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1. Introduction 

Hybrid dynamic systems (HDSs) are currently attracting a lot of attention. The behavior of 

interest of these systems is determined by the interaction of a continuous and a discrete 

event dynamics. The hybrid character of a system can owe either to the system itself or to a 

discrete controller applied to a continuous system. Several works have been devoted to the 

modeling of HDSs. These topics were tackled from three different angles. The first kind of 

models are tools initially conceived for continuous systems that were adapted to be able to 

deal with switched systems. This approach consists of integrating the event aspect within a 

continuous formalism. Introducing commutation elements in the Bond-graph formalism is 

an example of this approach. The second kind of models is discrete event systems tools that 

were extended for HDSs modeling. In this approach, a continuous aspect is integrated in 

discrete event formalism. An example of such formalism is hybrid Petri nets. The last kind 

of formalisms are hybrid models, they combine explicitly a discrete event model and a 

continuous model. The most known model of this category is hybrid automata (HA). This 

model presents a lot of advantages. The most important is that it combines, explicitly, the 

basic model of continuous systems, which are differential equations, with the basic model of 

discrete event systems, which are finite state automata, which facilitate considerably its 

analysis. The existence of automatic tools for some classes of HA reachability analysis, such 

as HyTech1 confer to this formalism a great analysis power. Most verification and controller 

synthesis techniques use HA as the investigation tool. This makes that the analysis of 

several hybrid systems formalisms is made after their translation in HA. 

In this chapter, we consider the extension of PN formalism, initially a model for discrete 

event systems, so that it can be used for modeling and control of HDS. The systems studied 

correspond to discrete event behaviors with simple continuous dynamics. PNs were 

introduced, and are still used, for discrete event systems description and analysis (Murata, 

1989). Currently, much effort is devoted to adapting this formalism so that it can deal with 

                                                 

 
1 HyTech: http://www-cad.eecs.berkeley.edu/_tah/HyTech/ 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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HDSs, and many hybrid PN formalisms were conceived (Demongodin et al 1993; 

Demongodin & Koussoulas, 1998). 

The first steps in this direction were taken by David & Alla (1987), by introducing the first 

continuous PN model. Continuous PNs can be used either to describe continuous flow 

systems or to provide a continuous approximation of discrete event systems behavior, in 

order to reduce the computing time. The marking is no longer given as a vector of integers, 

but as a real number vector. Thus, during a transition firing, an infinitesimal quantity of 

marking is taken from upstream places and put in the downstream places. This involves 

that transition firing is no longer an instantaneous operation but is now a continuous 

process characterized by a speed. This speed can be compared to a flow rate. All continuous 

PN models defined in the literature differ only in the manner of calculating instantaneous 

firing speeds of transitions. 

From continuous PNs, the hybrid PN formalism was defined by David & Alla (2001), and 

since it is the first hybrid formalism to be defined from PNs, the authors, simply, gave it the 

name of hybrid PN. This formalism combines in the same model a continuous PN, which 

represents the continuous flow, and a discrete T-timed PN (Ramchandani, 1974), to 

represent the discrete behavior.  

We consider in this chapter the extensions of the PN formalism in the direction of hybrid 

modeling. Section 2 briefly presents hybrid dynamic systems. Section 3 presents the hybrid 

automata model. In section 4 we discuss continuous Petri nets. These models are obtained 

from discrete PNs by the fluidification of the markings. They constitute the first steps in the 

extension of PNs toward hybrid modeling. Then, Section 5 presents two hybrid PN models, 

which differ in the class of HDS they can deal with. The first one is used for deterministic 

HDS modeling, whereas the second one can deal with HDS with nondeterministic behavior. 

Section 6 addresses briefly the general control structure based on hybrid PNs. Finally, 

Section 7 gives a conclusion and the main future research. 

2. Hybrid dynamic systems 

A dynamic system is especially characterized by the nature of its state variables. The latter 

can be of two kinds: 

• Continuous state variables are variables defined on a real interval. Time, temperature, 

pressure, liquid level in a tank…, are examples of continuous variables. 

• Discrete variables take their values in a countable set such as natural numbers or 

Boolean numbers. The state of a valve, the number of parts in a stock, are examples of 

discrete variables 

Figure 1 illustrates the difference between the evolutions of a continuous and a discrete 
variable as a function of time. 
According to the kind of state variables, we can classify the dynamic systems in three 

categories: continuous systems are systems which exclusively require continuous state 

variables for their modeling. Discrete event dynamic systems are systems whose modeling  

requires only discrete state variables. And finally hybrid dynamic systems which are 

modelled at the same time by continuous state variables and discrete state variables. 
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Fig. 1. –a- X is a continuous variable, it takes its values in the real interval [X0 X1]. –b- Y is a 
discrete variable which takes its values in the countable set {y1, y2, y3, y4, y5, y6} 

2.1 Continuous dynamic systems 

Chronologically, continuous dynamic systems were the first to be studied. They treat 
continuous values, like temperature, pressure, flow… etc. The modeling  of the dynamic 
evolution of these systems as a function of time is represented mathematically with 
continuous models such as: recurrent equations, transfer function, state equations … etc, but 
the model which is generally used are differential equations of the form: 

 )x(f=x&  (1) 

Where X is a vector representing the state of the system. The behavior of a continuous 

system is characterized by the solution of the differential equation )x(f=x&  starting from 

an initial state x0. 
A continuous dynamic system is said to be linear if it is modelled by a differential equation 
of the form. 

 x.A=x&  (2) 

Where A is a constant matrix. 

2.2 Discrete event dynamic systems 

A discrete events system is described by discrete state variables, which take their values in a 
countable set. This kind of systems could be either autonomous (not timed) or timed. In the 
case of an autonomous discrete event system, the variable time is just symbolic, i.e. it is just 
used to define a chronology between the occurrences of events. In the case of a timed 
discrete event system, time is explicitly used to define the date of events occurrence. It can 
be either continuous (dense) or discrete. In the first case, to each event is attached the 

moment of its occurrence which takes its values in ℜ, the set of real numbers. In the second 
case of timed discrete event systems time is only defined on a discrete set. The execution of a 
sequence of instructions on a processor belongs to this last category, since the executions 
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may take place only with signals of the processor clock. A discrete event system can be 
modeled by automata, Petri nets, Markov chains, (max, +) algebra … etc. 

2.3 Hybrid dynamic systems 

For a long time the automatic separately treated the continuous systems and the discrete 
event systems. For each one of these two classes of systems exist a theory, methods and tools 
to solve problems which arise for them. However, the boundaries between the world of 
continuous systems and that of discrete event systems, are not so clear, the majority of real 
life systems present at the same time continuous and discrete aspects. Indeed, the majority 
of the physical systems cannot be classified in one of the two homogeneous categories of the 
dynamic systems; and state variables of interest may contain simultaneously discrete and 
continuous variables. In this case the systems are known as hybrid dynamic systems, they 
are heterogeneous systems characterized by the interaction of a discrete dynamics and a 
continuous dynamics. The rise of these systems is relatively new, it dates from the 1990s. 
Figure 2 illustrates the structure of a hybrid dynamic system. 
 

 
Fig. 2. Structure of a hybrid dynamic system 

Research on hybrid dynamic systems is articulated around three complementary axes 
(Branicky et al. 1994; Petterson & Lennartson, 1995): Modeling  relates to the formalization of 
precise models that can describe their rich and complex behavior. Analysis consists in 
developing tools for their simulation, validation and verification. Control consists in the 
synthesizing of a discrete (or hybrid) controller on the terms of the performance objectives. 
In the sequel, we are interested in a particular class of hybrid dynamic systems; it is the class 
of continuous flows systems supervised by discrete events systems. This class comprises 
positive and linear per pieces hybrid systems. A hybrid system is said to be positive if its 
state variables take positive values in time. And it is said to be linear per pieces if the 
differential equations describing its continuous evolution are all linear. The particular 
interest given to the study of this class of systems has two principal reasons. First, it is 
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sufficiently rich to allow a realistic modeling  of many problems. Then, its relative simplicity 
allows an easy design of tools and models for its description and its analysis. Examples of 
this class of hybrid systems are given below. 

2.4 Illustrative examples  

As previously mentioned, a system is said to be hybrid if it implies continuous processes 
and discrete phenomena. By extension, we can state that physical systems whose certain 
components vary very quickly (quasi–instantaneously) compared to the others, are also 
hybrid. A hybrid modeling  for this category of physical systems is possible and gives often 
good results compared to a discrete modeling . We will present two examples of hybrid 
systems here, the first is a system of tanks implying a (continuous) flow of liquid and the 
second is a manufacturing system treating a flow of products (discrete dynamics 
approached by a continuous description). 
Example 1: Figure 3 represents a system of tanks. It comprises two tanks which are emptied 
permanently (except if they are empty) with a flow of 5 and 7 litres/second respectively. 
The tanks are also supplied in turn, with a valve whose flow is 12 litres/second. The latter 
has two positions, when it is in position A, it feeds tank 1 and it supplies tank 2 if it is in 
position B. To commutate between positions A and B the valve needs 0.5 seconds, during 
which, the valve behaves as if it is in its precedent position. 

 
Fig. 3. System of tanks 

Example 2: Figure 4 represents a manufacturing system comprising 3 machines and 2 
buffers. This system is used to satisfy a periodic request, with a period of 20 time units. 
Machines 1 and 2 remain permanently operational, while machine 3 can be stopped for the 
regulation of manufacturing rate. The actions of stopping and starting machine 3 take 0.5 
time units. The machines have manufacturing rates of 10, 7, and 22 parts/time units, 

d3 = 7 

A B

d1 = 12

d2 = 5 
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respectively. In this system the flow of parts is supposed to be a continuous process, while 
the state of machine 3 as well as the state of the request is discrete variables.  
 

 
Fig. 4. Manufacturing system  

3. Hybrid automata  

To integrate the discrete and continuous aspects within the same model, three approaches 
were presented in the literature. They depend on the dominant model, i.e. the model from 
which the extension was carried out. We distinguish: 

• The continuous approach which consists in integrating the discrete aspect within a 
continuous formalism. It is an extension of formalisms of continuous systems. 

• The discrete approach which consists in integrating the continuous aspect within a 
discrete events model. The integration of the continuous aspect within the Petri nets 
model is an example of this approach. 

• The hybrid approach which explicitly combines a continuous model and a discrete 
event model in the same structure. The hybrid aspect is dealt with in the interface 
between the two parts. An example of such formalisms is hybrid automata that we will 
present below. 

Hybrid automata were introduced by Alur et al. (1995) as an extension of finite automata, 
which associate a continuous dynamics with each location. It is the most general model in 
the sense that it can model the largest continuous dynamics variety. A HA is defined as 
follows. 
Definition 1 (Hybrid Automata): An n-dimensional HA is a structure HA = (Q, X, L, T, F, 
Inv) such that: 
1. Q is a finite set of discrete locations; 

2. X ⊆ Rn is the continuous state space; it is a finite set of real-valued variables; A 

valuation v for the variables is a function that assigns a real-value v(x) ∈ R to each 
variable   

x ∈ X; V denotes the set of valuations; 
3. L is a finite set of synchronization labels; 
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4. ├ is a finite set of transitions; Each transition is a quintuple T = (q, a, μ, ┛, q’) such that: 

• q ∈ Q is the source location; 

• a ∈ L is a synchronization label associated to the transition; 

• μ is the transition guard, it is a predicate on variables values; a transition can 
be taken whenever its guard is satisfied; 

• ┛ is a reset function that is applied when taking the corresponding transition; 

• q’ ∈ Q is the target location; 
5. F is a function that assigns to each location a continuous vector field on X; While in 

discrete location q, the evolution of the continuous variables by the differential equation 

 )x(f=x q&  (3) 

This equation defines the dynamics of the location q; 
6. Inv is a function that affects to each location q a predicate Inv (q) that must be satisfied 

by the continuous variables in order to stay in the location q; 
A state of a HA is a pair (q, v) consisting of a location q and a valuation v.  
This model present a lot of advantages: It combines, explicitly, the basic model of 
continuous systems, which are differential equations, with the basic model of discrete event 
systems, which are finite state automata, this facilitate considerably its analysis; It can model 
the largest variety of HDSs; It has a clear graphical representation; indeed, the discrete and 
continuous parts are well identified; The existence of automatic tools for HA reachability 
analysis, such as HyTech, CMC2, UPPAAL3 and KRONOS4, confer on this formalism a great 
analysis power. Most verification and controller synthesis techniques use HA as the 
investigation tool. Several problems, related to analysis of HA properties, could be 
expressed as a reachability problem. Note that this problem is generally undecidable unless 
strong restrictions are added to the basic model, to obtain special sub-classes of HA 
(Henzinger et al. 1995). The existence of computer tools allowing the analysis of the 
reachability problem for some classes of HA makes that the analysis of several hybrid 
systems formalisms is made after their translation in HA (Cassez and Roux, 2003; Lime and 
Roux 2003). 

4. Continuous Petri nets  

Continuous Petri nets were introduced by David and Alla, (1987) as an extension of 

traditional Petri nets where the marking is fluid. A transition firing is a continuous process 

and consequently the state equation is a differential equation. A continuous PN allows, 

certainly, the description of positive continuous systems, but it is also used to approximate 

modeling of discrete event systems (DES). The main advantage of this approximation is that 

the number of events occurring is considerably smaller than for the corresponding discrete 

PN. Moreover, the analysis of a continuous PN does not require an exhaustive enumeration 

of the discrete state space. 

                                                 

 
2 CMC: http ://www.lsv.ens-cachan.fr/_fl/cmcweb.html/ 
3 UPPAAL : http ://www.uppaal.com/ 
4 KRONOS: http ://www-verimag.imag.fr/TEMPORISE/kronos/ 
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As for classical (discrete) Petri nets. We can define two types of continuous Petri nets, 
namely: autonomous continuous Petri nets and non-autonomous continuous Petri nets. 
An autonomous continuous PN allows a qualitative description of continuous dynamic 
systems, it is defined as follows: 
Definition 2 (autonomous continuous Petri Net): An autonomous continuous Petri net 
is a structure PN = (P, T, Pre, Post, M0) such that: 
1. P = {P1, P2, …, Pm} is a nonempty finite set of m places ; 
2. T = {T1, T2, …, Tn} is a nonempty finite set of n transitions ; 
3. Pre : P x T → R + is the pre-incidence function that associates a positive rational 

weight for each arc (Tj, Pi) ; 
4. Post : P x T → R + is the post-incidence function that associates a positive rational 

weight for each arc (Pi, Tj) ; 
5. M0 : P → R + in the initial marking ; 
The following notations will be considered in the sequel: 
°TJ is the set of input places of the transition TJ. 
T°J is the set of output places of the transition TJ. 
As in a classical PN, the state of a continuous PN is given by its marking; however, the 
number of continuous PN reachable markings is infinite. That brought David and Alla 
(2004) to group several markings into a macro-marking. The notion of macro-marking is 
defined as follows: 
Definition 3 (macro-marking): Let PN be an autonomous continuous PN and Mk its 
marking at time k. Mk may divide P (the set of places) into two subsets:  
1. P+(Mk) : The set of places with positive marking ; 
2. P0(Mk) : The set of places whose marking is null ; 
A Macro-marking is the set of all markings which have the same subsets P + and P0. A 
macro-marking can be characterized by a Boolean vector as follows: 
V :  P → {0, 1} 

 Pi → 
⎪⎩

⎪
⎨
⎧

∈
∈ +

0
0

1

PPsi

PPsi

i

i
 

The concept of macro-marking was defined as a tool that permits to represent in a finite 
way, the infinite set of states (markings) reachable by a continuous PN. The number of 
reachable macro–marking of an n–place continuous PN is less than or equal to 2n, even 
if the continuous PN is unbounded, since each macro marking is based on a Boolean 
state. A macro–marking is denoted m*j  
Example 3: Let us consider again the hydraulic system of example 1, and consider that 
the supplying valve is in position A. In this position only the tank 1 is supplied, it is 
also emptied. While tank 2 is only emptied. The levels of liquid in tanks 1 and tanks 2 
are, initially, of H1 and H2 respectively.  
The continuous PN shown in Figure 5(b) describes the behavior of the system of tanks. 
Note that the numerical values of the valves flows cannot be represented in an 
autonomous CPN. The continuous transitions, T1, T2, and T3 represent only a positive 
flow for the three valves. Places and transitions of the continuous PN are represented 
with double line to distinguish them from places and transitions of a discrete PN. The 
firing of transitions T1, T2 and T3 represents material flow through the valves. The 
marking of places P1 and P2 represents quantities of liquid in tank 1 and tank 2 
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respectively. Figure 5(c) represents the reachability graph; it contains all macro-marking 
reachable by the continuous PN.  
 

 
Fig. 5. a) System of tanks, b) Continuous PN describing the system of tanks, c) Reachability 
graph for the continuous PN 

From the basic definition of autonomous continuous PNs, several researchers have defined 
several timed continuous PNs formalisms. Among these formalisms, we will present the 
first model to be defined which is always the most studied model, which is constant speed 
continuous Petri nets. It is defined as follows: 
Definition 4 (Constant speed continuous Petri nets): A constant speed continuous Petri net 
is a structure PNC = (PN, V) such that: 

– PN is an autonomous continuous PN. 
– V :  T → R+ 

Tj → Vj 
is a function that associates to each transition Tj its maximal firing speed Vj. 

In a CCPN, a place marking is a real number that evolves according to transitions 
instantaneous firing speeds. An instantaneous firing speed vj(t) of a continuous transition Tj 
can be seen as the flow of markings that crosses this transition. It lies between 0 and Vj for 
the transition Tj. The concept of validation of a continuous transition is different from the 
traditional concept met in discrete PNs. We consider that a transition of a CCPN can have 
two states: 
1. The state strongly enabled, if 

∀ Pi ∈ °Tj, Pi ∈ P+ 

Here, the transition Tj is fired at its maximal firing speed Vj; 
2. The state weakly enabled, if 
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∃ Pi ∈ °Tj, Pi ∈ P0  

In this case, the transition Tj is fired at a speed vj lower than its maximum firing speed. 
The state equation in a CCPN is as follows: 

 )t(v.W=m&  (4) 

Where W is the PN incidence matrix. This implies that the evolution in time of the state of a 
CCPN is given by the resolution of the differential equation (4), knowing the instantaneous 
firing speed vector. The evolution of a CCPN in time is given by a graph whose nodes 
represent instantaneous firing speed vectors. Each node is called a phase. In addition, each 
transition is labeled with the event indicating the place whose marking becomes nil and 
causes the changing of the speed state. The duration of a phase is also indicated. For more 
details, see (David and Alla, 2004). 
Example 4: Let us consider again the system of tanks, where we associate to each valve its 
flow rate (figure 6 (a). Moreover, we consider that tank 1 and tank 2 contain initially 70 litres 
and 36.4 litres respectively. This system is described with the CCPN in Figure 6 (b). The only 
difference between this model and the autonomous continuous PN in Figure 5 (b) is that 
with each transition is associated a maximal firing speed.  
Since all the places are initially marked, all the instantaneous firing speeds are equal to their 
maximal value. The marking balance for each place is given by the input flow minus the 
output flow; then: 

At initial time t = 0, v1 = 12, v2 = 7, v3 = 3, then 1m& = 7 and 2m& = −7. 

Markings m1 and m2 evolve initially according to the following equations, respectively: 
m1 = 70 + 7.t  
m2 = 36.4 – 7.t 
At time t = 5.2 the marking m2 becomes nil, which defines a new dynamics for the system, as 
follows: 

v1 = 12, v2 = 5, v3 = 7, then 1m& = 7 and 2m& = 0. 

And after time 5.2, m1 = 106.4 + 7.t and m2 = 0 
This last dynamics is a stationary behavior for the modelled system.  
The curves in Figure 7(a) and 7(b) schematize marking m1 and m2 dynamics. These plots are 
made with the software SIRPHYCO5. This tool permits the simulation of discrete, 
continuous and hybrid PNs. The evolution of this model in time can be described thanks to 
the evolution graph in Fig. 6-c-. It can be noticed that the marking of place P1 is unbounded 
while the number of nodes is finite and equal to 2. 

5. Hybrid Petri nets 

Continuous PNs are used for modeling  continuous flow systems; however, this model does 

not allow logical conditions or discrete behavior modeling  (e.g. a valve may be open or 

closed). For permitting modeling  of discrete states, hybrid PNs were defined (David and 

Alla, 2001). In a hybrid PN, the firing of a continuous transition describes the material flow, 

                                                 

 
5
 SIRPHYCO: http://www.lag.ensieg.inpg.fr/sirphyco/ 
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while the firing of a discrete transition models the occurrence of an event that can, for 

example, change firing speeds of the continuous transitions. 

We find in the literature several types of continuous PN (David and Alla, 2004) and several 

types of discrete PN integrating time (Ramchandani, 1974; Merlin, 1974). In the autonomous 

hybrid model definition, there are no constraints on discrete and continuous part types. The 

most used, which is also the first formalism to be defined, is simply called the hybrid Petri 

net. It combines a CCPN and a T - timed PN. The combination of these two models confers 

to the hybrid model a deterministic behavior. It is used for the performance evaluation of 

hybrid systems. 

D-elementary hybrid PNs are another type of hybrid PN formalism. They combine a time 

PN and a constant speed continuous PN (CCPN) (David and Alla 1987). Time PNs are 

obtained from Petri nets by associating a temporal interval with each transition. They are 

used as an analysis tool for time dependent systems. 
 

 
 

Fig. 6. a) System of tanks, b) Constant speed continuous PN describing the system of tanks, 
c) the evolution graph for the constant speed continuous PN 

However, hybrid PNs were defined before D-elementary hybrid PNs. In order to simplify 

the presentation, we will start by defining D-elementary hybrid PNs. 
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5.1 D-elementary hybrid Petri nets 

Definition 5 (D-elementary hybrid PNs): A D–elementary hybrid PN is a structure PNH = 
(P, T, Pre, Post, h, S, V, M0) such that: 
1. P = {P1, P2, …, Pm} is a finite set of m places; 
2. T = {T1, T2,…, Tn} is a finite set of n transitions; 

We denote PD = {P1, P2,…, Pm’} the set of m’ discrete places (denoted by D–places and 

drawn as simple circles) and TD {T1, T2,…,Tn’} the set of the n’ discrete transitions 

(denoted by D–transitions and drawn as black boxes). PC = P – PD and TC = T – TD 

denote respectively the sets of continuous places (denoted by C–places and drawn with 

double circles) and continuous transitions (denoted by C–transitions and drawn as 

empty boxes). 

1. Pre : P x T → N and Post : P x T → N are the backward and forward incidence 
mappings. These mapping are such that:  

∀ (Pi, Tj) ∈ PC x TD, Pre (Pi, Tj) = Post (Pi, Tj) = 0; 

And: ∀ (Pi, Tj) ∈ PD x TC, Pre (Pi, Tj) = Post (Pi, Tj); 

This means that no arcs connect C–places to D–transitions, and if an arc connects a 
D–place Pi to a C–transition Tj, the arc connecting Tj to Pi must exist. This appears 
graphically as loops connecting D–places to C–transitions. 
These two conditions mean that, in a D–elementary hybrid PN, only the discrete 
part may influence the continuous part behavior, the opposite never occurs (the 
continuous part has no influence on the discrete part). 

2. h: P∪T→{C, D} defines the set of continuous nodes, (h (x) = C) and discrete nodes, 
(h (x) = D). 

3. S: TD → R+ x (R+ ∪ {∞}) associates to each D–transition Tj its firing interval [αj, βj]. 

4. V: TC → R+ associates a maximal firing speed Vj to each C-transition Tj. 
5. M0 is the initial marking; C–places contain non-negative real values, while D–places 

contain non-negative integer values. 
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Fig.7. Temporal evolution of the marking of the PN in Fig. 6-b- 

Example 5: Consider the system of tanks and suppose that valves 1 may be into the two 
positions A and B. The passage from position A to position B takes 0.5 seconds, but the 
commutation decision can be delayed indefinitely for the design of a control. This is 

why the time interval [0.5 ∞] is associated with the discrete transition T1. On the other 
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hand, the passage from position B to position A takes place after exactly 10 seconds 
from the last commutation (A→B). This is why the time interval [10, 10] is associated 
with the discrete transition T2. The D-elementary hybrid PN in Figure 8 describes this 
hybrid system. 
As a D-elementary hybrid PN combines a discrete and a continuous PN, its state at time 
t is given by the states of the two models. The strong coupling of these models makes it 
complex to analyze the hybrid model. Translating it into a hybrid automaton permits 
the use of tools and techniques developed for HA analysis. Ghomri et al. (2005) 
developed an algorithm permitting translation of a D-elementary hybrid PN into a HA. 
In the sequel, we briefly present this algorithm. 
 

 
Fig.8. D-elementary hybrid Petri net describing the system if tanks 

5.2 Translating D-elementary hybrid Petri nets into hybrid automata 

It is, generally, very complex to translate a hybrid PN into a hybrid automaton because 
of the strong coupling between discrete and continuous dynamics. D-elementary hybrid 
PNs represent only a class of hybrid PNs, which permits modeling  of frequently met 
actual systems: i.e. the class of continuous flow systems controlled by a discrete event 
system. The translation algorithm consists in separating the discrete and the continuous 
parts. Then, the translation into an automaton is performed in a hierarchical way. The 
algorithm is based on three steps as follows: 
1. Isolate the discrete PN of the hybrid model and construct its equivalent timed 

automaton. Locations of the resulting timed automaton are said macro-locations.  
2. Construct the hybrid automaton corresponding to each macro-location of the timed 

automaton resulting from the previous step. 
3. Replace transitions between macro-locations by transitions between internal 

locations. 
We detail these three steps through the following example. 
Example 6: Consider the D-elementary HPN in Figure 8. Its discrete part is set again in 
Figure 9(a). The timed automaton corresponding to this time PN is represented in 
Figure 9(b). 
To each location of the timed automaton, corresponds a marking of the time PN, and 
therefore a configuration of the CCPN. For instance, if P1 is unmarked, T3 may be 
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eliminated from the CCPN in figure 8. The location S2, for example, corresponds to the 
time PN marking vector [m1 m2]T = [0 1]T, for which the continuous part is reduced to 
CCPN in Figure 10(a). This CCPN may be translated into the HA in Figure 10(b). 
 

 
Fig.9. time Petri net and its equivalent time automaton 

After the second step of the translation algorithm, we obtain a hierarchical form of a HA, 
formed from macro-locations each containing a HA describing the continuous dynamics in 
it. A generic representation of the model resulting after step 2 of the algorithm is given in 
Figure 11. 
 

 
Fig.10. Constant speed continuous Petri net and its equivalent hybrid automaton 

The location number of the resulting hybrid automaton depends on two parameters: (i) the 
location number of the TA describing the discrete part behavior, denoted as n; (ii) the 
continuous place number of the continuous part, denoted as m. The first parameter n is 
finite for a bounded time PN; although the propriety of boundedness is undecidable for a 
time PN, there exist restrictive sufficient conditions for its verification (Berthomieu and Diaz 
1991). This first parameter defines the macro-location number. The second parameter m 
defines the number of locations inside a macro-location. As mentioned before, we can 
always model the behavior of a continuous PN by a HA with a finite number of locations, 
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even if the continuous PN is unbounded; this number is least or equal to 2m. We have 
therefore a resulting HA that contains at the most (n.2m) locations. This is an important 
result since it is generally impossible to bound a priori the number of reachable states in a 
hybrid PN. 
 

 
Fig.11. Generic schematization of model resulting from the second step of the algorithm 

5.3 Hybrid Petri nets 

A hybrid PN is distinguished from a D-elementary hybrid PN by the fact that the former 
contains a T-timed PN for modeling  the discrete part—timed fixed values are associated 
with each transition—whereas the latter model contains a T-timed PN. 
Definition 6 (hybrid Petri Net): A hybrid PN is a structure PNH = (P, T, Pre, Post, h, S, V, 
M0) such that : 

1. P = {P1, P2, …, Pm} is a finite set of m places. P = PD ∪ PC; 

2. T = {T1, T2,…, Tn} is a finite set of n transitions. T = TD ∪ TC; 

3. Pre : P x T → N and Post : P x T → N are the backward and forward incidence 
mappings. 

These mapping are such that:  

∀ (Pi, Tj) ∈ PD x TC, Pre (Pi, Tj) = Post (Pi, Tj); 

1. h : P∪T→{C, D} defines the set of continuous nodes, (h (x) = C) and discrete nodes, (h 
(x) = D). 

2. S : TD → Q+ associates to each D-transition Tj a duration dj. 

3. V : TC → R+ associates a maximal firing speed Vj to each C-transition Tj. 
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4. M0 is the initial marking. 
The condition on backward and forward incidence mappings means that, if an arc connects 
a D-place Pi to a C-transition Tj , the arc connecting Tj to Pi must exist. And vice versa. This 
appears graphically as loops connecting D-places to C-transitions. It means that a discrete 
token cannot be split by a continuous transition. The hybrid PN model, as defined below, 
allows modeling  of the logical conditions, but it allows also the modeling  of the 
transformation of a continuous flow into discrete parts and vice versa. 
Example 7: Let us consider again the system tanks, and suppose that we have the following 
control strategy: we want to keep the liquid levels in tank 1 at least than a fixed level Hmax. 
The hybrid PN in Figure 12 describes a system that satisfies this specification on the level in 
tanks.  
 

 
Fig.12. Hybrid Petri net describing the system of tanks with a restriction on its marking. 

The weights (Hmax – 3.5) associated with the arcs correspond to the minimal thresholds of 
tank 1 taking into account the delay 0.5.  

6. Controller synthesis 

The controller synthesis of HDS drifts directly from Ramadge and Wonham (1989) theory. 
They synthesize, from a discrete event system, a controller whose role is to forbid the 
occurrence of certain events. The controller decision to forbid an event depends only on the 
past of the system, i.e. of events, which already occurred. The aim is that the system coupled 
to its controller respects some given criteria.  
Many researches were devoted to the problem of controller synthesis autonomous discrete 
event systems. This problem is thus well solved for this category of systems. The number of 
works relating to real time system controller synthesis is also very significant (Altisen et al. 
2005). However, few works were devoted to solving this problem for the HDS (Wong-Toi, 
1997; Antsaklis et al. 1993; Lennartson et al. 1994; Peleties & DeCarlo, 1994). 
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The controller synthesis of a dynamic system (autonomous, timed or hybrid) is generally 
based on three steps: 
1. the behavioral description of the system (called an open loop system) by a model; 
2. the definition of specifications required for this behavior; 
3. the synthesis of the controller which restricts the model behavior to the required one, 

using a controller synthesis algorithm. 

These algorithms consider the open system S and the specification on its behavior φ. and try 

to synthesize the controller C so that the parallel composition of S and C(S || C) satisfies φ. 
These algorithms use traditionally automata (finite state automata, timed automata and 
hybrid automata) because of their ease of formal manipulation; however, a model like HPN 
is preferred in the first step (the step of behavior description). 
Consider an open loop Hybrid system; the aim of controller synthesis is to construct a 
controller that satisfies the specifications for the closed loop hybrid system. These 
specifications imply, generally, restrictions on the closed loop hybrid system. They can be 
either (1) specifications on the discrete part (this type of specification forbids certain discrete 
states); or (2) specification on the continuous part; in this case the specification has the form 
of an invariant that the continuous state must satisfy. This implies that the continuous state 
of the closed loop hybrid system is restricted to a specified region. The open problem is 
synthesizing the guards associated with the controllable transitions so that the specifications 
are respected leading to a maximal permissive controller. 

7. Conclusion 

Some extensions of PNs permitting HDS modeling  were presented here. The first models to 
be presented are continuous PNs. This model may be used for modeling  either a continuous 
system or a discrete system. In this case, it is an approximation that is often satisfactory. 
Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid 
PN models were considered in this chapter. The first, called the hybrid PN, has a 
deterministic behavior; this means that we can predict the occurrence date of any possible 
event. The second hybrid PN considered is called the D-elementary hybrid PN; this model 
was conceived to be used for HPN controller synthesis. 
Controller synthesis algorithms consider the open system S and the specification on its 

behavior φ and try to synthesize the controller C, so that the parallel composition of S and 

C(S || C) satisfies φ. These algorithms use traditionally automata (finite state automata, 
timed automata and hybrid automata) because of their ease of formal manipulation; 
however, this model is not the most appropriate for behavior description. For coupling the 
analysis power of hybrid automata with the modeling  power of hybrid PNs, an algorithm 
permitting translation of D-elementary hybrid PNs into hybrid automata was presented. 
Our future research aim is to generalize the existing results to the control of hybrid systems 
modeled by hybrid PNs. 
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