
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

1

Neural Forecasting Systems

Takashi Kuremoto, Masanao Obayashi and Kunikazu Kobayashi
Yamaguchi University

Japan

1. Introduction

Artificial neural network models (NN) have been widely adopted on the field of time series
forecasting in the last two decades. As a kind of soft-computing method, neural forecasting
systems can be built more easily because of their learning algorithms than traditional linear
or nonlinear models which need to be constructed by advanced mathematic techniques and
long process to find optimized parameters of models. The good ability of function
approximation and strong performance of sample learning of NN have been known by
using error back propagation learning algorithm (BP) with a feed forward multi-layer NN
called multi-layer perceptron (MLP) (Rumelhart et. al, 1986), and after this mile stone of
neural computing, there have been more than 5,000 publications on NN for forecasting
(Crone & Nikolopoulos, 2007).
To simulate complex phenomenon, chaos models have been researched since the middle of
last century (Lorenz, 1963; May, 1976). For NN models, the radial basis function network
(RBFN) was employed on chaotic time series prediction in the early time (Casdagli, 1989).
To design the structure of hidden-layer of RBFN, a cross-validated subspace method is
proposed, and the system was applied to predict noisy chaotic time series (Leung & Wang,
2001). A two-layered feed-forward NN, which has its all hidden units with hyperbolic
tangent activation function and the final output unit with linear function, gave a high
accuracy of prediction for the Lorenz system, Henon and Logistic map (Oliveira et. al, 2000).
To real data of time series, NN and advanced NN models (Zhang, 2003) are reported to
provide more accurate forecasting results comparing with traditional statistical model (i.e.
the autoregressive integrated moving average (ARIMA)(Box & Jankins, 1976)), and the
performances of different NNs for financial time series are confirmed by Kodogiannis &
Lolis (Kodogiannis & Lolis, 2002). Furthermore, using benchmark data, several time series
forecasting competitions have been held in the past decades, many kinds of NN methods
showed their powerful ability of prediction versus other new techniques, e.g. vector
quantization, fuzzy logic, Bayesian methods, Kalman filter or other filtering techniques,
support vector machine, etc (Lendasse et. al, 2007; Crone & Nikolopoulos, 2007).
Meanwhile, reinforcement learning (RL), a kind of goal-directed learning, has been
generally applied in control theory, autonomous system, and other fields of intelligent
computation (Sutton & Barto, 1998). When the environment of an agent belongs to Markov
decision process (MDP) or the Partially Observable Markov Decision Processes (POMDP),
behaviours of exploring let the agent obtain reward or punishment from the environment,
and the policy of action then is modified to adapt to acquire more reward. When prediction O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Reinforcement Learning: Theory and Applications

2

error for a time series is considered as reward or punishment from the environment, one can
use RL to train predictors constructed by neural networks.
In this chapter, two kinds of neural forecasting systems using RL are introduced in detail: a
self-organizing fuzzy neural network (SOFNN) (Kuremoto et al., 2003) and a multi-layer
perceptron (MLP) predictor (Kuremoto et al., 2005). The results of experiments using Lorenz
chaos showed the efficiency of the method comparing with the results by a conventional
learning method (BP).

2. Architecture of neural forecasting system

The flow chart of neural forecasting processing is generally used by which in Fig. 1. The tth

step time series data)(ty can be embedded into a new n-dimensional space ()t x according

to Takens Theorem (Takens, 1981). Eq. (1) shows the detail of reconstructed vector space

which serves input layer of NN, here τ is an arbitrary delay. An example of 3-dimensional

reconstruction is shown in Fig. 2. The output layer of neural forecasting systems is usually
with one neuron whose output ()1ˆ +ty equals prediction result.

))1((,),(),((

))(,),(),(
1

()(
2

ττ −−−=

=

ntytyty

txtxtxt
n

L

Lx

 (1)

y(t)

X(t)

Evaluation of Prediction

 Learning or Predicting iterations

y(t+1)
^

Time Series data

Reconstructed Inputs

 Neural Network with hidden layers

 Output layer of NN
Modify parameters

Fig. 1. Flow chart of neural forecasting methods.

www.intechopen.com

Neural Forecasting Systems

3

There are various architectures of NN models, including MLP, RBFN, recurrent neural

network (RNN), autoregressive recurrent neural network (ARNN), neuro-fuzzy hybrid

network, ARIMA-NN hybrid model, SOFNN, and so on. The training rules of NNs are also

very different not only well-known methods, i.e., BP, orthogonal least squares (OLS), fuzzy

inference, but also evolutional computation, i.e., genetic algorithm (GA), particle swarm

optimization (PSO), genetic programming (GP), RL, and so on.

Fig. 2. Embedding a time series into a 3-dimensional space.

2.1 MLP with BP
MLP, a feed-forward multi-layer network, is one of the most famous classical neural

forecasting systems whose structure is shown in Fig. 3. BP is commonly used as its learning

rule, and the system performs fine efficiency in the function approximation and nonlinear

prediction.

For the hidden layer, let the number of neurons is K, the output of neuron k is kH , then the

output of MLP is obtained by Eq. (2) and Eq. (3).

)()1(ˆ
1

kyk

K

k

Hwfty ∑
=

=+ (2)

))((
1

txwfH iki

n

i

k ∑
=

= (3)

…

() () () ()()ττ 2,, −−= tytytytx

() () () ()()ττ 21,1, 11 −+−++=+ tytytytx

τ

()ty

() τ − t y

()τ2−ty
Attractor in reconstructed input space

t

() t y

…

() () () ()()ττ 2,, −−= tytytytx

() () () ()()ττ 21,1, 11 −+−++=+ tytytytx

τ

()ty

() τ − t y

()τ2−ty

t

() t y

() () () ()()ττ 2,, −−= tytytytx

() () () ()()ττ 21,1, 11 −+−++=+ tytytytx() () () ()()ττ 21,1, 11 −+−++=+ tytytytx

τ

()ty

() τ − t y

()τ2−ty

t

() t y
Time series data

www.intechopen.com

 Reinforcement Learning: Theory and Applications

4

H
1

H
2

H K

wy1

y2

yΚ

K1

K2

Κn

w

w

w
w

w

x (t)= y(t)

x (t)= y(t-τ)

x (t)= y(t-(n-1)τ)

1

2

n

Inputs Hidden Layer

Predicted Value

Sigmoid Function

y(t+1)^

Y

(Sigmoid Function)
w

11

w

w
12

1n

Fig. 3. A MLP with n input neurons, one hidden layer, and one neuron in output layer using
BP training algorithm.

Here ,ykw kiw represent the connection of kth hidden neuron with output neuron and

input neurons, respectively. Activation function f (u) is a sigmoid function (or hyperblolic

tangent function) given by Eq. (4).

)exp(1

1
)(

u
uf

β−+
= (4)

Gradient parameter β is usually set to 1.0, and to correspond to f (u), the scale of time series

data should be adjusted to (0.0, 1.0).

BP is a supervised learning algorithm, using sample data trains NN providing more correct

output data by modifying all of connections between layers. Conventionally, the error

function is given by the mean square error as Eq. (5).

 ∑
−

=

+−+=
1

0

2))1(ˆ)1((
1

)(
S

t

tyty
S

WE (5)

Here S is the size of train data set, y (t+1) is the actual data in time series. The error is

minimized by adjusting the weights according to Eq. (6), Eq. (7) and Eq. (2), Eq. (3).

),(),(),(ikyk

old

ikyk

new

ikyk wwWwwWwwW Δ−= ηα (6)

www.intechopen.com

Neural Forecasting Systems

5

)/,/(),(ikykikyk wEwEwwW ∂∂∂∂=Δ (7)

Here α is a discount parameter (0.0<α ≤ 1.0), η is the learning rate (0.0 < η ≤ 1.0). The

training iteration keeps to be executed until the error function converges enough.

R
1

R
2

R K

σ

µ

wµ1

µ2

µΚ

σ1

σ2

σΚ

w

w

w

w

w

π

x (t)= y(t)

x (t)= y(t-τ)

x (t)= y(t-(n-1)τ)

1

2

n

Inputs Hidden Layer

Stochastic Layer

Predicted Values
Average

Deviation

Stochastic Function

y(t+1)^

Κnw

11w

Κ2w

21w

Κ1w

1nw

Fig. 4. A MLP with n input neurons, two hidden layers, and one neuron in output layer
using RL training algorithm.

2.2 MLP with RL
One important feature of RL is its statistical action policy, which brings out exploration of

adaptive solutions. Fig. 4 shows a MLP which output layer is designed by a neuron with

Gaussian function. A hidden layer consists of variables of the distribution function is added.

The activation function of units in each hidden layer is still sigmoid function (or hyperbolic

tangent function) (Eq. (8)-(10)).

)exp(1

1

1 kk wR µβ
µ

∑−+
= (8)

)exp(1

1

2 kk wR σβ
σ

∑−+
= (9)

))(exp(1

1

3 kii

k
wtx

R
∑−+

=
β

 (10)

And the prediction value is given according to Eq. (11).

www.intechopen.com

 Reinforcement Learning: Theory and Applications

6

 () ()() ()()

⎭
⎬
⎫

⎩
⎨
⎧ −+
−=+

2

2

2

1ˆ
exp

2

1
,,1ˆ

σ

µ

σπ
π

ty
tty xw (11)

Here
321 ,, βββ are gradient constants, w (,kwµ ,kwσ kiw) represents the connection of kth

hidden neuron with neuron μ,σ in statistical hidden layer and input neurons, respectively.

The modification of w is calculated by RL algirthm which will be described in section 3.

2.3 SOFNN with RL
A neuro-fuzzy hybrid forecasting system, SOFNN, using RL training algorithm is shown in

Fig. 5. A hidden layer consists of fuzzy membership functions ())(txB iij
 is designed to

categorize input data of each dimension in ())(),...,(),(21 txtxtx nx , t = 1, 2, ..., S (Eq. (12)).

The fuzzy reference
kλ , which calculates the fitness for an input set ()tx , is executed by

fuzzy rules layer (Eq. 13).

Fig. 5. A SOFNN with n input neurons, three hidden layers, and one neuron in output layer
using RL training algorithm.

www.intechopen.com

Neural Forecasting Systems

7

 ()
()

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−=
2

2

2

)(
exp)(

ij

iji

iij

mtx
txB

σ
 (12)

 ∏
=

=
n

i

iick txBtX
1

))(())((λ (13)

Where i = 1, 2, ..., n, j means the number of membership function which is 1 initially,
ijijm σ,

are the mean and standard deviation of jth membership function for input)(tx i
, c means

each of membership function which connects with kth rule, respectively. c ∈ j, (j = 1, 2, ..., l
), and l is the maximum number of membership functions. If an adaptive threshold of

())(txB iij
 is considered, then the multiplication or combination of membership functions

and rules can be realized automatically, the network owns self-organizing function to deal
with different features of inputs.
The output of neurons σµ , in stochastic layer is given by Eq. (14), Eq. (15) respectively.

∑

∑
=

k
k

k
kk w

λ

λ

µ
µ

 (14)

∑

∑
=

k
k

k
kk w

λ

λ

σ
σ

 (15)

Where
kk ww σµ , are the connections between σµ , and rules, and σµ , are the mean

and standard deviation of stochastic function () ()()tty xw ,,1ˆ +π whose description is

given by Eq. (11). The output of system can be obtained by generating a random data
according this probability function.

3. SGA of RL

3.1 Algorithm of SGA
A RL algorithm, Stochastic Gradient Ascent (SGA), is proposed by Kimura and Kobayashi

(Kimura & Kobayashi, 1996, 1998) to deal with POMDP and continuous action space.

Experimental results reported that SGA learning algorithm was successful for cart-pole

control and maze problem. In the case of time series forecasting, the output of predictor can

be considered as an action of agent, and the prediction error can be used as reward or

punishment from the environment, so SGA can be used to train a neural forecasting system

by renewing internal variable vector of NN (Kuremoto et. al, 2003, 2005).

The SGA algorithm is given below.
 Step 1. Observe an input ()tx from training data of time series.

www.intechopen.com

 Reinforcement Learning: Theory and Applications

8

 Step 2. Predict a future data ()1ˆ +ty according to a probability () ()()tty xw,,1ˆ +π .

 Step 3. Receive the immediate reward
tr by calculating the prediction error.

() ()
() ()⎪⎩

⎪
⎨
⎧

>+−+−

≤+−+
=

ε

ε

11ˆ

11ˆ

tytyifr

tytyifr
rt (16)

Here r , ε are evaluation constants greater than or equal to zero.

 Step 4. Calculate characteristic eligibility ()tei
and eligibility trace ()tDi

.

 () () ()(){ }tty
w

te
i

i xw,,1ˆln +
∂

∂
= π (17)

 () () ()1−+= tDtetD iii γ (18)

Here)10(<≤ γγ is a discount factor,
iw denotes ith internal variable vector.

 Step 5. Calculate ()twiΔ by Eq. (19).

 () ()tDbrtw iti)(−=Δ (19)

Here b denotes the reinforcement baseline.

 Step 6. Improve policy by renewing its internal variable w by Eq. (20).

 ()ts www Δ+← α (20)

Here () () () ()()LL ,,,, 21 twtwtwt iΔΔΔ=Δw denotes synaptic weights, and other

internal variables of forecasting system,
sα is a positive learning rate.

 Step 7. For next time step t+1, return to step 1.

Characteristic eligibility ()tei
, shown in Eq. (17), means that the change of the policy

function is concerning with the change of system internal variable vector (Williams, 1992). In

fact, the algorithm combines reward/punishment to modify the stochastic policy with its

internal variable renewing by step 4 and step 5. The finish condition of training iteration is

also decided by the enough convergence of prediction error of sample data.

3.2 SGA for MLP

For the MLP forecasting system described in section 2.2 (Fig. 4), the characteristic eligibility

()tei
 of Eq. (21)-(23) can be derived from Eq. (8)-(11) with the internal viable ,kwµ ,kwσ kiw

respectively.

www.intechopen.com

Neural Forecasting Systems

9

() (){ }

2

1))1(ˆ)(1(

ln
ln

σ

µµµβ

µ

µ

π
π

µµ
µ

−+−
=

∂

∂

∂

∂
=

∂

∂
=

tyR

ww
e

k

kk

w k

 (21)

() (){ }

)1
))1(ˆ(

(
1

)1(

ln
ln

2

2

2 −
−+

−=

∂

∂

∂

∂
=

∂

∂
=

σ

µ

σ
σβ

σ

σ

π
π

σσ
σ

ty
R

ww
e

k

kk

w k

 (22)

() (){ } (){ }

))(1)((

lnln
ln

3 kk

ki

wkwkki

ki

k

kki

k

kki

w

ewewRtx

w

R

Rw

R

Rw
e

σµ σµβ

σ

σ

πµ

µ

π
π

+−=

∂

∂

∂

∂

∂

∂
+

∂

∂

∂

∂

∂

∂
=

∂

∂
=

 (23)

The initial values of ,kwµ ,kwσ kiw are random numbers in (0, 1) at the first iteration of

training. Gradient constants
321 ,, βββ and reward parameters r, ε denoted by Eq. (16) have

empirical values.

3.3 SGA for SOFNN
For the SOFNN forecasting system described in section 2.3 (Fig. 5), the characteristic

eligibility ()tei
 of Eq. (24)-(27) can be derived from Eq. (11)-(15) with the internal viable

,kwµ ,kwσ ijijm σ, respectively.

() (){ }

∑
−+

=

∂

∂

∂

∂
=

∂

∂
=

k

k

k

kk

w

ty

ww
e

k

λ

λ

σ

µ

µ

µ

π
π

µµ
µ

2

)1(ˆ

ln
ln

 (24)

() (){ }

∑
−

−+
=

∂

∂

∂

∂
=

∂

∂
=

k

k

k

kk

w

ty

ww
e

k

λ

λ

σ

µ

σ

σ

σ

π
π

σσ
σ

)1
))1(ˆ(

(
1

ln
ln

2

2 (25)

www.intechopen.com

 Reinforcement Learning: Theory and Applications

10

()

(){ } (){ }

ik

ij

iji

k ij

k

k

k

k

k

k

k

ij

ij

k ij

k

kk

ij

m

B
mx

Bwty

wty

m

B

B

m
e

ij

2

2

2

2

)1
))1(ˆ(

(
1

)1(ˆ

lnln

ln

σ

λ

λ

σ

σ

µ

σ

λ

µ

σ

µ

λ

λ

σ

σ

π

λ

µ

µ

π

π

σ

µ

−

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−+

+
−−+

=

∂

∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
=

∑
∑

∑

∑
 (26)

()

(){ } (){ }

ik

ij

iji

k ij

k

k

k

k

k

k

k

ij

ij

k ij

k

kk

ij

B
mx

Bwty

wty

B

B

e
ij

3

2

2

2

2

)(

)1
))1(ˆ(

(
1

)1(ˆ

lnln

ln

σ

λ

λ

σ

σ

µ

σ

λ

µ

σ

µ

σ

λ

λ

σ

σ

π

λ

µ

µ

π

π
σ

σ

µ

σ

−

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−+
+

−−+

=

∂

∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
=

∑
∑

∑

∑
 (27)

Here membership function
ikB is described by Eq. (12), fuzzy inference

kλ is described by

Eq. (13). The initial values of ,kwµ ,kwσ ijijm σ, are random numbers included in (0, 1) at the

first iteration of training. Reward r, threshold of evaluation error ε denoted by Eq. (16) have

empirical values.

4. Experiments

A chaotic time series generated by Lorenz equations was used as benchmark for forecasting

experiments which were MLP using BP, MLP using SGA, SOFNN using SGA. Prediction

precision was evaluated by the mean square error (MSE) between forecasted values and

time series data.

4.1 Lorenz chaos
A butterfly-like attractor generated by the three ordinary differential equations (Eq. (28)) is

very famous on the early stage of chaos phenomenon study (Lorenz, 1969).

www.intechopen.com

Neural Forecasting Systems

11

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=

−+−=

−=

•

•

•

)()()()(

)()()()()(

)()()(

tqtptotq

tptotqtotp

totpto

ϕ

φ

δδ
 (28)

Here ϕφδ , , are constants. The chaotic time series was obtained from dimension o(t) of Eq.

(29) in forecasting experiments, where 005.0=Δt , 0.16=δ , 92.45=φ , 0.4=ϕ .

⎪
⎩

⎪
⎨

⎧

−Δ+=+

+−Δ−=+

−Δ+=+

))()()(()()1(

))()()()(()()1(

))()(()()1(

tqtptottqtq

tptotqtottptp

totpttoto

ϕ

φ

σ
 (29)

The size of sample data for training is 1,000, and the continued 500 data were served as
unknown data for evaluating the accuracy of short-term (i.e. one-step ahead) prediction.

4.2 Experiment of MLP using BP
It is very important and difficult to construct a good architecture of MLP for nonlinear
prediction. An experimental study (Oliveira et. al, 2000) showed the different prediction
results for Lorenz time series by the architecture of n : 2n : n : 1, where n denotes the
embedding dimension and the cases of n = 2, 3, 4 were investigated for different term
predictions (long-term prediction).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Va
lu

e

Time

Lorenz time series
Prediction result using BP

Error of prediction

Fig. 6. Prediction results after 2,000 iterations of training by MLP using BP.

www.intechopen.com

 Reinforcement Learning: Theory and Applications

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400 450 500

Va
lu

e

Time

Lorenz time series
Short-term prediction result

Error of short-term prediction

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"MSE_BP2000.txt"

 0.0004

 0.00045

 0.0005

 0.00055

 0.0006

 1000 1200 1400 1600 1800 2000

"MSE_BP2000.txt"

Fig. 7. Prediction error (MSE) in training iteration of MLP using BP.

For short-term prediction here, a three-layer MLP using BP and 3 : 6 : 1 structure shown in
Fig. 3 was used in experiment, and time delay τ =1 was used in embedding input space.

Gradient constant of sigmoid function β = 1.0, discount constant α = 1.0, learning rate η =

0.01,

Fig. 8. One-step ahead forecasting results by MLP using BP.

www.intechopen.com

Neural Forecasting Systems

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Va
lu

e

Time

Lorenz time series
Prediction result by SGA

Error of prediction

and the finish condition of training was set to E(W) < 4100.5 −× . The prediction results after

training 2,000 times are shown in Fig. 6, and the change of prediction error according to the
iteration of training is shown in Fig. 7. The one-step ahead prediction results are shown in
Fig. 8. The 500 steps MSE of one-step ahead forecasting by MLP using BP was 0.0129.

4.3 Experiment of MLP using SGA
A four-layer MLP forecasting system with SGA and 3 : 60 : 2 : 1 structure shown in Fig. 4
was used in experiment, and time delay τ =1 was used in embedding input space. Gradient

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

Va
lue

Time

Lorenz time series
Prediction result using SGA

Fig.9. Prediction results before iteration by MLP using SGA.

Fig. 10. Prediction results after 5,000 iterations of training by MLP using SGA.

www.intechopen.com

 Reinforcement Learning: Theory and Applications

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Va
lu

e

Time

Lorenz time series
Prediction result by SGA

Error of prediction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000 25000 30000

"MSE.txt"

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 20000 22000 24000 26000 28000 30000

"MSE.txt"

constants of sigmoid functions 0.10 ,0.18 ,0.8 321 === βββ , discount constant γ = 0.9,

learning rate 56 100.2 ,100.2 −− ×=×== kwkwwij µσ ααα , the reward was set by Eq. (30), and the

finish condition of training was set to 30,000 iterations where the convergence E(W) could be
observed. The prediction results after 0, 5,000, 30,000 iterations of training are shown in Fig.
9, Fig. 10 and Fig. 11 respectively. The change of prediction error during training is shown in
Fig. 12. The one-step ahead prediction results are shown in Fig. 13. The 500 steps MSE of
one-step ahead forecasting by MLP using SGA was 0.0112, forecasting accuracy was 13.2%
upped than MLP using BP.

Fig. 11. Prediction results after 30,000 iterations of training by MLP using SGA.

Fig. 12. Prediction error (MSE) in training iteration of MLP using SGA.

www.intechopen.com

Neural Forecasting Systems

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300 350 400 450 500

V
al

ue

Time

Lorenz time series
Short-term prediction using SGA

Error of short-term prediction

() ()
() ()⎪⎩

⎪
⎨
⎧

>+−+−−

≤+−+−
=

1.011ˆ40.4

1.011ˆ40.4

tytyifE

tytyifE
rt (30)

Fig. 13. One-step ahead forecasting results by MLP using SGA.

4.4 Experiment of SOFNN using SGA
A five-layer SOFNN forecasting system with SGA and structure shown in Fig. 5 was used in

experiment, time delay τ =2 was used in 3, 4, or 5-dimensional embedding input spaces.

Initial value of weight
kwµ

 had random values in (0.0, 1.0), 0.15 ,0.0 ,5.0 === ijijk mw σσ
and

discount γ = 0.9, learning rate 36 100.2 ,100.3 −− ×=×=== kwkwijwmij µσσ αααα , the reward r was

set by Eq. (31), and the finish condition of training was also set to 30,000 iterations where the

convergence E(W) could be observed. The prediction results after training are shown in Fig.

14, where the number of input neurons was 4 and data scale of results was modified into

(0.0, 1.0). The change of prediction error during the training is shown in Fig. 15. The one-

step ahead prediction results are shown in Fig. 16. The 500 steps MSE of one-step ahead

forecasting by SOFNN using SGA was 0.00048, forecasting accuracy was 95.7% and 96.3%

upped than the case by MLP using BP and by MLP using SGA respectively.

() ()
() ()⎪⎩

⎪
⎨
⎧

>+−+−

≤+−+
=

5.111ˆ5.1

5.111ˆ5.1

tytyif

tytyif
rt (31)

www.intechopen.com

 Reinforcement Learning: Theory and Applications

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Va
lu

e

Time

Lorenz time series
Prediction result using SOFNN-SGA

Error of prediction

Fig. 14. Prediction results after 30,000 iterations of training by SOFNN using SGA.

Fig. 15. Prediction error (MSE) in training iteration of SOFNN using SGA.

www.intechopen.com

Neural Forecasting Systems

17

 0

 10

 20

 30

 40

 50

 60

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

th
e

nu
m

be
r

of
 m

em
be

rs
hi

p
fu

nc
tio

n

sample multiplies iteration time

The 1st input neuron
The 2nd input neuron
The 3rd input neuron
The 4th input neuron

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550

Va
lu

e

Time

Lorenz time series
Short-term prediction using SOFNN-SGA

Error of short-term prediction

Fig. 16. One-step ahead forecasting results by SOFNN using SGA.

Fig. 17. The number of membership function neurons of SOFNN using SGA increased in
training experiment.

www.intechopen.com

 Reinforcement Learning: Theory and Applications

18

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

th
e

nu
m

be
r

of
 r

ul
e

sample multiplies iteration time

the number of rule

Fig. 18. The number of rules of SOFNN using SGA increased in training experiment.

One advanced feature of SOFNN is its data-driven structure building. The number of
membership function neurons and rules increased with samples (1,000 steps in training of
experiment) and iterations (30,000 times in training of experiment), which can be confirmed
by Fig. 17 and Fig. 18. The number of membership function neurons for the 4 input neurons
was 44, 44, 44, 45 respectively, and the number of rules was 143 when the training finished.

5. Conclusion

Though RL has been developed as one of the most important methods of machine learning,
it is still seldom adopted in forecasting theory and prediction systems. Two kinds of neural
forecasting systems using SGA learning were described in this chapter, and the experiments
of training and short-term forecasting showed their successful performances comparing
with the conventional NN prediction method. Though the iterations of MLP with SGA and
SOFNN with SGA in training experiments took more than that of MLP with BP, both of
their computation time were not more than a few minutes by a computer with 3.0GHz CPU.
A problem of these RL forecasting systems is that the value of reward in SGA algorithm
influences learning convergence seriously, the optimum reward should be searched
experimentally for different time series. Another problem of SOFNN with SGA is how to
tune up initial value of deviation parameter in membership function and the threshold those
were also modified by observing prediction error in training experiments. In fact, when
SOFNN with SGA was applied on an neural forecasting competition “NN3” where 11 time
series sets were used as benchmark, it did not work sufficiently in the long-term prediction
comparing with the results of other methods (Kuremoto et. al, 2007; Crone & Nikolopoulos,

www.intechopen.com

Neural Forecasting Systems

19

2007). All these problems remain to be resolved, and it is expected that RL forecasting
systems will be developed remarkably in the future.

Acknowledgements

We would like to thank Mr. Yamamoto A. and Mr. Teramori N. for their early work in
experiments, and a part of this study was supported by MEXT-KAKENHI (15700161) and
JSPS-KAKENHI (18500230).

6.References

Box, G. E. P. & Jenkins, G. (1970). Time series analysis: Forecasting and control. Holden-Day,
ISBN-10 0816211043, San Francisco

Casdagli, M. (1989). Nonlinear prediction of chaotic time series. Physica D: Nonlinear
Phenomena. Vol. 35, pp. 335-356

Crone, S. & Nikolopoulos, K. (2007). Results of the NN3 neural network forecasting
competition. The 27th International Symposium on Forecasting. Program, pp. 129

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of U. K. inflation. Econometrica. Vol. 50, pp. 987-1008

Kimura, H., Yamamura, M. & Kobayashi S. (1996). Reinforcement learning in partially
observable Markov decision process: A stochastic gradient ascent (in Japanese).
Journal of Japanese Society for Artificial Intelligent, pp. 761-768

Kimura, H. & Kobayashi S. (1998). Reinforcement learning for continuous action using
stochastic gradient ascent. Intelligent Autonomous Systems, pp. 288-295

Kodogiannis, V. & Lolis, A. (2002). Forecasting financial time series using neural network
and fuzzy system-based techniques. Neural computing & applications. Vol. 11, pp. 90-
102

Kuremoto, T., Obayashi, M., Yamamoto, A. & Kobayashi, K. (2003). Predicting chaotic time
series by reinforcement learning. Proceedings of the 2nd International Conference on
Computational Intelligence, Robotics and Autonomous Systems (CIRAS ’03), Singapore

Kuremoto, T., Obayashi, & Kobayashi, K. (2005). Nonlinear prediction by reinforcement
learning. In: Lecture Notes in Computer Science, Vol. 3644, pp.1085-1094, Springer,
ISBN 0302-9743 (Print) 1611-3349 (Online), Berlin

Kuremoto, T., Obayashi, & Kobayashi, K. (2007). Forecasting time series by SOFNN with
reinforcement learning. The 27th International Symposium on Forecasting. Program,
pp. 99

Lendasse, A., Oja, E., Simula, O. & Verleysen, M. (2007). Time series prediction competition:
The CATS benchmark. Neurocomputing. Vol. 70, pp. 2325-2329

Leung, H., Lo, T., & Wang S. (2001). Prediction of noisy chaotic time series using an optimal
radial basis function. IEEE Transaction on Neural Networks. Vol. 12, pp.1163-1172

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmosphere Sciences. Vol.
20, pp. 130-141

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,
Vol. 261, pp. 459-467

Oliveira, K. A., Vannucci, A. & Silva, E. C. (2000). Using artificial neural networks to forecast
chaotic time series. Physica A. Vol. 284, pp. 393-404

www.intechopen.com

 Reinforcement Learning: Theory and Applications

20

Rumelhart, D. E., Hinton, G. E. & R. J. Williams, R. J. (1986). Learning representation by
back-propagating errors. Nature. Vol. 232, No. 9, pp. 533-536

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: an introduction. The MIT Press,
ISBN 0-262-19398-1, Cambridge

Takens., F. (1981). Detecting strange attractor in turbulence. Lecture Notes in Mathematics,
Vol. 898, pp. 366-381, Springer-Verlag, Berlin

Williams., R. J. (1992). Simple statistical gradient following algorithms for connectionist
reinforecement learning. Machine Learning, Vol. 8, pp. 229-256

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing, Vol. 50, pp. 159-175

www.intechopen.com

Reinforcement Learning

Edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer

ISBN 978-3-902613-14-1

Hard cover, 424 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2008

Published in print edition January, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices.

Brain-like computation is about processing and interpreting data or directly putting forward and performing

actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing

actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement

learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement

learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers.

As learning computers can deal with technical complexities, the tasks of human operators remain to specify

goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in

terms of theory and applications and it shall stimulate and encourage new research in this field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Takashi Kuremoto, Masanao Obayashi and Kunikazu Kobayashi (2008). Neural Forecasting Systems,

Reinforcement Learning, Cornelius Weber, Mark Elshaw and Norbert Michael Mayer (Ed.), ISBN: 978-3-

902613-14-1, InTech, Available from:

http://www.intechopen.com/books/reinforcement_learning/neural_forecasting_systems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

