
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

3

Reinforcement Evolutionary Learning for
Neuro-Fuzzy Controller Design

Cheng-Jian Lin+
National University of Kaohsiung, Kaohsiung,

Taiwan

1. Introduction

In recent years, the concept of the fuzzy logic or artificial neural networks for control
problems has grown into a popular research area [1]-[3]. The reason is that classical control
theory usually requires a mathematical model for designing controllers. The inaccuracy of
mathematical modeling of plants usually degrades the performance of the controllers,
especially for nonlinear and complex control problems [4], [25]. Fuzzy logic has the ability to
express the ambiguity of human thinking and translate expert knowledge into computable
numerical data.
A fuzzy system consists of a set of fuzzy IF-THEN rules that describe the input-output
mapping relationship of the networks. Obviously, it is difficult for human experts to
examine all the input-output data from a complex system to find proper rules for a fuzzy
system. To cope with this difficulty, several approaches that are used to generate the fuzzy
IF-THEN rules from numerical data have been proposed [5]-[8]. These methods were
developed for supervised learning; i.e., the correct “target” output values are given for each
input pattern to guide the learning of the network. However, most of the supervised
learning algorithms for neuro-fuzzy networks require precise training data to tune the
networks for various applications. For some real world applications, precise training data
are usually difficult and expensive, if not impossible, to obtain. For this reason, there has
been a growing interest in reinforcement learning algorithms for use in fuzzy [9]-[10] or
neural controller [11]-[12] design.
In the design of a fuzzy controller, adjusting the required parameters is important. To do
this, back-propagation (BP) training was widely used in [11]-[12], [18]. It is a powerful
training technique that can be applied to networks with a forward structure. Since the
steepest descent technique is used in BP training to minimize the error function, the
algorithms may reach the local minima very fast and never find the global solution.
The development of genetic algorithms (GAs) has provided another approach for adjusting
parameters in the design of controllers. GA is a parallel and global technique [9], [19].
Because it simultaneously evaluates many points in a search space, it is more likely to
converge toward the global solution. Some researchers have developed methods to design
and implement fuzzy controllers by using GAs. Karr [2] used a GA to generate membership

+ Corresponding author. Email:chlin@nuk.edu.tw

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

Reinforcement Learning: Theory and Applications

34

functions for a fuzzy system. In Karr’s work, a user needs to declare an exhaustive rule set
and then use a GA to design only the membership functions. In [20], a fuzzy controller
design method that used a GA to find the membership functions and the rule sets
simultaneously was proposed. Lin [27] proposed a hybrid learning method which combines
the GA and the least-squares estimate (LSE) method to construct a neuron-fuzzy controller.
In [20] and [27], the input space was partitioned into a grid. The number of fuzzy rules (i.e.,
the length of each chromosome in the GA) increased exponentially as the dimension of the
input space increased. To overcome this problem, Juang [26] adopted a flexible partition
approach in the precondition part. The method has the admirable property of small network
size and high learning accuracy.
Recently, some researchers [9], [19], [28]-[29] applied GA methods to implement
reinforcement learning in the design of fuzzy controllers. Lin and Jou [9] proposed GA-
based fuzzy reinforcement learning to control magnetic bearing systems. In [19], Juang and
his colleagues proposed genetic reinforcement learning in designing fuzzy controllers. The
GA adopted in [19] was based upon traditional symbiotic evolution which, when applied to
fuzzy controller design, complements the local mapping property of a fuzzy rule. In [28], Er
and Deng proposed dynamic Q-Learning for on-line tuning the fuzzy inference systems.
Kaya and Alhajj [29] proposed a novel multiagent reinforcement learning approach based
on fuzzy OLAP association rules mining. However, these approaches encountered one or
more of the following major problems: 1) the initial values of the populations were
generated randomly; 2) the mutational value was generated by the constant range while the
mutation point is also generated randomly; 3) the population sizes always depend on the
problem which is to be solved.
In this chapter, we propose a reinforcement sequential-search-based genetic algorithm (R-
SSGA) method for solving above-mentioned problems. Unlike the traditional reinforcement
learning, we formulate a number of time steps before failure occurs as the fitness function.
The new sequential-search-based genetic algorithm (SSGA) is also proposed to perform
parameter learning. Moreover, the SSGA method is different from traditional GA, which the
better chromosomes will be initially generated while the better mutation points will be
determined for performing efficient mutation. Compared with traditional genetic algorithm,
the SSGA method generates initialize population efficiently and decides efficient mutation
points to perform mutation. The advantages of the proposed R-SSGA method are
summarized as follows: (1) The R-SSGA method can reduce the population sizes to a
minimum size (4); (2) The chromosome which has the best performance will be chosen to
perform the mutation operator in each generation. (3) The R-SSGA method converges more
quickly than existing traditional genetic methods.
This chapter is organized as follows. Section 2 introduces the sequential-search-based
genetic algorithm. A reinforcement sequential-search-based genetic algorithm is presented
in Section 3. In Section 4, the proposed R-SSGA method is evaluated using two different
control problems, and its performances are benchmarked against other structures. Finally,
conclusions on the proposed algorithm are summarized in the last section.

2. The sequential-search-based genetic algorithm

A new genetic learning algorithm, called sequential-search-based genetic algorithm (SSGA),
is proposed to adjust the parameters for the desired outputs. The proposed SSGA method is
different from a traditional genetic algorithm [9], [19]. The SSGA method generates initial

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

35

population efficiently and decides efficient mutation points to perform mutation. Like
traditional genetic algorithm [9], [19], the proposed SSGA method consists of two major
operators: reproduction, crossover. Before the details of these two operators are explained,
coding, initialization and efficient mutation are discussed as follows:
Coding step: The first step in the SSGA method is to code a neuro-fuzzy controller into a
chromosome. We adopt a Takagi-Sugeno-Kang (TSK) type neuro-fuzzy controller [13] to be
the structure of the proposed SSGA method. A TSK-type neuro-fuzzy controller employs
different implication and aggregation methods than the standard Mamdani controller [1].
Instead of using fuzzy sets the conclusion part of a rule, is a linear combination of the crisp
inputs.

IF x1 is A1j (m1j , σ1j)and x2 is A2j(m2j , σ2j)…and xn is Anj (mnj , σnj)

 THEN y’=w0+w1x1+…+wixi (1)

where ijm and ijσ represent a Gaussian membership function with mean and deviation

with ith dimension and jth rule node. A fuzzy rule in Fig. 1 is represented the form in Eq.
(1).

Rule1 Rule2 … Rulej … RuleR

jm1 j1σ jm2 j2σ ….
njm njσ 0w 1w ….

nw

Fig. 1. Coding a fuzzy controller into a chromosome in the SSGA method.

Initialization step: Before the SSGA method is designed, individuals forming an initial
population should be generated. Unlike traditional genetic algorithm, an initial population
is generated randomly within a fixed range. In the SSGA method, the initial population is
generated efficiently to ensure that chromosomes with good genes can be generated. The
detailed steps of the initialization method are described as follows:

• Step 0: The first chromosome that represents a TSK-type fuzzy controller will be
generated initially. The following formulations show how to generate the
chromosomes:

 Deviation: Chrj[p]=random[minσ , maxσ] (2)

where p=2, 4, 6, …, 2*n

 Mean: Chrj[p]= random[minm , maxm] (3)

where p=1, 3, 5, …, 2*n-1

 Weight: Chrj[p]= random [minw , maxw] (4)

www.intechopen.com

Reinforcement Learning: Theory and Applications

36

where p=2*n +1,…, 2*n +(1+n)

where Chrj means chromosome in ith rule and p represent the pth gene in a Chrj;

[minσ , maxσ],[minm , maxm], and [minw , maxw] represent the predefined ranges of

deviation, mean, and weight. The ranges are determined by practical experimentation or
trial-and-error tests.

• Step 1: To generate the other chromosomes, we use the SSGA method to generate the
new chromosomes. The search algorithm of the SSGA method is similar to the local
search procedure in [14]. In the SSGA method, every gene in the previous chromosomes
is selected using a sequential search and the gene’s value is updated to evaluate the
performance based on the fitness value. The details of the SSGA method are as follows:

(a) Sequentially search for a gene in the previous chromosome.
(b) Update the chosen gene in (a) according to the following formula:

 Chrj[p]=

⎩
⎨
⎧

<Δ−
>−Δ+

5.0),-][Chr,_(][Chr

5.0),][Chr,_(][Chr

minjj

jmaxj

ασ
ασ

ifpvaluefitnessp

ifpvaluefitnessp
 (5)

 where p=2, 4, 6, …, 2*n

 Chrj[p]=

⎩
⎨
⎧

<Δ−
>Δ+

5.0),-][Chr,_(][Chr

5.0),][Chr-,_(][Chr

minjj

jmaxj

α
α

ifmpvaluefitnessp

ifpmvaluefitnessp
 (6)

 where p=1, 3, 5, …, 2*n-1

 Chrj[p]=

⎩
⎨
⎧

<Δ−
>−Δ+

5.0),-][Chr,_(][Chr

5.0),][Chr,_(][Chr

minjj

jmaxj

α
α

ifwpvaluefitnessp

ifpwvaluefitnessp
 (7)

 where p=2*n +1,…, 2*n +(1+n)

 where
λλ)_/1(**),_(valuefitnessvvvaluefitness =Δ (8)

where []1,0, ∈λα are the random values; valuefitness _ is the fitness

computed using Eq (11); p represents the pth gene in a chromosome; j represents the

jth rule, respectively. The function),_(vvaluefitnessΔ returns a value, such

that),_(vvaluefitnessΔ comes close to 0 as valuefitness _ increases. This

property causes the mutation operator to search the space uniformly during the

initial stage (when valuefitness _ is small) and locally during the later stages,

thus increasing the probability of generating children closer to its successor than a
random choice and reducing the number of generations.

(c) If the new gene that is generated from (b) can improve the fitness value, then replace
the old gene with the new gene in the chromosome. If not, recover the old gene in the
chromosome. After this, go to (a) until every gene is selected. The pseudo code for
the SSGA method is listed in Figure 2. The Chrk,j represents the kth chromosome and

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

37

jth rule in a fuzzy controller. And Nf denote the size of the population,
fitness(Chrk,j_new) is a fitness function by Eq.(11) using the kth new chromosome.

Fig. 2. The pseudo code for the SSGA method.

• Step 2: If no genes are selected to improve the fitness value in step 1, than the new
chromosome will be generated according to step 0. After the new chromosome is
generated, the initialization method returns to step 1 until the total number of
chromosomes is generated.

The firing strength of a fuzzy rule is calculated by performing the “AND” operation on the
truth values of each variable to its corresponding fuzzy sets,

[]

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=∏

=
2

2)1(

1

exp
ij

iji
n

i

j

mu
u

σ
 (9)

where ijm and ijσ are, respectively, the center and the width of the Gaussian membership

function of the jth term of the ith input variable ix . The output of a fuzzy system is

computed by

Procedure Sequential-Search-Based Genetic Algorithm

Begin

Let p=0,i=0;

Repeat

k=k+1;

Repeat

 j=j+1;

 Repeat

 p=p+1;

 Perform Chrk,j_new=inttialize(Chrk,j _old[p]);by(5)to(8);

Evaluate fitness(Chrk,j _new) and fitness(Chrk,j _old) by(11);

 If fitness(Chrk,j _new) >fitness(Chrk,j _old) Then

Chrk,j _old = Chrk,j _new;; else Chrk,j _new = Chrk,j _old;

Until p=2*n+(1+n);

Until j=R;

 Until k=Nf;

End

www.intechopen.com

Reinforcement Learning: Theory and Applications

38

∑
∑ ∑

==

j

j

j

n

i

iijj

out
u

xwu

u
0

 (10)

where the weight jw is the output action strength associated with the jth rule and outu is

the output of the network.
Efficient mutation step: Although reproduction and crossover will produce many new
strings, they do not introduce any new information to the population at the site of an
individual. Mutation is an operator that randomly alters the allele of a gene. We use an
efficient mutation operation, which is unlike the traditional mutation, to mutate the
chromosomes. In the SSGA method, we perform efficient mutation using the best fitness
value chromosome of every generation. And we use the SSGA method to decide on the
mutation points. When the mutation points are selected, we use Eqs. (5) to (7) to update the
genes. The efficient mutation of an individual is shown in Fig. 3.

Fig. 3. Efficient mutation operation using 3 mutation points with jth rule.

Reproduction step: Reproduction is a process in which individual strings are copied
according to their fitness value. In this study, we use the roulette-wheel selection method
[15] – a simulated roulette is spun – for this reproduction process. The best performing
individuals in the top half of the population [19] advances to the next generation. The other
half is generated to perform crossover and mutation operations on individuals in the top
half of the parent generation.
Crossover step: Reproduction directs the search toward the best existing individuals but
does not create any new individuals. In nature, an offspring has two parents and inherits
genes from both. The main operator working on the parents is the crossover operator, the
operation of which occurred for a selected pair with a crossover rate that was set to 0.5 in
this study. The first step is to select the individuals from the population for the crossover.
Tournament selection [15] is used to select the top-half of the best performing individuals
[19]. The individuals are crossed and separated using a two-point crossover that is the new
individuals are created by exchanging the site’s values between the selected sites of parents’
individual. After this operation, the individuals with poor performances are replaced by the
newly produced offspring.
The aforementioned steps are done repeatedly and stopped when the predetermined
condition is achieved.

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

39

3. Reinforcement sequential-search-based genetic algorithm (R-SSGA)

Unlike the supervised learning problem, in which the correct “target” output values are
given for each input pattern to perform neuron-fuzzy controller learning, the reinforcement
learning problem has only very simple “evaluative” or “critical” information, rather than
“instructive” information, available for learning. In the extreme case, there is only a single
bit of information to indicate whether the output is right or wrong. Figure 4 shows how the
R-SSGA method and its training environment interact in a reinforcement learning problem.
The environment supplies a time-varying input vector to the R-SSGA method, receives its
time-varying output/action vectors and then provides a reinforcement signal. Therefore, the
reinforcement signal indicates whether a success or a failure occurs.

Fig. 4. The proposed R-SSGA method.

As show in Fig. 4, the R-SSGA method consists of a TSK-type fuzzy controller which acts as
the control network to determine a proper action according to the current input vector
(environment state). The structure of the R-SSGA method is different from Barto and his
colleagues’ actor-critic architecture [16]-[17]. Two neuron-like adaptive elements are
integrated in this system [16]-[17]. They are the associative search element (ASE) used as a
controller, and the adaptive critic element (ACE) used as a predictor. Temporal difference
techniques and single-parameter stochastic exploration are used in [16]. The input to the R-
SSGA method is the state of the plant, and the output is a control action of the state, denoted
by f. The only available feedback is a reinforcement signal that notifies the R-SSGA method
only when a failure occurs. An accumulator plays a role which is a relative performance
measure shown in Fig. 4. It accumulates the number of time steps before a failure occurs
[30]. Thus, the feedback takes the form of an accumulator that determines how long the
experiment is still a “success”; this is used as a relative measure of the fitness of the
proposed R-SSGA method. That is, the accumulator will indicate the “fitness” of the current
R-SSGA method. The key to this learning algorithm is formulating a number of time steps
before failure occurs and using this formulation as the fitness function of the R-SSGA
method. The advantage of the proposed method need not use the critical network as either a
multi-step or single-step predictor.

www.intechopen.com

Reinforcement Learning: Theory and Applications

40

Input Training Data

Forward Signal Propagation

(Fuzzy Controller)
Determine the Best Action

(Fuzzy Controller)
SSGA Learning Algorithm

R-SSGA method

Fig. 5. Flowchart of the R-SSGA method

Figure 5 shows the flowchart of the R-SSGA method. The R-SSGA method runs in a
feedforward fashion to control the environment (plant) until a failure occurs. Our relative
measure of fitness function takes the form of an accumulator that determines how long the
experiment is a “success”. In this way, according to a defined fitness function, a fitness value
is assigned to each string in the population where high fitness values means good fit. Thus,
we use a number of time steps before failure occurs to define the fitness function. The fitness
function is defined by:

 Fitness_Value (i) =TIME-STEP(i) (11)

where TIME-STEP(i) represents how long the experiment is still a “success” about the ith
population. Eq.(11) reflects the fact that long-time steps before failure occurs (to keep the
desired control goal longer) mean higher fitness of the R-SSGA method.

4. Illustrative examples

To verify the performance of the proposed R-SSGA method, two control examples—the cart-
pole balancing system and a water bath temperature control system—are presented in this
section. For the two computer simulations, the initial parameters are given in Table 1 before
training.
In this example, we shall apply the R-SSGA method to the classic control problem of the
cart-pole balancing. This problem is often used as an example of inherently unstable and
dynamic systems to demonstrate both modern and classic control techniques [22]-[23] or
reinforcement learning schemes [18]-[19], and is now used as a control benchmark. As
shown in Fig. 6, the cart-pole balancing problem is the problem of learning how to balance
an upright pole. The bottom of the pole is hinged to the left or right of a cart that travels
along a finite-length track. Both the cart and the pole can move only in the vertical plane;
that is, each has only one degree of freedom.

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

41

Table 1: The initial parameters before training

Parameters Value

Population Size 4

Crossover Rate 0.5

Coding Type

Real Number

[minσ , maxσ]

[0,1]

[minm , maxm]

[0,1]

[minw , maxw]

[-20,20]

Example l. Cart-Pole Balancing System

Fig. 6. The cart-pole balancing system.

There are four state variables in the system:θ , the angle of the pole in an upright position

(in degrees);θ& , the angular velocity of the pole (in degrees/seconds); x , the horizontal

position of the cart's center (in meters); and x& , the velocity of the cart (in meters/seconds).

The only control action is f, which is the amount of force (in Newtons) applied to the cart to

move it left or right. The system fails when the pole falls past a certain angle (± 12o is used
here) or when the cart runs into the boundary of the track (the distance is 2.4m from the
center to each boundary of the track). The goal of this control problem is to determine a
sequence of forces that, when applied to the cart, balance the pole so that it is upright. The
motion equations that we used were:

www.intechopen.com

Reinforcement Learning: Theory and Applications

42

)()()1(ttt θθθ &Δ+=+ (12)

 []

)(cos))(3/4(

)()(

)(cos))(3/4(

))(sgn()(sin)()()(cos

)(cos))(3/4(

)(sin)(
)()1(

2

2

2

2

tlmlmm

lm

tmm

tlmlmm

txttlmtft

tlmlmm

tgmm
tt

pp

p

pp

pp

cp

pp

p

θ

θμ

θ
μθθθ

θ
θ

θθ

−+

+

−

−+

−+
−

−+

+
Δ+=+

&

&&

&&

 (13)

)()()1(txtxtx &Δ+=+ (14)

[]

)(

))(sgn(

)(

)(cos)()(sin)()(
)()1(

2

p

c

p

p

mm

tx

mm

ttttlmtf
txtx

+
−

+

−+
Δ+=+

&

&&&
&

μ

θθθθ

 (15)

where

l = 0.5 m, the length of the pole;

m = 1.1 kg, combined mass of the pole and the cart;

mp = 0.1 kg, mass of the pole;

 g = 9.8 m/s, acceleration due to the gravity; (16)

cμ = 0.0005, coefficient of friction of the cart on the track,

pμ = 0.000002, coefficient of friction of the pole on the cart,

Δ = 0.02(s), sampling interval.

The constraints on the variables were
oo 1212 ≤≤− θ , -2.4m ≤≤ x 2.4m, and -

10N ≤≤ f 10N. A control strategy was deemed successful if it balanced a pole for 100,000

time steps.

The four input variables),,,(xx &&θθ and the output ft are normalized between 0 and 1 over

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

43

the following ranges, θ ∈[-12,12], θ&∈ [-60,60], x ∈ [-2.4,2.4], x& ∈ [-3,3], ft ∈ [-10,10]. The

fitness function in this example is defined in Eq.(11) to train the R-SSGA method where
Eq.(11) is used to calculate how long it takes the cart-pole balancing system to fail and

receives a penalty signal of -1 when the pole falls past a certain angle (C°>12||θ) and

when the cart runs into the boundaries of the tracks falls(mx 4.2|| >). In this experiment,

the initial values were set to (0, 0, 0, 0). And we set four rules constitute a TSK-Type fuzzy
controller.
A total of five runs were performs. Each run started at same initial state. The simulation
result in Fig.7 (a) shows that the R-SSGA method learned on average to balance the pole at
the 16th generation. In this figure, each run indicates that the largest fitness value in the
current generation was selected before the cart-pole balancing system failed. When the
proposed R-SSGA learning method is stopped, we choose the best string in the population
in the final generation and tested it on the cart-pole balancing system. The final fuzzy rules
generated by the R-SSGA method are described as follows:

Rule 1: IF x1 is A11(0.38,0.35) and x2 is A21(5.67,0.32) and x3 is A31(0.19,1.91)

and x4 is A41(0.40,0.825)

THEN y’=-2.94+0.42x1 -0.20 x2 -0.70 x3 +0.40x4

Rule 2: IF x1 is A12(0.52,1.70) and x2 is A22(7.43,0.39) and x3 is A32(0.37,14.9)

and x4 is A42(1.28,0.44)

THEN y’=12.21+ 12.16x1 -0.25 x2 +0.32 x3 +4.66x4

Rule 3: IF x1 is A13(0.52,6.66) and x2 is A23(12.1,0.39) and x3 is A33(0.37,9.64)

and x4 is A43(1.28,0.44)

THEN y’=11.93+ 9.63x1 -0.25 x2 +0.32 x3+ 9.64x4

Rule 4: IF x1 is A14(0.52,17) and x2 is A24(9.29,0.39) and x3 is A34(0.37,3.98)

and x4 is A44(1.28,0.44)

THEN y’=11.93-3.98 x1 – 0.25x2 +0.32 x3+10.29 x4

www.intechopen.com

Reinforcement Learning: Theory and Applications

44

(a)

(b)

(c)

Fig. 7. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the
TGFC method [9] on the cart-pole balancing system.

Figure 8(a) show the angular deviation of the pole when the cart-pole balancing system was
controlled by the well-trained R-SSGA method starting at the initial

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

45

state: 0)0(,0)0(,0)0(,0)0(==== θθ &&rr . The average angular deviation was 0.0060.

(a)

(b)

(c)

Fig. 8. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC
method [19], and (c) the TGFC method [9].

www.intechopen.com

Reinforcement Learning: Theory and Applications

46

In the experiment, we compare the performance of our system with the symbiotic evolution
fuzzy controller (SEFC) [19] and the traditional genetic fuzzy controller (TGFC) [9]. In the
SEFC and TGFC, the population sizes were also set to 50, and the crossover and mutation
probabilities were set to 0.5 and 0.3, respectively. Figures 7 (b) and (c) show that the SEFC
method and the TGFC method learned on average to balance the pole at the 80th and 149th
generation. In this example, we compare the CPU times of the R-SSGA method with the
SEFC and the TGFC methods. Table 2 shows the CPU times of the three methods. As shown
in Table 2, our method obtains shorter CPU times than the SEFC and the TGFC methods.
Figures 8(b) and 8(c) show the angular deviation of the pole when the cart-pole balancing
system was controlled by the [19] and [9] models. The average angular deviation of the [19]
and [9] models were 0.060 and 0.10. We also try to control the cart-pole balancing system at a

different initial state: 1)0(,3)0(,3.0)0(,6.0)0(==== θθ &&rr . Figure 9 (a)-(c) shows

the angular deviation of the pole when the cart-pole balancing system was controlled by the
R-SSGA, the SEFC [19], and the TGFC [9] models at the initial

state: 1)0(,3)0(,3.0)0(,6.0)0(==== θθ &&rr .

(a)

(b)

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

47

(c)

Fig. 9. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC
method [19], and (c) the TGFC method [9] at the initial state:

1)0(,3)0(,3.0)0(,6.0)0(==== θθ &&rr .

Table 3 shows the number of pole-balance trials (which reflects the number of training
episodes required) measured. The GENITOR [24] and SANE (Symbiotic Adaptive Neuro-
Evolution) [21] were applied to the same control problem, and the simulation results are
listed in Table 3. In GENITOR, the normal evolution algorithm was used to evolve the
weights in a fully connected two-layer neural network, with additional connections from
each input unit to the output layer. The network has five input units, five hidden units and
one output unit. In SANE, the traditional symbiotic evolution algorithm was used to evolve
a two-layer neural network with five input units, eight hidden units, and two output units.
An individual in SANE represents a hidden unit with five specified connections to the input
and output units. In Table 3 we can see that the proposed method is feasible and effective.
And the proposed R-SSGA method only took 4 rules and the population size was 4.

Method Mean (Sec) Best (Sec) Worst (Sec)

R-SSGA 20 3 60

SEFC [19] 36 4 236

TGFC [9] 165 8 412

Table 2. Performance comparison of the R-SSGA, the SEFC, and the TGFC methods.

www.intechopen.com

Reinforcement Learning: Theory and Applications

48

Method Mean Best Worst

GENITOR [24] 2578 415 12964

SANE [21] 1691 46 4461

TGFC [9] 80 26 200

SEFC [19] 149 10 350

R-SSGA 17 5 29

Table 3. Performance comparison of various existing models in Example 1.

In this example, to verify the performance of our proposed method, we use five different
initial states for the R-SSGA, the SEFC, and the TGFC methods. The five different initial
states are shown as follows:

S1: 3)0(,8)0(,2.0)0(,8.0)0(==== θθ &&rr

S2: 0)0(,2)0(,1.0)0(,3.0)0(==== θθ &&rr

S3: 2)0(,4)0(,1.0)0(,5.0)0(==== θθ &&rr

S4: 3)0(,6)0(,4.0)0(,7.0)0(==== θθ &&rr

S5: 1)0(,2)0(,1.0)0(,2.0)0(==== θθ &&rr

Figure 10 (a)-(c) show that the R-SSGA, the SEFC, and the TGFC methods learned on
average to balance the pole at the 78th, 105th, and 166th generation. Figure 11(a)-(c) show the
angular deviation of the pole when the cart-pole balancing system was controlled by the R-
SSGA method, the SEFC method [19], and the TGFC method [9] that starting at the initial

state: 0)0(,0)0(,0)0(,0)0(==== θθ &&rr . The average angular deviations were

0.010, 0.040, and 0.080. Table 4 shows the number of pole-balance trials measured of the R-
SSGA, the SEFC [19], and the TGFC [9] methods. In Table 4, we see that the proposed
method obtains a better performance than some existing methods [9], [19].

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

49

(a)

(b)

(c)

Fig. 10. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the
TGFC method [9] on the cart-pole balancing system starting at five different initial states.

www.intechopen.com

Reinforcement Learning: Theory and Applications

50

(a)

(b)

(c)

Fig. 11. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC
method [19], and (c) the TGFC method [9].

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

51

Table 4: Performance comparison of existing models in Example 1.

Method Mean Best Worst

TGFC [9] 166 57 407

SEFC [19] 105 47 189

R-SSGA 78 24 165

Example 2. Water Bath Temperature Control System

The goal of this simulation was to control the temperature of a water bath system given by

RC

tyY

C

tu

dt

tdy)()()(0 −+= (17)

where y(t) is the system output temperature in C° ; u(t) is the heat flowing into the system;

0Y is the room temperature; C is the equivalent system thermal capacity; and R is the

equivalent thermal resistance between the system borders and the surroundings.
Assuming that R and C are essentially constant, we rewrite the system in Eq.(17) into
discrete-time form with some reasonable approximation. The system

 040)(5.0
]1[)(

1

)1(

)()1(yeku
e

e

kyety Ts

ky

Ts

Ts α

α

α α
β

−
−

−

− −+
+

−
+=+ (18)

is obtained, where ┙ and ┚ are constant values describing R and C. The system parameters

used in this example were ┙=
40015.1 −e , ┚=

367973.8 −e , and 0Y =25.0(C°), which were

obtained from a real water bath plant in [3]. The input u(k) was limited to 0, and the voltage
was 5V. The sampling period was Ts=30. The system configuration is shown in Fig. 12,
where yref was the desired temperature of the controlled plant.

Fig. 12. Flow diagram of using the R-SSGA method for solving the temperature control
problem.

y(k+1)

SSGA method

Water

Bath System

Z-1

TFC

Controller

u(k)

y(k)

yref(k+1)

Reinforcement

Signal

www.intechopen.com

Reinforcement Learning: Theory and Applications

52

In this example, yref and y(k) and the output u(k) were normalized between 0 and 1 over the
following ranges: yref :[25,85], y(k):[25,85], and u(k):[0,5]. The values of floating-point
numbers were initially assigned using the R-SSGA method initially. The fitness function was
set for each reassigned regulation temperature T=35, 55, and 75, starting from the current
temperature and again after 10 time steps. The control temperature error should be within

± 1.5 C° ; otherwise failure occurs. In the R-SSGA method, we set five rules constitute a

TSK-Type fuzzy controller using the proposed R-SSGA method. A total of five runs were
performed. Each run started at same initial state.
The simulation result in Fig. 13(a) shows that the R-SSGA method learned on average to
success at the 25th generation. In this figure, each run indicates that the largest fitness value
in the current generation was selected before the water bath temperature system failed.
When the R-SSGA learning is stopped, we chose the best string in the population in the final
generation and tested it with two different examples in the water bath temperature control
system. The final fuzzy rules of a TSK-Type fuzzy controller by the R-SSGA method are
described as follows:

Rule 1: IF x1 is A11(1.23, 0.75) and x2 is A21(0.13, 0.81)

THEN y’=7.09 +8.50 x1+1.51 x2

Rule 2: IF x1 is A12(0.18, 0.352) and x2 is A22(1.09, 0.45)

THEN y’=-19.41-14.051 x1 -16.81 x2

Rule 3: IF x1 is A13(0.19, 0.36) and x2 is A23(1.10, 0.46)

 THEN y’=-19.42 -14.05 x1 -16.80 x2

Rule 4: IF x1 is A14(0.0001 1.27) and x2 is A24(1.09, 0.45)

 THEN y’=5.40+ 8.47 x1 -16.81 x2

Rule 5: IF x1 is A15(5.0, 0.66) and x2 is A25(0.14, 0.08)

 THEN y’=-4.85-5.88 x1 +9.45 x2

where),(ijijij mA σ represents a Gaussian membership function with mean ijm and

deviation ijσ in ith input dimension and jth rule. In this example, as with example 1, we

also compare the performance of our system with the SEFC method [19] and the TGFC
method [9]. Figures 13 (b) and 10(c) show the performance of [19] and [9] methods. In this

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

53

figure we can see that the SEFC and TGFC methods learned on average to balance the pole
at the 49th and 96th generation but in our model just take 25 generations.

(a)

(b)

(c)

Fig. 13. The performance of the water bath system for (a) the R-SSGA method, (b) the SEFC
method [19] and, (c) the TGFC method [9].

For testing the controller system, we compare the three methods (the R-SSGA, SEFC, and
TGFC methods). The three methods are applied to the water bath temperature control

www.intechopen.com

Reinforcement Learning: Theory and Applications

54

system. The comparison performance measures included a set points regulation and a
change of parameters.
The first task was to control the simulated system to follow three set points

⎪
⎩

⎪
⎨

⎧

≤<
≤<

≤

°
°
°

=
.12080

8040

40

,75

,55

,35

)(

k

k

k

for

for

for

c

c

c

kyref (19)

The regulation performance of the R-SSGA method is shown in Fig. 14(a). The error curves
of the three methods are shown in Fig. 14(b). In this figure, the R-SSGA method obtains
smaller errors than others.

(a)

(b)

Fig. 14. (a) Final regulation performance of the R-SSGA method for water bath system. (b)
The error curves of the R-SSGA method, the SEFC method and the TGFC method.

In the second set of simulations, the tracking capability of the R-SSGA method with respect
to ramp-reference signals is studied. We define

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

55

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤<°
≤<°−∗+
≤<°−∗+
≤<°−∗+

≤°

=

1209070

9070))70(5.060(

7050))50(8.044(

5030))30(5.034(

3034

)(

kforC

kforCk

kforCk

kforCk

kforC

kyref (20)

The tracking performance of the R-SSGA method is shown in Fig. 15(a). The corresponding
errors of the three methods are shown in Fig. 15(b). The results show the good control and
disturbance rejection capabilities of the trained R-SSGA method in the water bath system.

(a)

(b)

Fig. 15. (a) The tracking of the R-SSGA method when a change occurs in the water bath
system. (b) The error curves of the R-SSGA method, the SEFC method [19], and the TGFC
method [9].

To test their regulation performance, a performance index, sum of absolute error (SAE), is
defined by

www.intechopen.com

Reinforcement Learning: Theory and Applications

56

∑ −=

k

ref kykySAE)()(

 (21)

where)(kyref and)(ky are the reference output and the actual output of the simulated
system, respectively. Table 5 shows the comparison the SAE among the R-SSGA method, the
SEFC method, and the TGFC method. As show in Table 5, the proposed R-SSGA method
has better performance than that of the others. And the proposed method only takes 5 rules
and the populations’ size is minimized to 4.

∑ −=
=

120

1

|)()(|
k

ref kykySAE R-SSGA SEFC [19] TGFC [9]

Regulation Performance 360.04 370.12 400.12

Tracking Performance 54.187 90.81 104.221

Table 5: Performance comparison of various existing models in Example 2.

5. Conclusions

A novel reinforcement sequential-search-based genetic algorithm (R-SSGA) is proposed. The
better chromosomes will be initially generated while the better mutation points will be
determined for performing efficient mutation. We formulate a number of time steps before
failure occurs as the fitness function. The proposed R-SSGA method makes the design of
TSK-Type fuzzy controllers more practical for real-world applications, since it greatly
lessens the quality and quantity requirements of the teaching signals. Two typical examples
were presented to show the fundamental applications of the proposed R-SSGA method.
Simulation results have shown that 1) the R-SSGA method converges quickly; 2) the R-SSGA
method requires a small number of population sizes (only 4); 3) the R-SSGA method obtains
a smaller average angular deviation than other methods.

6. Acknowledgement

This research is supported by the National Science Council of R.O.C. under grant NSC 95-
2221-E-324- 028-MY2.

7. References

C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A neural-fuzzy synergism to intelligent systems.
Englewood Cliffs, NJ: Prentice-Hall, May 1996. (with disk).

C. L. Karr and E. J. Gentry, “Fuzzy control of ph using genetic algorithms,” IEEE Trans. on
Fuzzy Syst., vol. 1, pp. 46–53, Feb. 1993.

J. Tanomaru and S. Omatu, “Process control by on-line trained neural controllers,” IEEE
Trans. on Ind. Electron., Vol. 39, pp. 511-521, 1992.

K.J. °Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1989.
C. J. Lin and C. H. Chen, “Nonlinear system control using compensatory neuro-fuzzy

networks,” IEICE Trans. Fundamentals, vol. E86-A, no. 9, pp. 2309-2316, Sept. 2003.

www.intechopen.com

Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design

57

C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy inference network and
its applications,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp.12-32, Feb. 1998.

C. W. Anderson, “Learning and problem solving with multilayer connectionist systems,”
Ph.D. dissertation, Univ. Massachusetts, Amherst, 1986.

A. G. Barto and M. I. Jordan, “Gradient following without backpropagation in layered
networks,” in Proc. IEEE 1st Annual Conf. Neural Networks, vol. 2, San Diego, CA,
pp. 629–636, 1987.

C. T. Lin and C. P. Jo, “GA-based fuzzy reinforcement learning for control of a magnetic
bearing system,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 30, no. 2, pp. 276-289,
Apr. 2000.

X. W. Yan, Z.D. Deng and Z.Q. Sun, “Competitive Takagi-Sugeno fuzzy reinforcement
learning,” in Proc. IEEE Int. Conf. Control Applications., pp. 878-883, Sept. 2001.

G.rigore O., “Reinforcement learning neural network used in control of nonlinear systems, ”
in Proc. IEEE Int. Conf. Industrial Technology., vol. 1, pp. 19-22, Jan. 2000.

X. Xu and H. G. He, “Residual-gradient-based neural reinforcement learning for the optimal
control of an acrobat,” in Proc. IEEE Int. Conf. Intelligent Control., pp. 27-30, Oct.
2002.

T. Takagi, M. Sugeno, "Fuzzy identification of systems and its applications to modeling and
control", IEEE Trans. Syst., Man, Cybern., vol. 1, no. 1, pp. 116-32, 1985.

J.-S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Ch. 17, Prentice-
Hall, 1997.

O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy systems evolutionary
tuning and learning of fuzzy knowledge bases. Advances in Fuzzy Systems-
Applications and Theory, vol.19, NJ: World Scientific Publishing, 2001.

A. G. Barto and R. S. Sutton, “Landmark learning: An illustration of associative search, ”
Biol. Cybern. Vol. 42, pp. 1-8, 1981.

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron like adaptive elements that can
solve difficult learning control problem,” IEEE Trans. Syst., Man, Cybern., vol. SMC-
13, no 5, pp. 834-847, 1983.

C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for neural-network-
based fuzzy logic control systems,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 46–63, Feb.
1994.

C. F. Juang, J. Y. Lin and C. T. Lin, “Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design,” IEEE Trans. Syst., Man, Cybern., Part B, vol.
30, no. 2, pp. 290-302, Apr. 2000.

A. Homaifar and E. McCormick, “Simultaneous design of membership functions and rule
sets for fuzzy controllers using genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 3,
no. 9, pp. 129-139, May 1995.

D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through symbiotic
evolution,” Mach. Learn., vol. 22, pp. 11–32, 1996.

R. H. Cannon, Jr., Dynamics of Physical Systems. New York: Mc- Graw-Hill, 1967.
K. C. Cheok and N. K. Loh, “A ball-balancing demonstration of optimal and disturbance-

accommodating control,” IEEE Contr. Syst. Mag., pp. 54–57, 1987.
D. Whitley, S. Dominic, R. Das, and C. W. Anderson, “Genetic reinforcement learning for

neuro control problems,” Mach. Learn., vol. 13, pp. 259–284, 1993.
J. Hauser, S. Sastry, and P. Kokotovic, “Nonolinear control via approximate input-output

www.intechopen.com

Reinforcement Learning: Theory and Applications

58

linearization: the ball and beam example,” IEEE Trans. Automatic Control, vol. 37,
pp. 392-398, Mar. 1992.

C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural
network and genetic algorithms,” IEEE Trans. on Fuzzy Systems, Vol. 10, No. 2, pp.
155-170, April, 2002.

C. J. Lin, “A GA-based neural fuzzy system for temperature control,” Fuzzy Sets and Systems,
Vol. 143, pp. 311-333, 2004.

M. J. Er and C. Deng, “Online tuning of fuzzy inference systems using dynamic Q-
Learning,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 34, no. 3, pp. 1478-1489, June
2004.

M. Kaya, R. Alhajj, “Fuzzy OLAP association rules mining-based modular reinforcement
learning approach for multiagent systems,” IEEE Trans. on Syst., Man, Cybern., Part
B, vol. 35, no. 2, pp. 326-338, Apr. 2005.

C. J. Lin, “A GA-based neural network with supervised and reinforcement learning,” Journal
of The Chinese Institute of Electrical Engineering, Vol. 9, No. 1, pp.11-24.

www.intechopen.com

Reinforcement Learning

Edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer

ISBN 978-3-902613-14-1

Hard cover, 424 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2008

Published in print edition January, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices.

Brain-like computation is about processing and interpreting data or directly putting forward and performing

actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing

actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement

learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement

learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers.

As learning computers can deal with technical complexities, the tasks of human operators remain to specify

goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in

terms of theory and applications and it shall stimulate and encourage new research in this field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Cheng-Jian Lin (2008). Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design,

Reinforcement Learning, Cornelius Weber, Mark Elshaw and Norbert Michael Mayer (Ed.), ISBN: 978-3-

902613-14-1, InTech, Available from:

http://www.intechopen.com/books/reinforcement_learning/reinforcement_evolutionary_learning_for_neuro-

fuzzy_controller_design

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

