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1. Introduction   

Artificial neural network models (NN) have been widely adopted on the field of time series 
forecasting in the last two decades. As a kind of soft-computing method, neural forecasting 
systems can be built more easily because of their learning algorithms than traditional linear 
or nonlinear models which need to be constructed by advanced mathematic techniques and 
long process to find optimized parameters of models. The good ability of function 
approximation and strong performance of sample learning of NN have been known by 
using error back propagation learning algorithm (BP) with a feed forward multi-layer NN 
called multi-layer perceptron (MLP) (Rumelhart et. al, 1986), and after this mile stone of 
neural computing, there have been more than 5,000 publications on NN for forecasting 
(Crone & Nikolopoulos, 2007).  
To simulate complex phenomenon, chaos models have been researched since the middle of 
last century (Lorenz, 1963; May, 1976). For NN models, the radial basis function network 
(RBFN) was employed on chaotic time series prediction in the early time (Casdagli, 1989). 
To design the structure of hidden-layer of RBFN, a cross-validated subspace method is 
proposed, and the system was applied to predict noisy chaotic time series (Leung & Wang, 
2001). A two-layered feed-forward NN, which has its all hidden units with hyperbolic 
tangent activation function and the final output unit with linear function, gave a high 
accuracy of prediction for the Lorenz system, Henon and Logistic map (Oliveira et. al, 2000).  
To real data of time series, NN and advanced NN models (Zhang, 2003) are reported to 
provide more accurate forecasting results comparing with traditional statistical model (i.e. 
the autoregressive integrated moving average (ARIMA)(Box & Jankins, 1976)), and the  
performances of different NNs for financial time series are confirmed by Kodogiannis & 
Lolis (Kodogiannis & Lolis, 2002). Furthermore, using benchmark data, several time series 
forecasting competitions have been held in the past decades, many kinds of NN methods 
showed their powerful ability of prediction versus other new techniques, e.g. vector 
quantization, fuzzy logic, Bayesian methods, Kalman filter or other filtering techniques, 
support vector machine, etc (Lendasse et. al, 2007; Crone & Nikolopoulos, 2007).  
Meanwhile, reinforcement learning (RL), a kind of goal-directed learning, has been 
generally applied in control theory, autonomous system, and other fields of intelligent 
computation (Sutton & Barto, 1998). When the environment of an agent belongs to Markov 
decision process (MDP) or the Partially Observable Markov Decision Processes (POMDP), 
behaviours of exploring let the agent obtain reward or punishment from the environment, 
and the policy of action then is modified to adapt to acquire more reward.  When prediction O
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error for a time series is considered as reward or punishment from the environment, one can 
use RL to train predictors constructed by neural networks.  
In this chapter, two kinds of neural forecasting systems using RL are introduced in detail: a 
self-organizing fuzzy neural network (SOFNN) (Kuremoto et al., 2003) and a multi-layer 
perceptron (MLP) predictor (Kuremoto et al., 2005). The results of experiments using Lorenz 
chaos showed the efficiency of the method comparing with the results by a conventional 
learning method (BP). 

2. Architecture of neural forecasting system 

The flow chart of neural forecasting processing is generally used by which in Fig. 1. The tth 

step time series data )( ty  can be embedded into a new n-dimensional space ( )t x  according 

to Takens Theorem (Takens, 1981). Eq. (1) shows the detail of reconstructed vector space 

which serves input layer of NN, here τ is an arbitrary delay. An example of 3-dimensional 

reconstruction is shown in Fig. 2. The output layer of neural forecasting systems is usually 
with one neuron whose output  ( )1ˆ +ty  equals prediction result. 
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Fig. 1. Flow chart of neural forecasting methods.  
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There are various architectures of NN models, including MLP, RBFN, recurrent neural 

network (RNN), autoregressive recurrent neural network (ARNN), neuro-fuzzy hybrid 

network, ARIMA-NN hybrid model, SOFNN, and so on. The training rules of NNs are also 

very different not only well-known methods, i.e., BP, orthogonal least squares (OLS), fuzzy 

inference, but also evolutional computation, i.e., genetic algorithm (GA), particle swarm 

optimization (PSO),  genetic programming (GP), RL, and so on.  

 

 

Fig. 2. Embedding a time series into a 3-dimensional space. 

2.1 MLP with BP 
MLP, a feed-forward multi-layer network, is one of the most famous classical neural 

forecasting systems whose structure is shown in Fig. 3. BP is commonly used as its learning 

rule, and the system performs fine efficiency in the function approximation and nonlinear 

prediction.  

For the hidden layer, let the number of neurons is K, the output of neuron k is kH , then the 

output of MLP is obtained by Eq. (2) and Eq. (3). 
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Fig. 3. A MLP with n input neurons, one hidden layer, and one neuron in output layer using 
BP training algorithm. 

Here  ,ykw kiw represent the connection of kth hidden neuron with output neuron and 

input neurons, respectively.  Activation function f (u) is a sigmoid function (or hyperblolic 

tangent function) given by Eq. (4). 

 
)exp(1

1
)(

u
uf

β−+
=      (4) 

Gradient parameter β is usually set to 1.0, and to correspond to f (u), the scale of time series 

data should be adjusted to (0.0, 1.0).  

BP is a supervised learning algorithm, using sample data trains NN providing more correct 

output data by modifying all of connections between layers. Conventionally, the error 

function is given by the mean square error as Eq. (5). 
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Here S is the size of train data set, y (t+1) is the actual data in time series. The error is 

minimized by adjusting the weights according to Eq. (6), Eq. (7) and Eq. (2), Eq. (3). 
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Here α is a discount parameter (0.0<α ≤ 1.0), η is the learning rate (0.0 < η ≤ 1.0). The 

training iteration keeps to be executed until the error function converges enough. 
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Fig. 4. A MLP with n input neurons, two hidden layers, and one neuron in output layer 
using RL training algorithm. 

2.2 MLP with RL 
One important feature of RL is its statistical action policy, which brings out exploration of 

adaptive solutions. Fig. 4 shows a MLP which output layer is designed by a neuron with 

Gaussian function. A hidden layer consists of variables of the distribution function is added. 

The activation function of units in each hidden layer is still sigmoid function (or hyperbolic 

tangent function) (Eq. (8)-(10)). 
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And the prediction value is given according to Eq. (11).  
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Here  
321 ,, βββ  are gradient constants, w ( ,kwµ ,kwσ kiw ) represents the connection of kth 

hidden neuron with neuron μ,σ in statistical hidden layer and input neurons, respectively. 

The modification of w  is calculated by RL algirthm which will be described in section 3. 

2.3 SOFNN with RL 
A neuro-fuzzy hybrid forecasting system, SOFNN, using RL training algorithm is shown in 

Fig. 5. A hidden layer consists of fuzzy membership functions  ( ))( txB iij
 is designed to 

categorize  input data of each dimension in ( ))(),...,(),( 21 txtxtx nx , t = 1, 2, ..., S (Eq. (12)).  

The fuzzy reference 
kλ , which calculates the fitness for an input set ( )tx , is executed by 

fuzzy rules layer (Eq. 13).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A SOFNN with n input neurons, three hidden layers, and one neuron in output layer 
using RL training algorithm. 
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Where i = 1, 2, ..., n, j means the number of membership function which is 1 initially, 
ijijm σ,  

are the mean and standard deviation of jth membership function for input )( tx i
, c  means 

each of membership function which connects with kth rule, respectively. c ∈  j, ( j  = 1, 2, ..., l  
), and l is the maximum number of membership functions. If an adaptive  threshold of 

( ))( txB iij
 is considered, then the multiplication or combination of membership functions 

and rules can be realized automatically, the network owns self-organizing function to deal 
with different features of inputs. 
The output of neurons σµ ,  in stochastic layer is given by Eq. (14), Eq. (15) respectively. 
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Where
kk ww σµ , are the connections between σµ , and rules,  and σµ , are the mean 

and standard deviation of stochastic function ( ) ( )( )tty xw ,,1ˆ +π  whose description is 

given by Eq. (11). The output of system can be obtained by generating a random data 
according this probability function. 

3. SGA of RL 

3.1 Algorithm of SGA 
A RL algorithm, Stochastic Gradient Ascent (SGA), is proposed by Kimura and Kobayashi 

(Kimura & Kobayashi, 1996, 1998) to deal with POMDP and continuous action space. 

Experimental results reported that SGA learning algorithm was successful for cart-pole 

control and maze problem. In the case of time series forecasting, the output of predictor can 

be considered as an action of agent, and the prediction error can be used as reward or 

punishment from the environment, so SGA can be used to train a neural forecasting system 

by renewing internal variable vector of NN (Kuremoto et. al, 2003, 2005).  

The SGA algorithm is given below. 
  Step 1. Observe an input ( )tx  from training data of time series. 
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  Step 2. Predict a future data ( )1ˆ +ty  according to a probability ( ) ( )( )tty xw,,1ˆ +π . 

  Step 3. Receive the immediate reward 
tr by calculating the prediction error.  
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Here r , ε are evaluation constants greater than or equal to zero.    

  Step 4. Calculate characteristic eligibility ( )tei
and eligibility trace  ( )tDi

. 

 ( ) ( ) ( )( ){ }tty
w

te
i

i xw,,1ˆln +
∂

∂
= π  (17) 

 ( ) ( ) ( )1−+= tDtetD iii γ  (18) 

Here )10( <≤ γγ  is a discount factor, 
iw  denotes ith internal variable vector. 

  Step 5. Calculate ( )twiΔ  by Eq. (19). 

 ( ) ( )tDbrtw iti )( −=Δ   (19) 

Here b denotes the reinforcement baseline. 

  Step 6. Improve policy by renewing its internal variable w by Eq. (20). 

 ( )ts www Δ+← α  (20) 

Here ( ) ( ) ( ) ( )( )LL ,,,, 21 twtwtwt iΔΔΔ=Δw  denotes synaptic weights, and other 

internal variables of forecasting system, 
sα  is a positive learning rate. 

  Step 7. For next time step t+1, return to step 1. 

Characteristic eligibility ( )tei
, shown in Eq. (17), means that the change of the policy 

function is concerning with the change of system internal variable vector (Williams, 1992). In 

fact, the algorithm combines reward/punishment to modify the stochastic policy with its 

internal variable renewing by step 4 and step 5. The finish condition of training iteration is 

also decided by the enough convergence of prediction error of sample data. 

3.2 SGA for MLP 

For the MLP forecasting system described in section 2.2 (Fig. 4), the characteristic eligibility  

( )tei
 of Eq. (21)-(23) can be derived from Eq. (8)-(11) with the internal viable ,kwµ ,kwσ kiw   

respectively.   
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The initial values of ,kwµ ,kwσ kiw are random numbers in (0, 1) at the first iteration of 

training. Gradient constants 
321 ,, βββ  and reward parameters r, ε  denoted by Eq. (16) have 

empirical values.  

3.3 SGA for SOFNN 
For the SOFNN forecasting system described in section 2.3 (Fig. 5), the characteristic 

eligibility ( )tei
 of Eq. (24)-(27) can be derived from Eq. (11)-(15) with the internal viable 

,kwµ ,kwσ ijijm σ,  respectively.   
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Here membership function 
ikB  is described by Eq. (12), fuzzy inference 

kλ is described by 

Eq. (13). The initial values of ,kwµ ,kwσ ijijm σ, are random numbers included in (0, 1) at the 

first iteration of training. Reward r, threshold of evaluation error ε denoted by Eq. (16) have 

empirical values. 

4. Experiments 

A chaotic time series generated by Lorenz equations was used as benchmark for forecasting 

experiments which were MLP using BP, MLP using SGA, SOFNN using SGA. Prediction 

precision was evaluated by the mean square error (MSE) between forecasted values and 

time series data. 

4.1 Lorenz chaos 
A butterfly-like attractor generated by the three ordinary differential equations (Eq. (28))  is 

very famous on the early stage of chaos phenomenon study (Lorenz, 1969). 
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Here ϕφδ  , ,  are constants. The chaotic time series was obtained from dimension o(t) of Eq. 

(29) in forecasting experiments, where 005.0=Δt , 0.16=δ , 92.45=φ , 0.4=ϕ .  
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The size of sample data for training is 1,000, and the continued 500 data were served as 
unknown data for evaluating the accuracy of short-term (i.e. one-step ahead) prediction. 

4.2 Experiment of MLP using BP 
It is very important and difficult to construct a good architecture of MLP for nonlinear 
prediction. An experimental study (Oliveira et. al, 2000) showed the different prediction 
results for Lorenz time series by the architecture of  n : 2n : n : 1, where n denotes the 
embedding dimension and the cases of n = 2, 3, 4 were investigated for different term 
predictions (long-term prediction). 
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Fig. 6. Prediction results after 2,000 iterations of training by MLP using BP. 
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Fig. 7. Prediction error (MSE) in training iteration of MLP using BP. 

For short-term prediction here, a three-layer MLP using BP and 3 : 6 : 1 structure shown in 
Fig. 3 was used in experiment, and  time delay τ =1 was used in embedding input space. 

Gradient constant of sigmoid function β = 1.0, discount constant α = 1.0, learning rate η = 

0.01,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. One-step ahead forecasting results by MLP using BP. 
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and the finish condition of training was set to E(W) < 4100.5 −× . The prediction results  after 

training 2,000 times are shown in Fig. 6, and the change of prediction error according to the 
iteration of training is shown in Fig. 7. The one-step ahead prediction results are shown in 
Fig. 8. The 500 steps MSE of one-step ahead forecasting by MLP using BP was 0.0129. 

4.3 Experiment of MLP using SGA 
A four-layer MLP forecasting system with SGA and 3 : 60 : 2 : 1 structure shown in Fig. 4 
was used in experiment, and  time delay τ =1 was used in embedding input space. Gradient  
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Fig.9. Prediction results before iteration by MLP using SGA.    

        

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Prediction results after 5,000 iterations of training by MLP using SGA.  
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learning rate 56 100.2 ,100.2 −− ×=×== kwkwwij µσ ααα , the reward was set by Eq. (30), and the 

finish condition of training was set to 30,000 iterations where the convergence E(W) could be 
observed. The prediction results after 0, 5,000, 30,000 iterations of training are shown in Fig. 
9, Fig. 10 and Fig. 11 respectively. The change of prediction error during training is shown in 
Fig. 12. The one-step ahead prediction results are shown in Fig. 13. The 500 steps MSE of 
one-step ahead forecasting by MLP using SGA was 0.0112, forecasting accuracy was 13.2% 
upped than MLP using BP. 

 

 

 

 

 

 

 

 

 

Fig. 11. Prediction results after 30,000 iterations of training by MLP using SGA. 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Prediction error (MSE) in training iteration of MLP using SGA. 
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Fig. 13. One-step ahead forecasting results by MLP using SGA. 

4.4 Experiment of SOFNN using SGA 
A five-layer SOFNN forecasting system with SGA and structure shown in Fig. 5 was used in 

experiment, time delay τ =2 was used in 3, 4, or 5-dimensional embedding input spaces. 

Initial value of weight 
kwµ

 had random values in (0.0, 1.0), 0.15 ,0.0 ,5.0 === ijijk mw σσ
and 

discount γ = 0.9, learning rate 36 100.2 ,100.3 −− ×=×=== kwkwijwmij µσσ αααα , the reward r was 

set by Eq. (31), and the finish condition of training was also set to 30,000 iterations where the 

convergence E(W) could be observed. The prediction results after training are  shown in Fig. 

14, where the number of input neurons was 4 and data scale of results was modified into 

(0.0, 1.0). The change of prediction error during the training is shown in Fig. 15. The one-

step ahead prediction results are shown in Fig. 16. The 500 steps MSE of one-step ahead 

forecasting by SOFNN using SGA was 0.00048, forecasting accuracy was 95.7% and 96.3% 

upped than the case by  MLP using BP and by MLP using SGA respectively.  
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Fig. 14. Prediction results after 30,000 iterations of training by SOFNN using SGA. 

 

 

Fig. 15. Prediction error (MSE) in training iteration of SOFNN using SGA. 
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Fig. 16. One-step ahead forecasting results by SOFNN using SGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The number of membership function neurons of SOFNN using SGA increased in 
training experiment. 
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Fig. 18. The number of rules of SOFNN using SGA increased in training experiment. 

One advanced feature of SOFNN is its data-driven structure building. The number of 
membership function neurons and rules increased with samples (1,000 steps in training of 
experiment) and iterations (30,000 times in training of experiment), which can be confirmed 
by Fig. 17 and Fig. 18. The number of membership function neurons for the 4 input neurons 
was 44, 44, 44, 45 respectively, and the number of rules was 143 when the training finished. 

5. Conclusion 

Though RL has been developed as one of the most important methods of machine learning, 
it is  still seldom adopted in forecasting theory and prediction systems. Two kinds of neural 
forecasting systems using SGA learning were described in this chapter, and the experiments 
of training and short-term forecasting showed their successful performances comparing 
with the conventional NN prediction method. Though the iterations of MLP with SGA and 
SOFNN with SGA in training experiments took more than that of MLP with BP, both of 
their computation time were not more than a few minutes by a computer with 3.0GHz CPU. 
A problem of these RL forecasting systems is that the value of reward in SGA algorithm 
influences learning convergence seriously, the optimum reward should be searched 
experimentally for different time series. Another problem of SOFNN with SGA is how to  
tune up initial value of deviation parameter in membership function and the threshold those  
were also modified by observing prediction error in training experiments. In fact, when 
SOFNN with SGA was applied on an neural forecasting competition “NN3” where 11 time 
series sets were used as benchmark, it did not work sufficiently in the long-term prediction  
comparing with the results of other methods (Kuremoto et. al, 2007; Crone & Nikolopoulos, 
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2007). All these problems remain to be resolved, and it is expected that RL forecasting 
systems will be developed remarkably in the future. 
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