, lacks of information, and so on, and to put forward proposals,
especially concerning the improvement of human-computer interaction (Abed, 1990; Abed
et al. 1992; Abed, 2001). Figure 1 shows an example of modeling with PN of the human-
machine interaction planned for part of an interactive application relating to a post of
transport network supervision (Ezzedine et al., 2003). The places in the PN represent the
actions carried out by the user whereas the transitions represent the reactions from the user
interface; the graphic components present on it (bottom left part on figure 1) rise directly
from the elements described on the PN (right part of figure 1).
Very important basic research was undertaken by P. Palanque, R. Bastide and their
colleagues on the use of the PN for the checking and validation of interactive systems
(Palanque & Bastide, 1990; Palanque et al., 1995; Navarre et al., 2003; Winkler et al., 2006…).
For instance, they proposed rule-based mechanisms for the automatic evaluation of PN-
based models of interactive systems (Palanque et al., 1999).
In the works on the ICO (Interactive Cooperative Objects) (Palanque, 1992; Palanque 1997)
and the TOOD method (Task Object Oriented Design) (Mahfoudhi et al., 1995; Tabary &
Abed, 2002), Object Petri nets are used to model human tasks in a HCI context and to specify
and then design object oriented interactive systems.
Ezzedine and Kolski (2005) present a method for the modeling of cognitive activity also
using object Petri nets: the method includes the recognition of the various classes of
situation (normal and abnormal) which human operators are likely to meet whilst
performing their tasks; each of these classes is described according to the characteristics of
the state of the system (Kaddouri et al., 1995).
From a description of normal and abnormal situations possible in process control
applications, Moussa et al. (2002, 2006) use interpreted Petri Nets for human-machine
dialogue specification.
Kontogianis (2003) chooses to use colored Petri nets for ergonomic task analysis and
modeling with emphasis on adaptation to system changes. Gomes et al. (2001) propose an
interesting approach based on reactive Petri nets (inherited from colored Petri nets) for
human-machine interface modeling.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

133

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers (Vehicle)

P2: Send a message to thetravellers(IAS) :

" Please change vehicle at the next station "

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers (Regulator) :
" Exchange vehicle numbers"

P4: Vehicle number changed (vehicle)

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Network state

t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the

first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second

vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second

vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes

Exchanges between IAS, DAS, EAS

Ag ent vehicle

Please change vehicle

in the next station

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers

P2: Send a message to thetravellers (IAS):

" Please change vehicle at the next station" (Vehicle)

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers Regulator :
" Exchange vehicle numbers" (vehicle)

P4: Vehicle number changed

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Regulatio n post

Exploitation Assistance System
(EAS)

Human Regulators
t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the

first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second

vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second

vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes
Ag ent vehicle

Please change vehicle

in the next station

Decision Assistance System

(DAS)

Information Assistance System

(IAS)

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers (Vehicle)

P2: Send a message to thetravellers(IAS) :

" Please change vehicle at the next station "

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers (Regulator) :
" Exchange vehicle numbers"

P4: Vehicle number changed (vehicle)

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Network state

t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the

first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second

vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second

vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes

Exchanges between IAS, DAS, EAS

Ag ent vehicle

Please change vehicle

in the next station

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers

P2: Send a message to thetravellers (IAS):

" Please change vehicle at the next station" (Vehicle)

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers Regulator :
" Exchange vehicle numbers" (vehicle)

P4: Vehicle number changed

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Regulatio n post

Exploitation Assistance System
(EAS)

Human Regulators
t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the

first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second

vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second

vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes
Ag ent vehicle

Please change vehicle

in the next station

Decision Assistance System

(DAS)

Information Assistance System

(IAS)

Fig. 1. Human-computer interaction modeling using PN

Bernonville et al. (2006) propose a method to facilitate the re-engineering of existing
interactive software by proposing a common framework for Software Engineers and Human
Factor specialists: their method explicitly combines Petri Nets and ergonomic criteria.
To our knowledge, none of these works is interested in modeling the agents which make up
agent-based interactive systems, by establishing a direct link with the software architecture.

3. Problem of modeling related to agent-based architectures of interactive
systems

The architecture of a computer system is a set of structures, each including: components,

outside visible properties of these components and relations which the components

maintain (Bass et al., 1991). We are only interested in interactive systems: in this context, the

architecture models aim to provide a framework for the design and the realization of the

complete system, emphasizing clearly the part with which the user interacts. Existing

architectures break up the interactive system into modules and define specific roles for each

module, contributing to the correct execution of the complete system. Two main types of

architecture can be distinguished: architectures with functional components (Langage,

Seeheim and Arch) and architectures with structural components (PAC, PAC-Amodeus,

MVC…). It should also be noted that certain classifications emphasize three categories

(centralized models, distributed or agent-based model, hybrid models).
The classic models of interactive systems distinguish three essential functions (presentation,
control and application). Some models, such as the Seeheim (Pfaff, 1985) and ARCH models,
consider these three functions as being three distinct functional units. Other approaches
using structural components, and in particular those said to be distributed or agent

Petri Net: Theory and Applications 134

approaches, suggest grouping the three functions together into one unit, the agent. The
agents are then organised in a hierarchical manner according to principles of composition or
communication: for example PAC (Coutaz, 1997) or its variants, or the MVC model (Model-
View-Controller) of Smalltalk and its recent evolutions (Goldberg, 1984), AMF and its
variants (Ouadou, 1994), H4 (Guittet, 1995)…
These architecture models preach the same principle based on a separation between the
system (application) and the human-computer interface (HCI). Thus, an architecture must
separate the application and the HCI, define a distribution of the services of the interface
and define a protocol of information exchange. One of the interests in separating the
interface and the application is to make it easier to modify the interface without changing
the application (Coutaz, 1997).
The architecture adopted can be considered as being intermediate as it borrows elements for
its principles from both types of model given above at the same time whilst being functional
and structural (Ezzedine et al., 2001). In (Ezzedine et al., 2003) and (Ezzedine et al., 2005), we
proposed an architecture ensuring separation in three functional components, which we
called respectively: interface with the application (connected to the application), dialogue
controller and presentation (this component is directly linked to the user), figure 2.

User

Application agents Control agents Interface agents

Application

Service

User

Application agents Control agents Interface agents

ApplicationApplication

Service

Fig. 2. Agent-based Architecture of interactive system

These three components group together agents:

the application agents which handle the field concepts and cannot be directly accessed by
the user. One of their roles is to ensure the correct functioning of the application and the
real time dispatch of the information necessary for the other agents to perform their
task;

the control (or dialogue controller) agents which are also called mixed agents; these
provide services for both the application and the user. They are intended to guarantee
coherency in the exchanges emanating from the application towards the user, and vice
versa;

the interactive agents (or interface agents, or presentation agents); unlike the application
agents, these are in direct contact with the user (they can be seen by the user). These
agents co-ordinate between themselves in order to intercept the user commands or
requests, and to form a presentation which allows the user to gain an overall
understanding of the current state of the application. In this way, a window may be
considered as being an interactive agent in its own right; its specification describes its
presentation and the services it has to perform.

In the following part, we explain how the agents which make up such agent-based
interactive systems are modeled. We focus on the interface agents.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

135

3. Principles of modeling by PN of interactive systems with agent-based
architecture

Initially, we will point out the basic principles of the parametrized Petri nets which inspired

our modeling approach. Then we will explain how the services of the various interface

agents of interface can be modeled.

3.1 Parametrized Petri nets

Parametrized Petri nets are classified amongst the high level PN. They allow the modelling

of dynamic systems (Gracanin et al., 1994) according to the following principle: it is possible

to link, in one parameter of these PN, a coherent set of objects or of values taken by the

objects. This makes it possible to handle sets of objects, thus reducing the complexity of the

representation.

A parameterized Petri net is a n-tuple: (C, D, Pp, T, I, O) where:

C: the set of the values of the parameters; a parameter is a class of objects or values

taken by the objects.

D: the set of all the vectors built starting from the values. In such a network, in fact the

vectors are produced or consumed (tokens).

Pp: the set of the places of the network, called parameterization descriptor.

T: the set of all the transitions from vectors representing all the actions which can be

carried out by the system.

I: the set of consumed tokens (input)

O: the set of produced tokens (output)

3.2 Modeling of interface agents according to a set of services

The concept of an agent’s service such as it was introduced by (Maoudji et al., 2001)

considers the service as an action which involves the agent itself or other agents. For a

service to be started, the agent needs:

the appearance of the trigger event

the checking of the condition in connection with the service,

the checking of some resources which may be necessary for the establishment of the

service.

Formally the service is defined by a quadruplet (Moldt et Wienberg, 1997), Figure 2,
Service={E, C, R, P} where:

E: the event which triggers the service, for example a user action or a display of an

alarm or anomaly message coming from an application.

C: a condition to check in order to carry out the service, such as the exceeding of a

threshold as regards the value of one of the application’s variables, or the presence of

any risk for the application

R: the resources necessary for the service to be performed.

P: the property of the service which can be internal (the resulting action affects the

agent itself) or external (the resulting action relates to other agents); the latter will be

interpreted as an event.

Petri Net: Theory and Applications 136

P1

P2

T1

C : Condition

R : resource for the treatment

P: internal

property

P : external

property

E : Event

State1

State 2

P1

P2

T1

C : Condition

R : resource for the treatment

P: internal

property

P : external

property

E : Event

State1

State 2

Fig. 2. Modeling of an agent’s service (Maoudji et al., 2001)

3.3 Concept of PN used to model the agents of the interactive system (Agent PN)

Taking the concept of service of an agent introduced by (Maoudji et al., 2001) as a starting
point, we propose the modeling of the behaviour of an agent by the modeling of the set of
its services, Figure 3. The services of each agent can be represented by external actions on

Events intend for other agents

Cn

Rn

P :Internal P:External

C1

R1

P : Internal P:External

C2

R
2

P :Internal P:External

e1
e2 en

e’1
e’2 e’n

Events intend for other agents

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C2

R
2

P :Internal P:External

C2

R
2

P :Internal P:External

C2

R
2

P :Internal P:External

C2

R
2

P :Internal P:External

e1
e2 en

e’1
e’2 e’n

Fig. 3. Modeling of agent’s services with agent PN (Ezzedine et al., 2001)

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

137

other agents; they are then interpreted as trigger events for other agents such as e’1, e’2 and
up to e’n, or by actions on the agents themselves such as looping on the place which is at the
entry of their condition C. The service of an agent can be achieved by the execution of an
internal or external action only if the condition C is true: i.e. if the place upstream of the
condition C is marked (and thus has at least one token), and if event ei is triggered and the
resource necessary to achieve the action is available.
We distinguish three types of place in the PN agent which are:
1. An agent place: which always contains the current view of the agent (result of a service).
2. An event place: which contains an event which triggers the service.
3. An intermediate place: which contains the events bound for another agent.
If we model an interface with n agents and m services for each agent, we will obtain a less
readable PN agent, because of this and in order to mitigate the problem of the complexity of
the PN, we increase the model by the capacity to abstract the set of services of an agent in
one single form, Figure 4.

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal

property

P : external

property

E : Event

State1

State 2

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal

property

P : external

property

E : Event

State1

State 2

Fig. 4. Abstraction of the services of an agent.

Formally, an agent (set of n services) is defined by a quadruplet as follows:
Agent={E, C, R, P} where:

E= {e1, e2,..., ei,…, en}, set of events which trigger agent services (n events for n services).
An event is characterized by two fields: its identifier and the moment of the appearance.
For example, an alarm may be triggered when the threshold of a variable to be
supervised in an industrial process is exceeded (temperature too high in a chemical
process, late bus in a transport system…).

C= {c1, c2,..., ci, ..., cn}, set of conditions necessary for the establishment of the services.
Each service must check a condition so that it can trigger itself off. For example: an
event may appear following the triggering of an alarm. A condition can be made of
several elementary conditions. It at least includes the elementary condition: presence of

Petri Net: Theory and Applications 138

the service trigger event.

R= {r1, r2, ..., ri, ..., rp}, set of resources which may be necessary for the establishment of
the services (if the services have visible actions). A resource can be made of several
elementary resources. For example, it may be necessary to have a display screen, a
printer or another peripheral device (possibly a sound device) in order to inform the
user of the type of alarm message. The information contained in the fields of each
resource relates particularly to its size, color(s) and all kinds of information contributing
to the characteristics of the human-computer interface.

P: Properties of the services. Each service results from the execution:
1. either of a non visible action acN (an action which affects the agent itself): for

example the service which deals with the displaying of a value of a process
variable where the display service alone is involved in updating the value of
the variable in question; we then speak about an internal property of the
service.

2. or of a visible action acV (an action which relates to another agent); for example
actions of the human operator which consist in writing a message with a goal
to send it to another person, or the change of a value of a process parameter;
we then speak about an external property of the service.

A service can have two properties at the same time: in other words, following the
appearance of an event, an agent can act on itself (such as the service which is in charge of
the reactualization of a value of a variable) and on another agent at the same time (for
instance in the case of exceeding a tolerated threshold of the value of the variable); in this
case it will be necessary to generate and display an alarm message, which is the subject of
another service.
An external action can relate to several agents (for instance, sending the same message to
several agents); it will be regarded as a vector which includes the number of the action and
the list of the identifiers of the agents concerned. If several screens of the human-machine
interface are concerned with the same message, the agents of message acquisition, treatment
and display each perform a different service.

3.4 Mathematical model

A mathematical formulation of the PN agent can be put forward, using (Moldt et Wienberg,
1997) as a starting point:

An agent aj is a set Sj of n services, Sj= {s1, s2, ..., si, ..., sn}.

For each service is associated an event ei belonging to the set E of the events, E= {e1, e2,

..., ei, …, en}.

To each service, a condition ci is associated, belonging to the set C of the conditions, C=
{c1, c2, ..., ci, ..., cn}; a condition can be composed of several elementary conditions.

If the service comprises a visible action, a resource ri belonging to the set R of the
resources is necessary, R= {r1, r2, ..., ri, ..., rp}.

the set of the actions of the agent is composed of two subsets; ACV is the set of visible
actions and ACN corresponds to the set of non visible actions.
ACV = {acV1, acV2,…, acVP}, ACN= {acN1, acN2,…, acNq} with p n and q n.

We have:
Card (E) = n, Card (C) = n, Card (R) = p, Card (ACV) = p, Card (ACN) = q.
A service results from a minimum of one action (which can be visible in the form of a

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

139

display, input coming from a keyboard, a click on the mouse, speech acquisition, …, or non
visible, for instance when there are interactions between internal agents, such as the control
agents) and a maximum of two actions (visible and non visible).
The number of all the services of the agent is defined by:
Nb_Services = Card (E) = n.
The number of all the actions of the agent is defined by:
Nb_Actions = Card (ACV) + Card (ACN)= p + q.
It is included in the margin: n Nb_Actions 2×n.
We define the result of the service with a couple of actions (ACVk, ACNt), where the indices k
and t take the zero value if the service does not contain a visible action or a non visible
action. The number of the couples of actions is defined by:
Nb_Couples = Nb_Actions – Card (E)
We will order for example the couples of actions so that the couples which contain visible
and non visible actions are the first, then the couples which contain only visible actions are
in second place, while those which contain only non visible actions are in last place.
Then the services are defined by the following parameterized function (the parameter j
being the identifier of the agent):
Sj: Ej × Cj × Rj ACV × ACN.
 (ei,j; ci,j; rk,j) (acvk,j; acNt,j). j = 1,…, number of agents
 i = 1,...,n.
 0 k p such as if i p then k=i.
 else k=0.
 0 t q such as if i Nb_Couples then t=i
 else
 if i > p then t = i – p + Nb_Couples.
 else t=0.
j: identifier of the agent
i: number of the event
ACV: to express that it is a Visible action.
ACN: to express that it is a Not Visible action.
k,t: number of the action (if the service does not result by a visible action, then k=0; if the
service does not result by a non visible action, then t=0).
Then the specification of an agent aj consists in the definition of the sets Ei , Ci, Rk and the
mathematical specification of a task of an agent consists of the definition of a sequence of
triplets (ei, ci, rk) associated with their couples of actions (acvk,j; acnt,j), by chronological order
of appearance of the events.

4. Case study

The case study relates to an application of supervision of a complex process. It is supposed
that a human operator (or group of human operators) is located in a control room: he or she
must supervise it by the intermediary of an interactive system. The human operator
intervenes in various normal situations as well as in abnormal ones. In the abnormal
situations, it must intervene following the arrival of disturbances, or even anticipate them
(Stanton, 1994; Moray, 1997). It is supposed that the application relates to the supervision of
an urban transport network (such as tramways, buses...).
The architecture suggested for the interactive system consists of three modules: Application,

Petri Net: Theory and Applications 140

Control and Presentation (figure 5). Each module is composed of agents interacting between
themselves and/or with the agents of other modules. Let us recall that an agent (set of n
services) is defined by a quadruplet as follows:
Agent={E, C, R, P}.
It is the presentation module (composed of interactive agents) which we will model
according to the following scenario of disturbance:
1. An event e1 comes from a dialogue controller agent, following a disturbance in the

application.
2. There is Ac8 action of agent a1 (a request for service of the agent a1 to the agent a2),

following an analysis of the condition c1 for the execution of the action a1; this Ac8

action in its turn becomes the event release e5 for the agent a2 (for example for the
display of a message).

3. Agent a2 carries out the Ac3 action which consists in presenting the message to the user
if the resource "Window" is available.

4. The event e3 occurs; it represents the reaction of the user, following the display of the
message. It consists of an input of a text with the keyboard or an acknowledgement of
the message with the keyboard or the mouse.

5. The agent a3 carries out the Ac5 action following an event trigger e3 which can be a
return of an acknowledgement message or the validation of an action provided that c3 is
checked and that the display resource is available.

UserApplication

Application agents Control agents Interface agents

UserUserApplicationApplication

Application agents Control agents Interface agents

Fig. 5. Global view of the agent-based architecture, with arrival of a disturbance (Rehim,
2005).

While reformulating more formally, using (Moldt & Wienberg, 1997) as a source of
inspiration, the presentation module can be defined by the following elements (figure 6):
A= {a1, a2, a3}: set of the presentation agents (in the example of figure 6, all three of them are

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

141

visible to the user).
E= {e1,1; e1,2; e1,3, e2,3,; e2,1; e2,2; e3,1; e3,2}: set of events coming (1) from the agents of the
interface with the application module (via the dialogue controller agents which send e1,1 and
e1,2 events to the presentation module), such as alerts, dysfunctional events, incidents, and
so on (2) from user actions such as: commands or confirmations (e1,3; e2,3), (3) from non
visible actions which become events for other agents (e2,1; e2,2; e3,1; e3,2).
AC= { acv1,1; acv2,1; acv1,2; acv2,2; acN1,1; acN1,2; acN1,3; acN2,3; acN3,3}: set of agent actions; these
actions can be visible (acv1,1; acv2,1; acv1,2; acv2,2; acv1,3), such as the display of information on a
screen, or non visible (acN1,1; acN1,2; acN1,3; acN2,3; acN3,3), such as a request for service to other
agents.
R= {r1,1; r2,1; r1,2; r2,2; r1,3 }: set of resources (such as keyboard, mouse, windows…) necessary
for the visible actions of the agents, in order to carry out their actions (r1,1 is related to acv1,1,
r2,1 is related to acv2,1 , and so on).
C= {cv1,1; cv2,1; cv1,2; cv2,2; cN1,1; cN1,2; cN1,3; cN2,3; cN3,3}: set of conditions related to the execution of
the visible or non visible actions (cv1,1 is related to acv1,1, cv2,1 is related to acv2,1, and so on).

a1

a2

a3

acv1,1

acv1,2

e2,3
acN3,3

e1,2

e1,1 acN1,1 =e2,2

acN1,2 =e2,1

acN2,3 =e3,2

acv2,1

acv2,2

e1,3

acv1,3

ac
N

1
,3
=

e 3
,1

a1

a2

a3

acv1,1

acv1,2

e2,3
acN3,3

e1,2

e1,1 acN1,1 =e2,2

acN1,2 =e2,1

acN2,3 =e3,2

acv2,1

acv2,2

e1,3

acv1,3

ac
N

1
,3
=

e 3
,1

Fig. 6. Reformulated example related to the disturbance (presentation module)

For a better representation of the example visible in figure 6, one associates an agent

identifier i,j with all the information present in the example; i is the event, action or

necessary resource number; j is the agent number (from 1 to N). The possible couples

constituted with visible (acvi,j) and non visible (acNi,j) actions are obtained following the

appearance of an ei ,j event, under the conditions that ci,j is true and the ri,j resource is

available. The modeling of services of each of the three agents forming the presentation

module can be expressed as follows, with r0,j: resource not necessary for the execution of the

non visible action (acN0,j) by an agent j, and with acv0,j and aN0,j: visible and non visible

actions which are not performed by the agent j.

Agent1:
E1 = {e1,1; e2,1; e3,1}
Acv1 = {acv1,1; acv2,1}, AcN1 = {acN1,1},
R = {r1,1; r2,1},
C = {cv1,1; cv2,1; cN1,1}.

Petri Net: Theory and Applications 142

Card (E1) = 3, Card (Acv1) = 2, Card (AcN1) = 1.
Nb_Actions = Card (Acv1) + Card (AcN1) = 2+1=3.
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0.
S1: E1 × C1 × R1 Acv1 × AcN1

 (e1,1; cv1,1; r1,1) (acv1,1; acN1,1)
 (e2,1; cv2,1; r2,1) (acv2,1; acN1,1)
 (e3,1; cN1,1; r0,1) (acv0,1; acN1,1)

Agent2:
E2 = {e1,2; e2,2; e3,2},
Acv2 ={acv1,2; acv2,2}, AcN2 ={acN1,2},
R2 = {r1,2; r2,2},
C2 = {cv1,2; cv2,2; cN1,2}.

Card (E2) = 3, Card (Acv2) = 2, Card (AcN2) = 1.
Nb_Actions = Card (Acv2) + Card (AcN2) = 2+1=3.
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0.
S2: E2 × C2 × R2 Acv2 × AcN2

 (e1, 2; cv1, 2; r1, 2) (acv1, 2; acN1, 2)
 (e2, 2; cv2, 2; r2, 2) (acv2,2; acN1, 2)
 (e3,2; cN1, 2; r0, 2) (acv0, 2; acN1, 2)

Agent3:
E3 = {e1,3; e2, 3 },
Acv3 ={acv1, 3}, AcN3 ={acN1, 3; acN2, 3; aN3,3},
R3 = {r1, 3},
C3 = {cv1, 3; cN1, 3; cN2, 3; cN3,3}.

Card (E3) = 2, Card (Acv3) = 1, Card (AcN3) = 3.
Nb_Actions = Card (Acv3) + Card (AcN3) = 1+3=4.
Nb_Couples = Nb_Actions – Nb_Services = 4 – 4 = 0.
S3: E3 × C3 × R3 Acv3 × AcN3

 (e1, 3; cv1, 3; r1, 3) (acv1, 3; acN1, 3)
 (e2, 3; cN2, 3; r0, 3) (acv0, 3; acN2, 3)
 (e3, 3; c N3, 3; r0, 3) (acv0, 3; acN3, 3)
From the mathematical modeling above, which made it possible to formulate the

interactions of the agents in figure 6, each agent is modeled with the determination of its

inputs and outputs in terms of condition, action, event and resource necessary to achieve the

service. In figure 7, we present a model of interaction between the agents of the presentation

module of the human-machine interface.

Figure 8 shows an example of release of the service s7,1 “Change_Delay_Threshold_Vehicle”

of the agent called Traffic_State belonging to the presentation module of the human-machine

interface. Following the appearance of the event e7,1 “Delay_Threshold_Vehicle” the

interface agent Vehicle checks the corresponding condition c7,1 “Appearance of the event and

delay > 5”. If the condition is verified, the service is started; the visible action acv7,1 is

activated. The activation of this action exploits the resource r7,1 “Dialog_Box” and reveals an

alarm message bound for the human operator.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

143

Fig. 7. Modeling of the example related to the disturbance (Rehim, 2005)

We notice, with the example presented above (figure 8), that there is no non visible action

(acN0,1) of agent 1 in transition T1, i.e. that there is no interaction with other internal agents;

but on the other hand, thanks to the visible action acv7,1, agent 1 acts on an external agent

which is the window n°2 belonging to the presentation module of the interactive system.

Petri Net: Theory and Applications 144

Message to be

transmitted

e
7,1

c7,1

acv7,1 (acN0,1)

r7,1
Box of communication

Message to be

transmitted

e
7,1

e
7,1

e
7,1

c7,1

acv7,1 (acN0,1)

r7,1
Box of communication

Fig. 8. Example of release of a service of the Traffic_State agent (Trabelsi, 2006)

4. Conclusion

Through their formal aspect and their capacity to model the dynamics of systems, Petri Nets

have been bringing complementary and significant contributions in the human-computer

interaction domain since the end of the Eighties. In this chapter, we have explained

their utility for the modeling of agents which make up interactive systems with an

architecture containing agents. A scenario made it possible to illustrate the approach

proposed.

The PN used represent a promising tool for the modeling of such interactive systems.

Their originality and their power reside in (1) their capacity to visualize the behavior of

each agent (external or internal actions), as well as (2) their capacity of abstraction

which makes it possible to keep the same information without any visual complexity,

and (3) their formal aspect also enables them to be potentially efficient at the time of the

evaluation and validation phase (which is not dealt with in this article).

There are several perspectives with this work. We are currently studying and

developing an assistance tool for the evaluation of interactive systems. This tool makes

it possible to connect to each interface agent, evaluation agents intended to analyze

their behavior at the time of situations of use. The PN must make it possible to

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

145

reconstitute the human activities performed (Trabelsi, 2006; Tran et al., 2007). A second

perspective relates to generalization with the agents of the two other modules: (1)

interface with the application, (2) dialogue controller. Another perspective relates to the

evaluation of the approach suggested in various application domains (for instance

design and evaluation web sites).

5. Acknowledgements

The authors thank the FEDER, the GRRT and the Nord-Pas de Calais region for their

financial support (SART, EUCUE and MIAOU projects). They also thank André Péninou,

Hacène Maoudji, Aïssam Rehim and Abdelwaheb Trabelsi for their contribution to various

modeling aspects described in this chapter.

6. References

Abed, M. (1990). Contribution à la modélisation de la tâche par des outils de spécification
exploitant les mouvements oculaires : application à la conception et à l'évaluation
des interfaces homme-machine. Thèse de doctorat, Université de Valenciennes et
du Hainaut-Cambrésis, septembre.

Abed, M, Bernard, J.M, Angué, J.C (1992). Method for comparing task model and activity
model. Proceedings 11th European annual conference Human Decision Making
and Manual Control, Valenciennes, France.

Tabary, D., Abed, M. (1998). TOOD: an object-oriented methodology for describing user task
in interface design and specification - An application to air traffic control. La Lettre
de l'Intelligence Artificielle, 134, pp. 107-114.

Abed, M. (2001). Méthodes et modèles formels et semi-formels pour la conception et
l’évaluation des systèmes homme-machine. Habilitation à diriger des recherches,
Université de Valenciennes et du Hainaut-Cambrésis, 02 mai 2001.

Benaïssa, M.L., Ezzedine, H., Angué, J.C. (1993). An interface Specification Method for
industrial processes. XII European annual conference on human decision making
and manual control, Kassel, Germany, juin.

Bernonville, S., Leroy, N., Kolski, C., Beuscart-Zéphir, M. (2006). Explicit combination
between Petri Nets and ergonomic criteria: basic principles of the ErgoPNets
method. Proceedings of the 25th Edition of EAM'06, European Annual Conference
on Human Decision-Making and Manual Control (September 27-29, 2006,
Valenciennes, France), PUV.

Coutaz, J. (1987). PAC, an Object-Oriented Model for Dialog Design. In: Bullinger, Hans-
Jorg, Shackel, Brian (ed.): INTERACT 87 - 2nd IFIP International Conference on
Human-Computer Interaction. September 1-4, Stuttgart, Germany. p.431-436.

David, R. & Alla, H. (2004). Discrete, continuous, and hybrid Petri Nets. 1er ed. Springer
Verlag, 2004, XXII, 524 p. Hardcover ISBN 3-540-22480-7

Ezzedine, H., Kolski, C. (2005). Modelling of cognitive activity during normal and abnormal
situations using Object Petri Nets, application to a supervision system. Cognitive,
Technology and Work, 7, pp. 167-181.

Ezzedine, H., Trabelsi, A., Kolski, C. (2006). Modelling of agent oriented interaction using
Petri Nets, application to HMI design for transport system supervision. P. Borne, E.

Petri Net: Theory and Applications 146

Craye, N. Dangourmeau (Ed.), CESA2003 IMACS Multiconference Computational
Engineering in Systems Applications (Lille, France, July 9-11, 2003), Ecole Centrale
Lille, Villeneuve D'Ascq, pp. 1-8, janvier, ISBN 2-9512309-5-8.

Ezzedine, H., Trabelsi, A., Kolski, C. (2006). Modelling of an interactive system with an
agent-based architecture using Petri nets, application of the method to the
supervision of a transport system. Mathematics and Computers in Simulation, 70, pp.
358-376.

Ezzedine, H., Trabelsi, A. (2005). From the design to the evaluation of an agent-based
human-machine interface. Application to supervision for urban transport system.
P. Borne, M. Benrejeb, N. Dangoumeau, L. Lorimier (Ed.), IMACS World Congress
"Scientific Computation, Applied Mathematics and Simulation" (July 11-15, Paris), ECL,
pp. 717-725, juillet, ISBN 2-915913-02-1.

Ezzedine, H., Maoudji, H. & Péninou A. (2001). Towards agent oriented specification of
Human-Machine Interface : Application to the transport systems. 8th IFAC
Symposium on Analysis, Design, and Evaluation of Human-Machine Systems
(IFAC-HMS 2001), pp. 421-426, Kassel, Germany, 18-20 September.

Foley, J.D & Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics, Addison-
Wesley (IBM Systems Programming Series), Reading, MA.

Goldberg, A. (1980). Smalltalk-80, the interactive programming environnement. Addision-
Wesley.

Gomes, L., Barros, J.P., Coasta, A. (2001). Man-machine interface for real-time telecontrol
based on Petri nets specification. In T. Bahill, F.Y. Wand (Eds.), IEEE SMC 2001
Conference Proceedings (e-Systems, e-Man and e-Cybernetics), Arizona, USA: IEEE
Press, pp. 1565-1570.

Gracanin, D., Srinivasan, P. & Valavanis, K.P. (1994). Parametized Petri nets and their
applications to planning and coordination in intelligent systems. IEEE Transactions
on Systems, Man and Cybernetics, Vol. 24, pp. 1483-1497.

Guittet, L. (1995). Contribution à l'Ingénierie des IHM - Théorie des Interacteurs et
Architecture H4 dans le système NODAOO, Thèse de l’Université de Poitiers, 1995.

Jensen, K. (1980). Coloured Petri Nets and Invarient Method. Daimi PB 104, Aarhus
University.

Jensen, K. (1996). Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use.
2nd edition, vol n°2, Springer-Verlag.

Kontogiannis, T. (2003). A Petri Net-based approach for ergonomic task analysis and
modeling with emphasis on adaptation to system changes. Safety Science, vol. 41
n°10, pp. 803-835.

Kaddouri, S.A., Ezzedine, H., Angué, J.C. (1995). Task modelling using object Petri Nets. In
Anzaï Y., Ogawa K., Mori H. (Eds.), Symbiosis of Human and Artefact, HCI
International'95: 6th International, Tokyo, Japan. (pp. 988-994). Amsterdam:
Elsevier.

Mahfoudhi, A., Abed, M., Angué, J.C. (1995). An Object Oriented Methodology for Man-
Machine systems analysis and design. Anzai Y., Ogawa K., Mori H. (Ed.),
Symbiosis of Human and Artefact, HCI International'95: 6th International, Tokyo,
Japan, Elsevier, Amsterdam, pp. 965-970, janvier.

Maoudji, H., Ezzedine, H. & Péninou A. (2001). Agents oriented specification of interactive
systems. In M.J. Smith, G. Salvendy, D. Harris, R. Koubek (Ed.), Usability

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

147

evaluation and Interface design: Cognitive Engineering, Intelligent Agents and
Virtual Reality, volume 1. (pp. 71-75). London : Lawrence Erlbaum Associate
Publishers.

Maoudji, H., Ezzedine, H., Péninou, A. & Kolski, C. (2000). Amélioration de la qualité des
correspondances dans les réseaux de transports urbains. Rapport d'étude à mi-
parcours du projet coopératif GRRT, Juillet.

Moldt, M., Wienberg, F. (1997). Multi-Agent-Systems based on Coloured Petri Nets. In
Proceedings of the 18th International Conference on Application and Theory of
Petri Nets, Toulouse.

Moray, N. (1997). Human factors in process control. In Handbook of human factors and
ergonomics, G. Salvendy (Ed.), John Wiley & Sons, INC., pp. 1944-1971.

Moussa, F., Riahi, M., Kolski, C., Moalla, M. (2002). Interpreted Petri Nets used for Human-
Machine Dialogue Specification in Process Control : principles and application to
the Ergo-Conceptor+ tool. Integrated Computer-Aided Engineering, 9, pp. 87-98.

Moussa, F., Kolski, C., Riahi, M. (2006). Analyse des dysfonctionnements des systèmes
complexes en amont de la conception des IHM : apports, difficultés, et étude de cas.
Revue d'Interaction Homme Machine (RIHM), 7, pp. 79-111.

Navarre, D., Palanque, P., Bastide, R. (2003). A Tool-Supported Design Framework for
Safety Critical Interactive Systems, Interacting with computers, 15 (3), pp. 309-328.

 Nigay, L., Coutaz, J. (1997). Software architecture modelling: Bridging Two Worlds using
Ergonomics and Software Properties. In Formal Methods in Human-Computer
Interaction, P. Palanque & F. Paterno (Eds.), Springer-Verlag: London Publ., ISBN
3-540-76158-6, 1997, pp. 49-73.

Ouadou, K. (1994). AMF : Un modèle d’architecture multi-agents multi-facettes pour
Interfaces Homme-Machine et les outils associés. Thèse de l’Ecole Centrale de
Lyon. 1994.

Palanque, P. & Bastide, R. (1995). Design, specification and of interactive systems. Springer
Verlag 1995, ISBN 3-211-82739-0. 370 pages.

Palanque, P., Bastide, R. (1990). Petri nets with objects for specification, design and
validation of user-driven interfaces. In proceedings of the third IFIP conference on
Human-Computer Interaction, Interact'90, Cambridge,UK, 27-31 August.

Palanque, P. (1992). Modélisation par objets coopératifs interactifs d'interfaces homme-
machines dirigées par l'utilisateur. Ph.D. Thesis, University of Toulouse 1, France.

Palanque, P., Bastide, R. (1997). Synergistic modelling of tasks, system and users using
formal specification techniques. Interacting With Computers, 9 (12), pp. 129-153.

Palanque, P., Bastide, R., Sengès, V. (1995). Task model–system model: towards an unifying
formalism. In proceedings of the HCI international (EHCI'95), Chapman & Hall,
pp. 189-212.

Palanque, P., Farenc, C., Bastide, R. (1999). Embedding Ergonomic Rules As Generic
Requirements in a formal Development Process of Interactive Software. In
Proceeding Interact’99, Sasse A., Jonhson C. (Eds), IOS Press, pp. 408-416.

Pfaff, (1985). User interface management system. Springer-Verlag.
Rehim, A. (2005). Etude des outils exploitant des réseaux de Petri agent pour l’évaluation

des systèmes interactifs. Mémoire de Master recherche.
Sibertin-Blanc, C. (1985). High-level Petri nets with Data Structure. Proceedings 6th

EWPNA, June, Espoo, Finland, 1985.

Petri Net: Theory and Applications 148

Stanton, N. (1994). Human factors in alarm design. Taylor & Francis Ltd, London.
Tabary, D., Abed, M. (2002). A software Environment Task Object Oriented Design

(ETOOD). Journal of Systems and Software, 60, pp.129-141.
Tarpin-Bernard, F. & David, B. (1999). AMF : un modèle d'architecture multi-agents multi-

facettes Techniques et Sciences Informatiques. Hermès. Paris Vol. 18 No. 5. pp. 555-
586. Mai . Thèse de doctorat, Université Joseph Fourier Grenoble 1, Mars.

Trabelsi, A. (2006). Contribution à l’évaluation des systèmes interactifs orientés agents.
Application à un poste de supervision de transport urbain. Thèse de doctorat,
Université de Valenciennes et du Hainaut-Cambrésis, 25 septembre.

Trabelsi, A., Ezzedine, H. & Kolski, C. (2006). Un mouchard électronique orienté agent pour
l’évaluation de systèmes interactifs de supervision. CIFA2006, Bordeaux, France,
30-31 Mai et 1 juin. Université de Valenciennes et du Hainaut-Cambrésis, juillet.

Tran, C.D., Ezzedine, H. & Kolski, C. (2007). Towards a generic and configurable model of
an electronic informer to assist the evaluation of agent-based interactive systems.

ICEIS’2007, 9th International Conference on Entreprise Information Systems. 12-16 June,
Funchal, Madeira- Portugal

Williem, R., Biljon, V. (1988). Extending Petri Nets for specifying Man-Machine dialogues.
International Journal of Man-Machine Studies, vol. 28, pp. 437-45.

Winckler, M., Barboni, E., Palanque, P., Farenc., C. (2006). What Kind of Verification of
Formal Navigation Modelling for Reliable and Usable Web Applications? 1st Int.
Workshop on Automated Specification and Verification of Web Sites, Valencia,
Spain. Electronic Notes Theoretical Computer Science, 157(2), pp. 207-211.

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Houcine Ezzedine and Christophe Kolski (2008). Use of Petri Nets for Modeling an Agent-Based Interactive

System: Basic Principles and Case Study, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN: 978-

3-902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/use_of_petri_nets_for_modeling_an_ag

ent-based_interactive_system__basic_principles_and_case_study

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

