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1. Introduction 

One of the strategic issues for contemporary manhood is production of a sufficient amount 
of energy for further technological development. Despite numerous attempts to use new, 
practically inexhaustible energy sources, such as solar energy (Li, 2002), wind energy 
(Belanger & Gagnon, 2002) and high and low tides (Omer, 2002), for example, instead of 
conventional sources, i.e., coal, petrol or gas, the latter ones, nevertheless, remain 
unavoidable factors in balancing the energy demands of most countries, including Serbia, at 
the beginning of the 21st century. 
On the basis of investigations of coal genesis, its composition, as well as general 
characteristics of coal deposits, coal can be defined as a combustible sedimentary rock, 
originating mainly (some coals are algal) from residues of terrestrial and aquatic plants, and 

of minerals (< 50 %) (Wood et al., 1983). Chemical and physical characteristics of coal are 
predetermined by the nature of precursor plants, the amount of inorganic material, and by 
the nature, intensity and duration of biochemical and geochemical processes that are 
responsible for coal formation. Almost all natural elements have been found in coal 
(Finkelman, 1993), in variety of forms (Eskenazy & Valceva, 2003; Yudovich & Kertis, 2005), 
which are responsible for the coal’s technological, economical but also ecological impact. 
Elements can be variously associated (Font et al., 2005). Further, association types may vary 
within the same deposit (Kuehn & Kurzbach, 1992; Vyazova & Kryukova, 1997). 

During coal combustion in power plants, practically only the organic part of coal burns, 
producing carbon dioxide and water, i.e. its vapor. The inorganic components of coal 
mainly do not burn, but remain in the ash, which is a by-product of combustion. Since coal, 
by definition, contains more than 50 % of organic substances, which are not found in the 
ash, or are found in the very low concentrations, it is clear that the main part of the 
inorganic components of coal, including trace elements, is concentrated in the ash. During 
combustion different processes occur, which influence the non-uniform distribution of the 
elements and phases in different fractions of the combustion products (Xu et al., 2004; 
Goodarzi, 2006; Ward & French, 2006). One of the basic mechanisms which are present is 
“evaporation-condensation” (Schultz et al., 1973). Namely, during coal combustion at high 
temperatures certain elements evaporate. At the lower temperatures, which are typical for 
the higher parts of the reactor in which the combustion occurs, part of the substances which 
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had evaporated condenses, and, as a rule, this occurs on the smaller particles which are 
present in the higher parts of the reactor. Therefore, the fractions which contain the smallest 
particles of ash are, in the number of cases, enriched with elements the compounds of which 
are the most volatile. Normally, parts of these most volatile compounds do not condense but 
are released into the atmosphere, together with the gases which are formed during the 
combustion (Pacyna & Pacyna 2001; Pavlish et al., 2003).  
The chemical composition of ash obtained by coal combustion can be related to the 
conditions in the original paleo-environment, to geochemical processes occurring during 
and after the formation of the coal deposit, but also to the technical conditions during coal 
combustion. It is well documented that coal fly ash characteristics vary with different feed 
coals, utility systems, and operating parameters; however, coal fly ash characteristics can be 
expected to be consistent within a range from a single electric generation facility given a 
consistent feed coal. It often happens that after coal has been combusted in the power plant, 
ash with a completely different distribution of microelements has been obtained.  
Since only a marginal portion of the ash is being used world-wide (Jones et al., 2006; Yunusa 
et al., 2006), most of it is usually stored in huge coal ash dumps, either in the dry or wet state 
(Sushil & Batra 2006). Storage of wet coal ash usually prevents the wind from dispersing it, 
but increases the time necessary for the leaching of various elements (Iturbe et al., 1996). 
Coal ash in the environment (on the dump; airborne particles deposited on the soil surface, 
etc.) is exposed to various influences, and solubilization processes occur, sometimes 
transforming almost insoluble elements to soluble species thus leading to pollution of water 
and soil (Gupta, 1999).  
The quality of waste waters from landfills depends on the quality of the coal, the methods of 
combustion, the quality and quantity of the “input” water, the quality of the process which is 
used for the removal of fly ash from the gases resulting from coal combustion (Chu et al., 
1978), and on the manner of ash transportation. (Rokita, 1990). As can be seen, the qualities of 
waste waters are not only dependent on the chemical composition of the coal, which 
determines the chemical composition of the resulting ash. In order to predict pollution from 
ash landfills, computer programs have been written which simulate the release of potentially 
harmful substances under different conditions (Tucek & Konecny, 1975), as well as the content 
of surface water in the neighborhood of the landfill (Donslund & Eriksen, 1990). Different 
tracers, i.e. isotopes of strontium and lead (Hurst et al., 1993), sodium bromide, i.e. bromide 
ion, and lithium were used for the determination of the dispersion of pollution. Distribution of 
trace and major elements, especially in more mobile and accessible fractions, in ash and slag 
during coal combustion, is one of the major factors influencing their ability to pollute 
surrounding waters (Marquenie and Simmers, 1988; Jankowski et al., 2006). 
In order to examine and compare distribution of some trace and major elements in lignite 
and products of its combustion as well as influence of high temperature process on 
distribution of elements in “Nikola Tesla A” power plant, we performed sequential 
extraction of lignite as well as ash and slag obtained by its combustion in situ. Sequential 
extraction is a powerful tool for predicting the behavior of trace elements under various 
environmental conditions (changes of pH, redox-potential etc.). The use of extraction 
(Piekos & Paslawska, 1998; Mukherjee & Borthakur, 2004; Senior et al., 2004) and sequential 
extraction (Fernandez-Turiel et al., 1994; Goodarzi, 1994; Hlavay et al., 1995; Querol et al., 
1996) for analysis of coals and coal combustion by-products is being widely used on 
samples from all over the world including samples of coal, fly and dump ash from Serbia 
(Popovic et al., 2000; Popovic et al., 2001; Polic et al., 2005; Popovic & Djordjevic, 2005).  
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2. Materials and Methods 

Eight samples of milled lignite, ash and slag obtained by lignite combustion were subjected 
to a five-step sequential extraction procedure. The procedure itself comprised of the 
following sequence of extractants: 
Phase I: Distilled water (weakest extractant - the amount of elements extracted in this step is 
the least that can be expected, regardless of the type of water used for ash transport to the 
dump); 
Phase II: 1 M ammonium acetate (this extractant should dissolve the fractions of elements 
that are bound to the particle surface with stronger bonds than the fraction washed with 
distilled water); 
Phase III: 0.2 M ammonium oxalate / 0.2 M oxalic acid (imitation of reductive dissolution of 
iron and manganese oxides, which are important microelement scavengers); 
Phase IV: 30 % H2O2, 0.01 M HNO3 on a water bath at 850C, in order to dissolve 
organic/sulfide matter, with subsequent desorption of eventually re-adsorbed elements, by 
application a 3.2 M ammonium acetate solution washing for 30 min.  
Phase V: Digestion with 6 M HCl bath at 850C, introduced in order to obtain additional 
information on the crystalline iron oxides and silicates. 
The elected sequence of extractants was, with some alterations, mostly used for examination 
of coal and combustion product samples (Gupta, 1999; Senior et al., 2004; Jankowski et al., 
2006), and it is remarkably similar to the sequence of extractants used for sediments and 
soils.   
After washing, the residuals were treated with the next extractant. The combined extracts 
and washings after each extraction step were concentrated and the trace elements were 
analyzed by a “SpectrAA-20+ Varian” atomic absorption spectrometer.  
The available data sets were analyzed using the SPSS 10.0 statistical program (Descriptive 
Statistics and Classify Hierarchical Cluster).   

3. Results 

Average concentrations and standard deviations of concentrations of extracted major and 
trace elements from lignite, ash and slag obtained by lignite combustion in “Nikola Tesla A” 
power plant are shown in Tables 1-3. 

4. Discussion 

4.1 Lignite 

The macro and microelements contained in coal are differently distributed (Tables 1-3, 
Figure 1). It should be mentioned that during applied sequential extraction process the solid 
phase is not totally destroyed. As opposed to the organic component dissolved in the fourth 
phase of extraction, the total mineral component is not dissolved, which means that all the 
macro elements and some of the microelements may have an additional mineral component, 
besides the one determined by the extraction. However, it is obvious from the results 
obtained by extraction that most elements are contained in the inorganic phase of coal, even 
inside the extractable part.  
The investigated macro elements can be separated on the basis of their fraction in the organic 
phase into elements which are dominantly extracted from the organic phase (aluminium 58.56 
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± 11.31 % and silicon 58.36 ± 11.66 %) and into elements which are dominantly extracted from 
the inorganic component, even in an extracted fraction of coal (iron 60.76 % of the totally 
extracted elements is released in the third phase of the extraction). It is interesting to note that 
two macro elements, magnesium and potassium, can not be precisely categorized. Actually, a 
larger amount of potassium and approximately the same amount of magnesium were released 
in the fourth phase of the sequential extraction, compared  with the sum of the amounts 
extracted in the third and the fifth phase, however, more than 50 % of the extracted amounts 
are released in the first two phases of the sequential extraction. Since it is not possible to 
determine the origin of adsorbed and ion-exchangeable fraction using the applied technique, 
i.e. it is not possible to say whether the adsorbed and ion-exchangeable potassium and 
magnesium are connected with the organic or with the inorganic fraction of coal, there is no 
precise conclusion about that whether these two elements in the extractable fraction of coal are 
distributed dominantly in (or with) the organic or in the mineral phase. 
 

Mg Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 2.35 0.08 373.9 12.23 32.91 1.08 314.6 10.29 2333 76.32 3057 

St.deviation 0.50 0.02 91.9 3.01 7.50 0.25 50.4 1.65 1082 35.41 1233 

Average 163.6 19.27 321.0 37.80 43.68 5.14 184.0 21.67 136.9 16.12 849.2 

St.deviation 43.7 5.14 3.4 0.40 2.52 0.30 92.7 10.91 58.1 6.84 200.4 

Average 125.0 11.17 285.2 25.49 38.21 3.42 119.0 10.64 551.4 49.29 1119 

St.deviation 4.7 0.42 4.2 0.37 21.33 1.91 22.4 2.00 12.9 1.15 66 

       Al Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 103.9 1.30 205.2 2.56 2699 33.71 449.2 5.61 4548 56.81 8005 

St.deviation 69.7 0.87 130.7 1.63 757 9.46 209.8 2.62 674 8.42 1842 

Average 49.49 2.99 0.05 0.00 431.9 26.09 969.4 58.56 204.5 12.35 1655 

St.deviation 35.17 2.12 0.10 0.01 18.7 1.13 187.2 11.31 76.5 4.62 318 

Average 3.65 0.15 0.85 0.04 1154 48.20 805.1 33.63 430.6 17.99 2394 

St.deviation 3.46 0.14 0.49 0.02 1632 68.16 53.6 2.24 17.8 0.74 1707 

       Si Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 66.3 4.71 399.3 28.38 151.2 10.75 369.6 26.27 420.4 29.88 1407 

St.deviation 31.7 2.25 62.5 4.44 35.0 2.49 64.48 4.58 19.5 1.39 213 

Average 254.7 5.92 124.2 2.89 229.6 5.33 2512 58.36 1184 27.50 4304 

St.deviation 67.8 1.58 20.4 0.47 31.3 0.73 502 11.66 469 10.90 1091 

Average 114.3 2.51 174.2 3.83 104.6 2.30 1124 24.71 3032 66.65 4548 

St.deviation 5.9 0.13 10.2 0.23 18.9 0.42 45 0.99 268 5.89 348 

K Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 37.49 2.12 20.24 1.14 560.7 31.70 130.2 7.36 1020 57.68 1769 

St.deviation 5.94 0.34 3.47 0.20 56.68 3.20 27.5 1.55 456 25.78 550 

Average 33.13 20.01 59.30 35.81 16.32 9.85 45.27 27.34 11.57 6.99 165.6 

St.deviation 3.72 2.25 30.81 18.61 2.55 1.54 23.10 13.95 2.87 1.73 63.0 

Average 27.54 6.54 91.58 21.76 178.2 42.33 0.00 0.00 123.6 29.37 420.9 

St.deviation 0.18 0.04 6.92 1.64 235.5 55.95 0.00 0.00 16.83 4.00 259.4 

Fe Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.33 0.01 177.8 2.90 2832 46.15 272.9 4.45 2853 46.50 6135 
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St.deviation 0.10 0.00 47.7 0.78 54 0.87 150.4 2.45 1166 19.01 1418 

Average 8.81 0.30 0.08 0.00 1761 60.76 746.5 25.76 382.0 13.18 2898 

St.deviation 4.47 0.15 0.10 0.00 17 0.57 284.4 9.81 154.0 5.31 460 

Average 0.49 0.03 0.00 0.00 942.0 49.70 325.5 17.17 627.5 33.11 1895 

St.deviation 0.57 0.03 0.00 0.00 1331 70.21 9.9 0.52 116.4 6.14 1458 

Cr Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.97 1.98 2.85 5.81 5.21 10.62 2.11 4.30 37.91 77.29 49.05 

St.deviation 0.35 0.71 1.01 2.05 3.83 7.81 1.26 2.56 23.87 48.66 30.31 

Average 0.11 0.92 0.37 3.20 1.01 8.86 7.84 68.61 2.10 18.41 11.42 

St.deviation 0.12 1.02 0.68 5.98 0.09 0.75 1.51 13.23 1.52 13.32 3.92 

Average 0.64 8.34 0.04 0.52 1.20 15.65 3.58 46.61 2.22 28.88 7.67 

St.deviation 0.89 11.62 0.01 0.18 1.64 21.39 1.04 13.55 0.15 1.94 3.73 

Table 1. Average concentrations and standard deviations of extracted magnesium, 
aluminium, silicon, potassium, iron and chromium (ppm) from samples of lignite 
(first two rows), ash (second two rows), and slag (third two rows) obtained by 
lignite combustion in “Nikola Tesla A” power plant 

 
Mn Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 3.16 1.31 10.55 4.39 8.32 3.46 24.77 10.30 193.7 80.54 240.5 

St.deviation 0.76 0.32 3.47 1.44 4.75 1.98 10.41 4.33 80.7 33.56 100.1 

Average 1.54 0.86 11.12 6.20 72.00 40.11 14.87 8.28 80.0 44.55 179.5 

St.deviation 0.34 0.19 3.40 1.89 25.08 13.97 8.70 4.85 28.0 15.62 65.6 

Average 0.07 0.04 4.25 2.65 53.58 33.37 11.89 7.40 90.78 56.54 160.6 

St.deviation 0.01 0.01 2.05 1.28 67.35 41.95 0.62 0.38 10.34 6.44 80.4 

Ni Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.13 0.19 1.54 2.23 11.91 17.28 9.18 13.33 46.15 66.98 68.90 

St.deviation 0.03 0.04 0.17 0.25 1.16 1.68 1.93 2.80 5.22 7.57 8.51 

Average 0.14 0.49 0.06 0.23 15.57 56.80 8.44 30.80 3.20 11.67 27.41 

St.deviation 0.03 0.10 0.02 0.05 1.07 3.92 2.79 10.19 1.52 5.56 5.43 

Average 0.02 0.07 0.05 0.23 7.84 36.23 5.30 24.51 8.43 38.96 21.63 

St.deviation 0.01 0.03 0.00 0.00 11.04 51.04 0.17 0.78 0.97 4.48 12.18 

Cu Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.06 0.20 2.18 7.31 6.49 21.80 3.12 10.47 17.93 60.22 29.78 

St.deviation 0.03 0.09 0.44 1.46 1.76 5.91 1.30 4.35 3.94 13.23 7.46 

Average 0.08 0.58 0.02 0.15 8.57 65.97 1.44 11.09 2.89 22.21 12.99 

St.deviation 0.01 0.10 0.01 0.06 0.97 7.49 0.36 2.80 1.44 11.10 2.80 

Average 0.04 0.36 0.02 0.21 1.47 15.21 1.25 12.98 6.86 71.24 9.63 

St.deviation 0.01 0.07 0.00 0.00 2.06 21.37 0.10 1.03 0.20 2.06 2.36 

Zn Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.13 0.49 1.44 5.48 0.81 3.09 3.10 11.79 20.81 79.15 26.29 

St.deviation 0.08 0.29 0.10 0.38 0.09 0.35 1.63 6.21 4.42 16.83 6.33 

Average 3.80 11.91 1.70 5.33 13.24 41.51 2.98 9.33 10.19 31.93 31.90 

St.deviation 2.66 8.32 2.72 8.51 2.93 9.18 0.96 3.00 4.69 14.69 13.94 

Average 0.42 2.19 0.23 1.21 4.27 22.52 12.38 65.28 1.67 8.81 18.97 
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St.deviation 0.19 1.01 0.13 0.67 5.87 30.95 1.26 6.64 0.78 4.10 8.22 

As Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 1.27 8.64 0.00 0.00 0.14 0.97 0.00 0.00 13.24 90.39 14.64 

St.deviation 0.70 4.79 0.00 0.00 0.25 1.71 0.00 0.00 2.98 20.38 3.94 

Average 1.58 16.98 0.00 0.03 0.89 9.51 5.10 54.85 1.73 18.62 9.30 

St.deviation 0.89 9.56 0.01 0.05 0.59 6.40 1.98 21.25 1.27 13.64 4.74 

Average 1.43 29.92 0.01 0.10 0.00 0.00 0.00 0.00 3.35 69.98 4.78 

St.deviation 0.35 7.40 0.01 0.15 0.00 0.00 0.00 0.00 0.16 3.40 0.52 

Cd Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.03 20.20 0.03 19.19 0.00 0.00 0.00 0.00 0.10 60.61 0.17 

St.deviation 0.01 3.13 0.01 7.09 0.00 0.00 0.00 0.00 0.08 46.95 0.09 

Average 0.00 0.00 0.01 4.76 0.00 0.00 0.00 0.00 0.15 95.24 0.16 

St.deviation 0.00 0.00 0.01 3.17 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Average 0.00 0.00 0.01 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

St.deviation 0.00 0.00 0.01 141.4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Table 2. Average concentrations and standard deviations of extracted manganese, nickel, 
copper, zinc, arsenic and cadmium (ppm) from samples of lignite (first two rows), 
ash (second two rows), and slag (third two rows) obtained by lignite combustion in 
“Nikola Tesla A” power plant 

Concerning the microelements, they can be classified into three groups. The elements having 
a predominant part of their extractable component associated with the organic fraction of 

coal are in the first group, i.e., chromium (68.61 ± 13.23 %) and arsenic (54.85 ±  21.25 %). The 
elements having a significant (although less than 50 %) amount of their extractable 
component connected with the organic phase are in the second group, the main 

representative being nickel (30.80 ± 10.19 %). The organic component of the other 
investigated elements, which are in the third group, are present in only a small amounts in 

the organic fraction, i.e., manganese (8.28 ± 4.85 %), copper (11.09 ± 2.80 %, zinc (10.19 ± 4.69 

%), cadmium (0.00 ± 0.00 %) and lead (10.38 ± 3.10 %) of the total extracted amount. The fact 
that most of the elements are indisputably connected with the inorganic fraction of coal is not 
unexpected taking into consideration the large amount of ash remaining after the 
combustion of coal. The elements which are prevalently connected with the inorganic 
component, can be divided into groups based on the difference of their extractability in the 
third and fifth phase of the sequential extraction of the coal. The first group contains 
elements the extractable fraction of which is connected with the inorganic component and is 
concentrated in the third phase of the sequential extraction. The second group contains 
elements the extractable fractions of which, except the part which is organically associated, 
are mostly present in the fifth phase of the sequential extraction, which is the most difficult to 

dissolve. Nickel (56.80 ± 3.92 % extracted in the third and 11.67  ± 5.56 % extracted in the fifth 

phase of the sequential extraction), copper (65.97 ± 7.49 % extracted in the third and 22.21 ± 

11.10 % extracted in the fifth phase of the sequential extraction) and iron (60.76 ± 0.57 % 

extracted in the third and 13.18 ± 5.31 % extracted in the fifth phase of the sequential 

extraction) belong to the first group. Cadmium (0.00 ± 0.00 % extracted in the third and 95.24 

± 0.00 % extracted in the fifth phase of the sequential extraction) and lead (1.26 ± 2.52 % 

extracted in the third, and 88.36 ± 44.81 % extracted in the fifth phase of the sequential 
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extraction) belong to the second group, while zinc (41.51 ± 9.18 % extracted in the third and 

31.93 ± 14.69 % extracted in the fifth phase of the sequential extraction) and manganese (40.11 

± 13.97 % extracted in the third and 31.93 ± 14.69 % extracted in the fifth phase of the 
sequential extraction) lie between these two groups. 

Pb Phase I Phase II Phase III Phase IV Phase V  Total 

 ppm % ppm % ppm % ppm % ppm % ppm 

Average 0.21 1.39 0.15 0.98 0.00 0.00 0.03 0.20 14.91 97.43 15.31 

St.deviation 0.06 0.38 0.13 0.82 0.00 0.00 0.02 0.11 5.40 35.28 5.60 

Average 0.00 0.00 0.00 0.00 0.10 1.26 0.83 10.38 7.03 88.36 7.95 

St.deviation 0.00 0.00 0.00 0.00 0.20 2.52 0.25 3.10 3.56 44.81 4.01 

Average 0.00 0.00 0.00 0.00 0.00 0.00 2.32 22.73 7.89 77.27 10.21 

St.deviation 0.00 0.00 0.00 0.00 0.00 0.00 0.13 1.25 0.32 3.12 0.45 

Table 3. Average concentrations and standard deviations of extracted lead (ppm) from 
samples of lignite (first two rows), ash (second two rows), and slag (third two rows) 
obtained by lignite combustion in “Nikola Tesla A” power plant 

 
Fig. 1. Average concentrations and standard deviations of a) macro elements and b) 

microelements (ppm) extracted from samples of lignite 
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The question arises as to the origin of the adsorbed and ion-exchangeable fraction in the 
investigated samples of coal. These two fractions of different elements certainly existed in 
the original samples of coals but it is questionable whether the adsorbed and ion-
exchangeable elements, which were present in the original coal, were also present in the 
coal used in the thermo-electric power plant, or whether these fractions present during 
the combustion of the coal were of a more recent origin. Taking into consideration that the 
coal had been exposed to rain after its mining, i.e., in stock piles and during 
transportation, it is probable that most of the elements which were present in the original 
“easily extractable” fractions of coal were rinsed out long before the combustion process, 
and that the adsorbed and ion-exchangeable elements, which were found in the 
experiment, were there as a consequence of sorption occurring during transportation, 
storage and grinding of the coal. 

4.2 Filter Ash 

Fly ash is the most important product obtained by coal combustion. High temperature 
during combustion in power plants enables melting, crystallizing as well as sintering 
process of alumosilicates and generation a new structures that are procuring their 
chemical property.  Since only a small part of organic substances remain in the ash, it 
would not be realistic to expect fly ash to contain elements the dominant fractions of 
which are associated with organic component of coal. Thus, it is logical that the highest 
concentrations of all the investigated elements exist in the extraction phases in which 
the inorganic matrix of the ash particles dissolve. On the basis of their extraction 
characteristics, the elements present in the ash (Tables 1-3, Figure 2) can be divided into 
those which are to a  significant degree still associated with the organic component of 

the ash (silicon – 26.27 ± 4.58 %), those which are to a small extent bonded to the 

organic component (magnesium – 10.29 ± 1.65 %; manganese – 10.30 ± 4.33; nickel – 

13.33 ± 2.80 %; copper – 10.47 ± 4.35 %; zinc – 11.79 ± 6.21 %), those which are to 

minimal extent associated with the organic component of the ash (aluminum – 5.61 ± 

2.62 %; potassium 7.36 ± 1.55 %; iron – 4.45 ± 2.45 % and chromium 4.30 ± 2.56 %) and 
those which, practically, do not exist in a form bonded to the organic component of the 
ash (arsenic, cadmium and lead). 
When the amounts extracted in the third and fifth phase are compared, larger amounts of all 
the investigated either macro- or microelements were extracted in the last phase, and only 
for five elements (aluminum, silicon, potassium, iron and copper) is the ratio of these 
amounts less than 3:1 in favor of the concentration dissolved in the fifth phase of the 
sequential extraction. It should be noted that higher concentrations of silicon, manganese 
and zinc were extracted in the fourth than in the third phase of the sequential extraction. 
This was also true for magnesium but there is a possibility that the results of the extraction 
of this element in the third phase were influenced more by the applied extraction mean 
(extraction with oxalate will yield non-soluble magnesium oxalate) than by the nature of the 
substrate by itself. 

4.3 Slag 

The arrangement of the elements in the slag, shown in Tables 1-3 and Figure 3 is the most 
irregular and it is difficult to give any precise classification of the investigated elements, 
such as the ones made in the case of coal and fly ash.  
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Fig. 2. Average concentrations and standard deviations of a) macro elements and b) 
microelements (ppm) extracted from samples of filter ash 

The absolutely dominant bonding to the organic phase of slag (in relation to the totaly 

extracted, and not absolute amount) is by zinc (65.28 ± 6.64%) and relatively dominant by 

chromium (46.61 ± 13.55%). Three elements, potassium, arsenic and cadmium, are not 
bound to the organic phase of the slag, while different amount of the other elements are 
associated with the organic phase. There are still relatively high amounts (compared with 

the average amount of organically bound elements in fly ash) of aluminum (33.63 ± 2.92 %), 

silicon (24.71 ± 0.91 %), iron (17.17 ± 0.52 %), nickel (24.51 ± 0.78 %) and lead (22.73 ± 1.25 %) 
in the organic fraction. Concerning the inorganic component, higher amounts of four 
elements, aluminum, potassium, iron and zinc, are extracted in the third than in the fifth 
phase of the sequential extraction. 

4.4 Cluster Analysis of Elements Content in the Lignite and in the High Temperature 
Product   

In order to identify the main associations of elements in the coal, the most common subset of 
clustering methods that is generally referred to an agglomerative hierarchical method was 
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used. This method is the most appropriate to evidence correlations between variables. The 
series of stages is summarized in the dendrogram (Figure 4).  

 

Fig. 3. Average concentrations and standard deviations of a) macro elements and b) 
microelements (ppm) extracted from samples of filter ash 

The lower value is on the axis, the more significant are the associations (Facchinelli et al., 
2001; Djordjevic et al., 2004; Relic et al., 2005), i.e. groups of elements in the cluster that are 
correlated with high significance. As it can be seen, strong associations between the 
concentrations of different elements leached from lignite and ash are different in their 
nature, and clearly witness that lignite combustion results in distribution of elements in 
resulting ash that is different from distribution present in lignite. There is strong association 
of aluminium, potassium and silicon in the first phase of extraction of lignite (Figure 4-1a), 
while in same phase of extraction of ash silicon has strong association with arsenic and 
cadmium (Figure 4-1b). Cluster analysis performed on concentrations leached in the third 
phase of extraction shows that there is a strong association of aluminium and silicon with 
magnesium in lignite (Figure 4-3a), while in the ash obtained from lignite aluminium and 
silicon are associated with potassium (Figure 4-3b). The change in distribution of elements 
caused by combustion process is also revealed by cluster analysis of associations of elements 
leached in fourth (e.g. manganese, associated with magnesium and iron in lignite (Figure 4-
4a), but with iron and aluminium in ash (Figure 4-4b)) and fifth phase of sequential 
extraction (for example, magnesium, associated with iron and copper in lignite (Figure 4-
5a), but with chromium and arsenic in ash (Figure 4-5b). Cluster analysis thus demonstrates 
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an influence of high temperature process of coal combustion on elements associations.  

 
Fig. 4. Dendograms of cluster analysis for a) lignite and b) fly ash; 1) first phase, 2) second 

phase, 3) third phase, 4) fourth phase and 5) fifth phase 

5. Conclusions 

First, it must be emphasized that a larger amount of totally extractable components are present 
in the ash than in the slag for all the examined elements, except for silicon. It can only be 
speculated about the reasons for this phenomenon: the cause can be the higher amount of a 
probably relatively pure organic fraction in the slag, but also the higher content of smaller 
particles that are carriers of large amount is soluble fractions of element in the ash.  
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Comparing the characteristics of the extraction of coal, ash and slag, it can be concluded that: 
- arsenic (or at least the part which does not leave the system with the combustion 

gases) during combustion of coal completely transforms to silicates, and this occurs 
in both slag and ash. The fraction of arsenic which is extracted in the third and 
fourth phase of sequential extraction of coal disappears during combustion;   

- cadmium, which in coal is present in the last extraction phase, is also found in the 
same phase in ash, while it is not present in slag.  

- lead, which was present in coal in the organic phase and in the last phase of the 
extraction, is present exclusively in the last phase in ash, while lead associated with 
the organic part is registered in the slag; 

- organically bound chromium transfers during combustion mainly to the slag, while 
chromium, which is bound to the least soluble fraction, goes mainly to the ash;  

- both the organic fraction and fraction dissolved in the fifth fraction of extraction are 
almost equally present in the both lignite combustion products in case of manganese, 
while the third phase, which is present in coal, transfers almost completely to the slag;  

- the fly ash and slag have a similar arrangement of copper (with a somewhat larger 
amount of the element being extracted from ash in the fifth phase);  

- the fraction of nickel soluble in the fifth phase of extraction of coal is almost 
completely transferred to the ash during combustion;  

- organically bound zinc which is left after combustion, and zinc which is bound to the 
inorganic compounds which are soluble in the third fraction are mainly found in the slag. 

Cluster analysis confirmed the difference in associations of trace and major elements in 
lignite and ash that are caused by transformation occurring during combustion. 
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