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1. Introduction 

Several architecture models of interactive systems have been put forward by researchers 

over the past twenty years. Two main types of architecture can be distinguished: 

architectures with functional components: Langage (Foley & Vandam, 1982), Seeheim (Pfaff, 

1985) and ARCH (Bass et al., 1991) and architectures with structural components: PAC 

(Coutaz, 1987), PAC-Amodeus (Nigay, et al., 1997), MVC (Goldberg, 1983), AMF (Tarpin-

Bernard & David, 1999), H4 (Guittet, 1995),…. The approaches currently used in interactive 

system design adopt a modular structuring aimed towards a better apprehension of the 

reactivity, flexibility, maintainability and re-use. Agent-based approaches are promising in 

this way. 

In the agent-based architecture proposed, we suggest using a division into three functional 

components: the application agents which handle the field concepts and cannot be directly 

accessed by the user; the interactive agents (or interface agents, or presentation agents) which , 

unlike the application agents, are in direct contact with the user (they can be seen by the 

user); the dialogue control agents which are also called mixed agents (Ezzedine & Trabelsi, 

2005). Each agent therefore plays a role within its group; this role can be expressed in the 

form of the services it offers in the interactive system. 

We use so-called agent Petri Nets (PN) to model a priori the services offered by each 

interface agent: a service is defined as being a quadruplet S ={E, C, R, P}, with E: the event 

which triggers the service, C: the conditions to be met in order to perform this service, R: the 

resources necessary for the service to be performed, P: the property of this service, which 

can be either an operation concerning the agent alone (with or without a change of state for 

the interactive agents), or a call for the service of another agent. The succession of various 

calls for services gives rise to the succession of page-screens in the human-computer 

interface.

This chapter begins with a state of the art about the use of Petri nets in Human-Machine 

Interaction. Then we explain the problem relating to agent-based architectures of interactive 

systems, and we propose a solution for the modeling of the interface agents of such 

architectures. Lastly, we illustrate our approach by a case study. 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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2. Use of PN in the field of human-computer interaction  

Petri nets allow the modeling and visualization of behaviors comprising parallelism, 
synchronization and resource sharing. Their power lies in their formal aspect; they allow the 
modeling of discrete systems evolving in parallel, which represents a great contribution for 
the modeling of various facets relating to human-machine interactions, particularly in 
complex systems. Various complementary approaches are found on this subject in the 
literature, based on the use of various types of PN in the field of human-machine 
interaction, a subject which has been developed ever since the end of the Eighties (Williem 
& Biljon, 1988). They are given here in a list which is not intended to be exhaustive, but 
rather to be representative. 
Thus, PN were used: (1) before design phases (with an aim of human-computer interaction 
specification), for task modeling (also called prescribed or theoretical task); it corresponds to 
the task, envisaged by the designer(s), to be carried out by the user and/or the machine (a
priori modeling); (2) for the modeling of the human activities (a posteriori modeling); this 
modeling follows the phase of evaluation of the interactive system in a real or simulated 
situation with users. By a confrontation of the a priori and a posteriori models, and by an 
analysis of the differences between these two complementary sets of PN, it is possible to 
detect design errors, lacks of information, and so on, and to put forward proposals, 
especially concerning the improvement of human-computer interaction (Abed, 1990; Abed 
et al. 1992; Abed, 2001). Figure 1 shows an example of modeling with PN of the human-
machine interaction planned for part of an interactive application relating to a post of 
transport network supervision (Ezzedine et al., 2003). The places in the PN represent the 
actions carried out by the user whereas the transitions represent the reactions from the user 
interface; the graphic components present on it (bottom left part on figure 1) rise directly 
from the elements described on the PN (right part of figure 1).
Very important basic research was undertaken by P. Palanque, R. Bastide and their 
colleagues on the use of the PN for the checking and validation of interactive systems 
(Palanque & Bastide, 1990; Palanque et al., 1995; Navarre et al., 2003; Winkler et al., 2006…). 
For instance, they proposed rule-based mechanisms for the automatic evaluation of PN-
based models of interactive systems (Palanque et al., 1999). 
In the works on the ICO (Interactive Cooperative Objects) (Palanque, 1992; Palanque 1997) 
and the TOOD method (Task Object Oriented Design) (Mahfoudhi et al., 1995; Tabary & 
Abed, 2002), Object Petri nets are used to model human tasks in a HCI context and to specify 
and then design object oriented interactive systems.  
Ezzedine and Kolski (2005) present a method for the modeling of cognitive activity also 
using object Petri nets: the method includes the recognition of the various classes of 
situation (normal and abnormal) which human operators are likely to meet whilst 
performing their tasks; each of these classes is described according to the characteristics of 
the state of the system (Kaddouri et al., 1995). 
From a description of normal and abnormal situations possible in process control 
applications, Moussa et al. (2002, 2006) use interpreted Petri Nets for human-machine 
dialogue specification. 
Kontogianis (2003) chooses to use colored Petri nets for ergonomic task analysis and 
modeling with emphasis on adaptation to system changes. Gomes et al. (2001) propose an 
interesting approach based on reactive Petri nets (inherited from colored Petri nets) for 
human-machine interface modeling. 
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Fig. 1. Human-computer interaction modeling using PN 

Bernonville et al. (2006) propose a method to facilitate the re-engineering of existing 
interactive software by proposing a common framework for Software Engineers and Human 
Factor specialists: their method explicitly combines Petri Nets and ergonomic criteria. 
To our knowledge, none of these works is interested in modeling the agents which make up 
agent-based interactive systems, by establishing a direct link with the software architecture. 

3. Problem of modeling related to agent-based architectures of interactive 
systems 

The architecture of a computer system is a set of structures, each including: components,  

outside visible properties of these components and relations which the components 

maintain (Bass et al., 1991). We are only interested in interactive systems: in this context, the 

architecture models aim to provide a framework for the design and the realization of the 

complete system, emphasizing clearly the part with which the user interacts. Existing 

architectures break up the interactive system into modules and define specific roles for each 

module, contributing to the correct execution of the complete system. Two main types of 

architecture can be distinguished: architectures with functional components (Langage, 

Seeheim and Arch) and architectures with structural components (PAC, PAC-Amodeus, 

MVC…). It should also be noted that certain classifications emphasize three categories 

(centralized models, distributed or agent-based model, hybrid models).
The classic models of interactive systems distinguish three essential functions (presentation, 
control and application). Some models, such as the Seeheim (Pfaff, 1985) and ARCH models, 
consider these three functions as being three distinct functional units. Other approaches 
using structural components, and in particular those said to be distributed or agent 
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approaches, suggest grouping the three functions together into one unit, the agent. The 
agents are then organised in a hierarchical manner according to principles of composition or 
communication: for example PAC (Coutaz, 1997) or its variants, or the MVC model (Model-
View-Controller) of Smalltalk and its recent evolutions (Goldberg, 1984), AMF and its 
variants (Ouadou, 1994), H4 (Guittet, 1995)…  
These architecture models preach the same principle based on a separation between the 
system (application) and the human-computer interface (HCI). Thus, an architecture must 
separate the application and the HCI, define a distribution of the services of the interface 
and define a protocol of information exchange. One of the interests in separating the 
interface and the application is to make it easier to modify the interface without changing 
the application (Coutaz, 1997). 
The architecture adopted can be considered as being intermediate as it borrows elements for 
its principles from both types of model given above at the same time whilst being functional 
and structural (Ezzedine et al., 2001). In (Ezzedine et al., 2003) and (Ezzedine et al., 2005), we 
proposed an architecture ensuring separation in three functional components, which we 
called respectively: interface with the application (connected to the application), dialogue
controller and presentation (this component is directly linked to the user), figure 2.  

User

Application agents Control agents Interface agents

Application

Service

User

Application agents Control agents Interface agents

ApplicationApplication

Service

Fig. 2. Agent-based Architecture of interactive system 

These three components group together agents: 

the application agents which handle the field concepts and cannot be directly accessed by 
the user. One of their roles is to ensure the correct functioning of the application and the 
real time dispatch of the information necessary for the other agents to perform their 
task;

the control (or dialogue controller) agents which are also called mixed agents; these 
provide services for both the application and the user. They are intended to guarantee 
coherency in the exchanges emanating from the application towards the user, and vice 
versa;

the interactive agents (or interface agents, or presentation agents); unlike the application 
agents, these are in direct contact with the user (they can be seen by the user). These 
agents co-ordinate between themselves in order to intercept the user commands or 
requests, and to form a presentation which allows the user to gain an overall 
understanding of the current state of the application. In this way, a window may be 
considered as being an interactive agent in its own right; its specification describes its 
presentation and the services it has to perform. 

In the following part, we explain how the agents which make up such agent-based 
interactive systems are modeled. We focus on the interface agents.  
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3. Principles of modeling by PN of interactive systems with agent-based 
architecture 

Initially, we will point out the basic principles of the parametrized Petri nets which inspired 

our modeling approach. Then we will explain how the services of the various interface 

agents of interface can be modeled.

3.1 Parametrized Petri nets  

Parametrized Petri nets are classified amongst the high level PN. They allow the modelling 

of dynamic systems (Gracanin et al., 1994) according to the following principle: it is possible 

to link, in one parameter of these PN, a coherent set of objects or of values taken by the 

objects. This makes it possible to handle sets of objects, thus reducing the complexity of the 

representation.

A parameterized Petri net is a n-tuple: (C, D, Pp, T, I, O) where: 

C: the set of the values of the parameters; a parameter is a class of objects or values 

taken by the objects. 

D: the set of all the vectors built starting from the values. In such a network, in fact the 

vectors are produced or consumed (tokens). 

Pp: the set of the places of the network, called parameterization descriptor. 

T: the set of all the transitions from vectors representing all the actions which can be 

carried out by the system. 

I: the set of consumed tokens (input) 

O: the set of produced tokens (output) 

3.2 Modeling of interface agents according to a set of services 

The concept of an agent’s service such as it was introduced by (Maoudji et al., 2001) 

considers the service as an action which involves the agent itself or other agents. For a 

service to be started, the agent needs: 

the appearance of the trigger event

the checking of the condition in connection with the service, 

the checking of some resources which may be necessary for the establishment of the 

service.

Formally the service is defined by a quadruplet (Moldt et Wienberg, 1997), Figure 2, 
Service={E, C, R, P} where: 

E: the event which triggers the service, for example a user action or a display of an 

alarm or anomaly message coming from an application. 

C: a condition to check in order to carry out the service, such as the exceeding of a 

threshold as regards the value of one of the application’s variables, or the presence of 

any risk for the application  

R: the resources necessary for the service to be performed. 

P: the property of the service which can be internal (the resulting action affects the 

agent itself) or external (the resulting action relates to other agents); the latter will be 

interpreted as an event. 
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Fig. 2. Modeling of an agent’s service (Maoudji et al., 2001) 

3.3 Concept of PN used to model the agents of the interactive system (Agent PN)  

Taking the concept of service of an agent introduced by (Maoudji et al., 2001) as a starting 
point, we propose the modeling of the behaviour of an agent by the modeling of the set of 
its services, Figure 3. The services of each agent can be represented by external actions on  
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Fig. 3. Modeling of agent’s services with agent PN (Ezzedine et al., 2001) 
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other agents; they are then interpreted as trigger events for other agents such as e’1, e’2  and 
up to e’n, or by actions on the agents themselves such as looping on the place which is at the 
entry of their condition C. The service of an agent can be achieved by the execution of an 
internal or external action only if the condition C is true: i.e. if the place upstream of the 
condition C is marked (and thus has at least one token), and if event ei is triggered and the 
resource necessary to achieve the action is available. 
We distinguish three types of place in the PN agent which are: 
1. An agent place: which always contains the current view of the agent (result of a service). 
2. An event place: which contains an event which triggers the service. 
3. An intermediate place: which contains the events bound for another agent. 
If we model an interface with n agents and m services for each agent, we will obtain a less 
readable PN agent, because of this and in order to mitigate the problem of the complexity of 
the PN, we increase the model by the capacity to abstract the set of services of an agent in 
one single form, Figure 4. 

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal 

property

P : external 

property

E : Event

State1

State 2

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal 

property

P : external 

property

E : Event

State1

State 2

Fig. 4. Abstraction of the services of an agent. 

Formally, an agent (set of n services) is defined by a quadruplet as follows:  
Agent={E, C, R, P} where: 

E= {e1, e2,..., ei,…, en}, set of events which trigger agent services (n events for n services). 
An event is characterized by two fields: its identifier and the moment of the appearance. 
For example, an alarm may be triggered when the threshold of a variable to be 
supervised in an industrial process is exceeded (temperature too high in a chemical 
process, late bus in a transport system…).

C= {c1, c2,...,  ci, ..., cn}, set of conditions necessary for the establishment of the services. 
Each service must check a condition so that it can trigger itself off. For example: an 
event may appear following the triggering of an alarm. A condition can be made of 
several elementary conditions. It at least includes the elementary condition: presence of 
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the service trigger event. 

R= {r1, r2, ..., ri, ..., rp}, set of resources which may be necessary for the establishment of 
the services (if the services have visible actions). A resource can be made of several 
elementary resources. For example, it may be necessary to have a display screen, a 
printer or another peripheral device (possibly a sound device) in order to inform the 
user of the type of alarm message. The information contained in the fields of each 
resource relates particularly to its size, color(s) and all kinds of information contributing 
to the characteristics of the human-computer interface. 

P: Properties of the services. Each service results from the execution: 
1. either of a non visible action acN (an action which affects the agent itself): for 

example the service which deals with the displaying of a value of a process 
variable where the display service alone is involved in updating the value of 
the variable in question; we then speak about an internal property of the 
service.

2. or of a visible action acV (an action which relates to another agent); for example 
actions of the human operator which consist in writing a message with a goal 
to send it to another person, or the change of a value of a process parameter; 
we then speak about an external property of the service.

A service can have two properties at the same time: in other words, following the 
appearance of an event, an agent can act on itself (such as the service which is in charge of 
the reactualization of a value of a variable) and on another agent at the same time (for 
instance in the case of exceeding a tolerated threshold of the value of the variable); in this 
case it will be necessary to generate and display an alarm message, which is the subject of 
another service. 
An external action can relate to several agents (for instance, sending the same message to 
several agents); it will be regarded as a vector which includes the number of the action and 
the list of the identifiers of the agents concerned. If several screens of the human-machine 
interface are concerned with the same message, the agents of message acquisition, treatment 
and display each perform a different service. 

3.4 Mathematical model 

A mathematical formulation of the PN agent can be put forward, using  (Moldt et Wienberg, 
1997) as a starting point: 

An agent aj is a set Sj of n services, Sj= {s1, s2, ..., si, ..., sn}.

For each service is associated an event ei belonging to the set E of the events, E= {e1, e2,

..., ei, …, en}.

To each service, a condition ci is associated, belonging to the set C of the conditions, C= 
{c1, c2, ..., ci, ..., cn}; a condition can be composed of several elementary conditions.  

If the service comprises a visible action, a resource ri belonging to the set R of the 
resources is necessary, R= {r1, r2, ..., ri, ..., rp}. 

the set of the actions of the agent is composed of two subsets; ACV is the set of visible 
actions and ACN corresponds to the set of non visible actions. 
ACV = {acV1, acV2,…, acVP}, ACN= {acN1, acN2,…, acNq} with p  n and q  n. 

We have:
Card (E) = n, Card (C) = n, Card (R) = p, Card (ACV) = p, Card (ACN) = q. 
A service results from a minimum of one action (which can be visible in the form of a 
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display, input coming from a keyboard, a click on the mouse, speech acquisition, …, or non 
visible, for instance when there are interactions between internal agents, such as the control 
agents) and a maximum of two actions (visible and non visible). 
The number of all the services of the agent is defined by: 
Nb_Services = Card (E) = n. 
The number of all the actions of the agent is defined by:  
Nb_Actions = Card (ACV) + Card (ACN)= p + q. 
It is included in the margin: n  Nb_Actions  2×n. 
We define the result of the service with a couple of actions (ACVk, ACNt), where the indices k 
and t take the zero value if the service does not contain a visible action or a non visible 
action. The number of the couples of actions is defined by: 
Nb_Couples = Nb_Actions – Card (E) 
We will order for example the couples of actions so that the couples which contain visible 
and non visible actions are the first, then the couples which contain only visible actions are 
in second place, while those which contain only non visible actions are in last place. 
Then the services are defined by the following parameterized function (the parameter j 
being the identifier of the agent): 
Sj: Ej × Cj × Rj                   ACV × ACN.
    (ei,j; ci,j; rk,j)                    (acvk,j; acNt,j).   j = 1,…, number of agents   
                                                                     i = 1,...,n. 
                                                                     0  k  p  such as if i  p  then k=i. 
                                                                     else k=0. 
                                                                     0  t  q  such as if i  Nb_Couples then t=i 
                                                                     else 
                                                                     if i > p then t = i – p + Nb_Couples. 
                                                                     else t=0.
j: identifier of the agent 
i: number of the event 
ACV: to express that it is a Visible action. 
ACN: to express that it is a Not Visible action. 
k,t: number of the action (if the service does not result by a visible action, then k=0; if the 
service does not result by a non visible action, then t=0). 
Then the specification of an agent aj consists in the definition of the sets Ei , Ci, Rk and the 
mathematical specification of a task of an agent consists of the definition of a sequence of 
triplets (ei, ci, rk) associated with their couples of actions (acvk,j; acnt,j), by chronological order 
of appearance of the events.

4. Case study 

The case study relates to an application of supervision of a complex process. It is supposed 
that a human operator (or group of human operators) is located in a control room: he or she 
must supervise it by the intermediary of an interactive system. The human operator 
intervenes in various normal situations as well as in abnormal ones. In the abnormal 
situations, it must intervene following the arrival of disturbances, or even anticipate them 
(Stanton, 1994; Moray, 1997). It is supposed that the application relates to the supervision of 
an urban transport network (such as tramways, buses...). 
The architecture suggested for the interactive system consists of three modules: Application,



Petri Net: Theory and Applications 140

Control and Presentation (figure 5). Each module is composed of agents interacting between 
themselves and/or with the agents of other modules. Let us recall that an agent (set of n 
services) is defined by a quadruplet as follows: 
Agent={E, C, R, P}.  
It is the presentation module (composed of interactive agents) which we will model 
according to the following scenario of disturbance:  
1. An event e1 comes from a dialogue controller agent, following a disturbance in the 

application. 
2. There is Ac8 action of agent a1 (a request for service of the agent a1 to the agent a2),

following an analysis of the condition c1 for the execution of the action a1; this Ac8

action in its turn becomes the event release e5 for the agent a2 (for example for the 
display of a message). 

3. Agent a2 carries out the Ac3 action which consists in presenting the message to the user 
if the resource "Window" is available. 

4. The event e3 occurs; it represents the reaction of the user, following the display of the 
message. It consists of an input of a text with the keyboard or an acknowledgement of 
the message with the keyboard or the mouse. 

5. The agent a3 carries out the Ac5 action following an event trigger e3 which can be a 
return of an acknowledgement message or the validation of an action provided that c3 is 
checked and that the display resource is available. 

UserApplication

Application agents Control agents Interface agents

UserUserApplicationApplication

Application agents Control agents Interface agents

Fig. 5. Global view of the agent-based architecture, with arrival of a disturbance (Rehim, 
2005).

While reformulating more formally, using (Moldt & Wienberg, 1997) as a source of 
inspiration, the presentation module can be defined by the following elements (figure 6): 
A= {a1, a2, a3}: set of the presentation agents (in the example of figure 6, all three of them are 
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visible to the user). 
E= {e1,1; e1,2; e1,3, e2,3,; e2,1; e2,2; e3,1; e3,2}: set of events coming (1) from the agents of the 
interface with the application module (via the dialogue controller agents which send e1,1  and 
e1,2 events to the presentation module), such as alerts, dysfunctional events, incidents, and 
so on (2) from user actions such as: commands or confirmations (e1,3; e2,3), (3) from non 
visible actions  which become events for other agents (e2,1; e2,2; e3,1; e3,2).
AC= { acv1,1; acv2,1; acv1,2; acv2,2; acN1,1; acN1,2; acN1,3; acN2,3; acN3,3}: set of agent actions; these 
actions can be visible (acv1,1; acv2,1; acv1,2; acv2,2; acv1,3), such as the display of information on a 
screen, or non visible (acN1,1; acN1,2; acN1,3; acN2,3; acN3,3), such as a request for service to other 
agents.
R= {r1,1; r2,1; r1,2; r2,2; r1,3 }: set of resources (such as keyboard, mouse, windows…) necessary 
for the visible actions of the agents, in order to carry out their actions (r1,1 is related to acv1,1,
r2,1 is related to acv2,1 , and so on). 
C= {cv1,1; cv2,1; cv1,2; cv2,2; cN1,1; cN1,2; cN1,3; cN2,3; cN3,3}: set of conditions related to the execution of 
the visible or non visible actions (cv1,1 is related to acv1,1, cv2,1 is related to acv2,1, and so on). 
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acv1,1

acv1,2

e2,3
acN3,3

e1,2

e1,1 acN1,1 =e2,2
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Fig. 6. Reformulated example related to the disturbance (presentation module)  

For a better representation of the example visible in figure 6, one associates an agent 

identifier i,j with all the information present in the example; i is the event, action or 

necessary resource number;  j is the agent number (from 1 to N). The possible couples 

constituted with visible (acvi,j) and non visible (acNi,j) actions are obtained following the 

appearance of an ei ,j event, under the conditions that ci,j is true and the ri,j resource is 

available. The modeling of services of each of the three agents forming the presentation 

module can be expressed as follows, with r0,j: resource not necessary for the execution of the 

non visible action (acN0,j) by an agent j, and with acv0,j and aN0,j: visible and non visible 

actions which are not performed by the agent j.

Agent1:
E1 = {e1,1; e2,1; e3,1}
Acv1 = {acv1,1; acv2,1}, AcN1 = {acN1,1},
R = {r1,1; r2,1},
C = {cv1,1; cv2,1; cN1,1}.
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Card (E1) = 3, Card (Acv1) = 2, Card (AcN1) = 1. 
Nb_Actions = Card (Acv1) + Card (AcN1) = 2+1=3. 
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0. 
S1: E1 × C1 × R1                    Acv1 × AcN1

       (e1,1; cv1,1; r1,1)                   (acv1,1; acN1,1)
       (e2,1; cv2,1; r2,1)                    (acv2,1; acN1,1)
       (e3,1; cN1,1; r0,1)                    (acv0,1; acN1,1)

Agent2:
E2 = {e1,2; e2,2; e3,2},
Acv2  ={acv1,2; acv2,2}, AcN2 ={acN1,2},
R2 = {r1,2; r2,2},
C2 = {cv1,2; cv2,2; cN1,2}.

Card (E2) = 3, Card (Acv2) = 2, Card (AcN2) = 1. 
Nb_Actions = Card (Acv2) + Card (AcN2) = 2+1=3. 
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0. 
S2: E2 × C2 × R2                      Acv2 × AcN2

       (e1, 2; cv1, 2; r1, 2)                 (acv1, 2; acN1, 2)
       (e2, 2; cv2, 2; r2, 2)                 (acv2,2; acN1, 2)
       (e3,2; cN1, 2; r0, 2)                  (acv0, 2; acN1, 2)

Agent3:
E3 = {e1,3; e2, 3 },  
Acv3  ={acv1, 3}, AcN3 ={acN1, 3; acN2, 3; aN3,3},
R3 = {r1, 3},
C3 = {cv1, 3; cN1, 3; cN2, 3; cN3,3}. 

Card (E3) = 2, Card (Acv3) = 1, Card (AcN3) = 3. 
Nb_Actions = Card (Acv3) + Card (AcN3) = 1+3=4. 
Nb_Couples = Nb_Actions – Nb_Services = 4 – 4 = 0.
S3: E3 × C3 × R3                      Acv3 × AcN3

       (e1, 3; cv1, 3; r1, 3)                 (acv1, 3; acN1, 3)
       (e2, 3; cN2, 3; r0, 3)                  (acv0, 3; acN2, 3)
       (e3, 3; c N3, 3; r0, 3)                  (acv0, 3; acN3, 3)
From the mathematical modeling above, which made it possible to formulate the 

interactions of the agents in figure 6, each agent is modeled with the determination of its 

inputs and outputs in terms of condition, action, event and resource necessary to achieve the 

service. In figure 7, we present a model of interaction between the agents of the presentation

module of the human-machine interface. 

Figure 8 shows an example of release of the service s7,1 “Change_Delay_Threshold_Vehicle” 

of the agent called Traffic_State belonging to the presentation module of the human-machine 

interface. Following the appearance of the event e7,1 “Delay_Threshold_Vehicle” the 

interface agent Vehicle checks the corresponding condition c7,1 “Appearance of the event and 

delay > 5”. If the condition is verified, the service is started; the visible action acv7,1 is 

activated. The activation of this action exploits the resource r7,1 “Dialog_Box” and reveals an 

alarm message bound for the human operator. 
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Fig. 7. Modeling of the example related to the disturbance (Rehim, 2005) 

We notice, with the example presented above (figure 8), that there is no non visible action 

(acN0,1) of agent 1 in transition T1, i.e. that there is no interaction with other internal agents; 

but on the other hand, thanks to the visible action acv7,1, agent 1 acts on an external agent 

which is the window n°2 belonging to the presentation module of the interactive system. 
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Fig. 8. Example of release of a service of the Traffic_State agent (Trabelsi, 2006) 

4. Conclusion 

Through their formal aspect and their capacity to model the dynamics of systems, Petri Nets 

have been bringing complementary and significant contributions in the human-computer 

interaction domain since the end of the Eighties. In this chapter, we have explained 

their utility for the modeling of agents which make up interactive systems with an 

architecture containing agents. A scenario made it possible to illustrate the approach 

proposed. 

The PN used represent a promising tool for the modeling of such interactive systems. 

Their originality and their power reside in (1) their capacity to visualize the behavior of 

each agent (external or internal actions), as well as (2) their capacity of abstraction 

which makes it possible to keep the same information without any visual complexity, 

and (3) their formal aspect also enables them to be potentially efficient at the time of the 

evaluation and validation phase (which is not dealt with in this article). 

There are several perspectives with this work. We are currently studying and 

developing an assistance tool for the evaluation of interactive systems. This tool makes 

it possible to connect to each interface agent, evaluation agents intended to analyze 

their behavior at the time of situations of use. The PN must make it possible to 
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reconstitute the human activities performed (Trabelsi, 2006; Tran et al., 2007). A second 

perspective relates to generalization with the agents of the two other modules: (1) 

interface with the application, (2) dialogue controller. Another perspective relates to the 

evaluation of the approach suggested in various application domains (for instance 

design and evaluation web sites).
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