
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6

On-line Scheduling on Identical Machines for
Jobs with Arbitrary Release Times

Rongheng Li1 and Huei-Chuen Huang2

1Department of Mathematics, Hunan Normal University,
2Department of Industrial and Systems Engineering, National University of Singapore

1China., 2Singapore

1. Introduction

In the theory of scheduling, a problem type is categorized by its machine environment, job
characteristic and objective function. According to the way information on job characteristic
being released to the scheduler, scheduling models can be classified in two categories. One
is termed off-line in which the scheduler has full information of the problem instance, such
as the total number of jobs to be scheduled, their release times and processing times, before
scheduling decisions need to be made. The other is called on-line in which the scheduler
acquires information about jobs piece by piece and has to make a decision upon a request
without information of all the possible future jobs. For the later, it can be further classified
into two paradigms.
1. Scheduling jobs over the job list (or one by one). The jobs are given one by one

according to a list. The scheduler gets to know a new job only after all earlier jobs have
been scheduled.

2. Scheduling jobs over the machines' processing time. All jobs are given at their release
times. The jobs are scheduled with the passage of time. At any point of the machines'
processing time, the scheduler can decide whether any of the arrived jobs is to be
assigned, but the scheduler has information only on the jobs that have arrived and has
no clue on whether any more jobs will arrive.

Most of the scheduling problems aim to minimize some sort of objectives. A common
objective is to minimize the overall completion time Cmax, called makespan. In this chapter
we also adopt the same objective and our problem paradigm is to schedule jobs on-line over
a job list. We assume that there are a number of identical machines available and measure
the performance of an algorithm by the worst case performance ratio. An on-line algorithm

is said to have a worst case performance ratio σ if the objective of a schedule produced by

the algorithm is at most σ times larger than the objective of an optimal off-line algorithm for
any input instance.
For scheduling on-line over a job list, Graham (1969) gave an algorithm called List
Scheduling (LS) which assigns the current job to the least loaded machine and showed that

LS has a worst case performance ratio of where m denotes the number of machines

available. Since then no better algorithm than LS had been proposed until Galambos &
Woeginger (1993) and Chen et al. (1994) provided algorithms with better performance for

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Multiprocessor Scheduling: Theory and Applications 100

m 4. Essentially their approach is to schedule the current job to one of the two least loaded
machines while maintaining some machines lightly loaded in anticipation of the possible
arrival of a long job. However for large m, their performance ratios still approach 2 because
the algorithms leave at most one machine lightly loaded. The first successful approach to
bring down the ratio from 2 was given by Bartal et al. (1995), which keeps a constant fraction
of machines lightly loaded. Since then a few other algorithms which are better than LS have
been proposed (Karger et al. 1996, Albers 1999). As far as we know, the current best
performance ratio is 1.9201 which was given by Fleischer & Wahl (2000).
For scheduling on-line over the machines' processing time, Shmoys et al. (1995) designed a
non-clairvoyant scheduling algorithm in which it is assumed any job's processing time is not
known until it is completed. They proved that the algorithm has a performance ratio of 2.
Some other work on the non-clairvoyant algorithm was done by Motwani et al. (1994). On
the other hand, Chen & Vestjens (1997) considered the model in which jobs arrive over time
and the processing time is known when a job arrives. They showed that a dynamic LPT
algorithm, which schedules an available job with the largest processing time once a machine
becomes available, has a performance ratio of 3/2.
In the literature, when job's release time is considered, it is normally assumed that a job
arrives before the scheduler needs to make an assignment on the job. In other words, the
release time list synchronizes with the job list. However in a number of business operations,
a reservation is often required for a machine and a time slot before a job is released. Hence
the scheduler needs to respond to the request whenever a reservation order is placed. In this
case, the scheduler is informed of the job's arrival and processing time and the job's request
is made in form of order before its actual release or arrival time. Such a problem was first
proposed by Li & Huang (2004), where it is assumed that the orders appear on-line and
upon request of an order the scheduler must irrevocably pre-assign a machine and a time
slot for the job and the scheduler has no clue or whatsoever of other possible future orders.
This problem is referred to as an on-line job scheduling with arbitrary release times, which
is the subject of study in the chapter. The problem can be formally defined as follows. For a
business operation, customers place job orders one by one and specify the release time rj

and the processing time pj of the requested job Jj. Upon request of a customer's job order, the
operation scheduler has to respond immediately to assign a machine out of the m available
identical machines and a time slot on the chosen machine to process the job without
interruption. This problem can be viewed as a generalization of the Graham's classical on-
line scheduling problem as the later assumes that all jobs' release times are zero.
In the classical on-line algorithm, it is assumed that the scheduler has no information on the
future jobs. Under this situation, it is well known that no algorithm has a better performance
ratio than LS for m 3 (Faigle et al. 1989) . It is then interesting to investigate whether the
performance can be improved with additional information. To respond to this question, the
semi-online scheduling is proposed. In the semi-online version, the conditions to be
considered online are partially relaxed or additional information about jobs is known in
advance and one wishes to make improvement of the performance of the optimal algorithm
with respect to the classical online version. Different ways of relaxing the conditions give
rise to different semi-online versions (Kellerer et al. 1997). Similarly several types of
additional information are proposed to get algorithms with better performance. Examples
include the total length of all jobs is known in advance (Seiden et al. 2000), the largest length
of jobs is known in advance (Keller 1991, He et al. 2007), the lengths of all jobs are known in

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 101

[p, rp] where p > 0 and r 1 which is called on-line scheduling for jobs with similar lengths
(He & Zhang 1999, Kellerer 1991), and jobs arrive in the non- increasing order of their
lengths (Liu et al. 1996, He & Tan 2001, 2002, Seiden et al. 2000). More recent publications on
the semi-online scheduling can be found in Dosa et al. (2004) and Tan & He (2001, 2002). In
the last section of this chapter we also extend our problem to be semi-online where jobs are
assumed to have similar lengths.
The rest of the chapter is organized as follows. Section 2 defines a few basic terms and the
LS algorithm for our problem. Section 3 gives the worst case performance ratio of the LS
algorithm. Section 4 presents two better algorithms, MLS and NMLS, for m 2. Section 5
proves that NMLS has a worst case performance ratio not more than 2.78436. Section 6
extends the problem to be semi-online by assuming that jobs have similar lengths. For
simplicity of presentation, the job lengths are assumed to be in [l, r] or p is assumed to be 1.
In this section the LS algorithm is studied. For m 2, it gives an upper bound for the
performance ratio and shows that 2 is an upper bound when . For m = 1, it shows

that the worst case performance ratio is and in addition it gives a lower bound for

the performance ratio of any algorithm.

2. Definitions and algorithm LS

Definition 1. Let L = {J1, J2,... , Jn} be any list of jobs, where job Jj(j = 1, 2, ... , n) arrives at its
release time rj and has a processing time of pj. There are m identical machines available.
Algorithm A is a heuristic algorithm. and denote the makespans of

algorithm A and an optimal off-line algorithm respectively. The worst case performance
ratio of Algorithm A is defined as

Definition 2. Suppose that Jj is the current job with release time rj and processing time pj.
Machine Mi is said to have an idle time interval for job Jj, if there exists a time interval [T1,T2]
satisfying the following conditions:

1. Machine Mi is idle in interval [T1,T2J and a job has been assigned on Mi to start processing at time
T2.

2. T2 – max{T1, rj} pj.

It is obvious that if machine Mi has an idle time interval [T1,T2] for job Jj, then job Jj can be
assigned to machine Mi in the idle interval.
Algorithm LS
Step 1. Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... ,m).

Reorder machines such that L1 L2 ... Lm and let Jn be a new job given to the
algorithm with release time rn and running time pn.

Step 2. If there exist some machines which have idle intervals for job Jn, then select a
machine Mi which has an idle interval [T1,T2] for job Jn with minimal T1 and assign
job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle interval.
Otherwise go to Step 3.

Step 3. Let s = max{rn, L1}. Job Jn is assigned to machine M1 at time s to start the processing.

Multiprocessor Scheduling: Theory and Applications 102

We say that a job sequence is assigned on machine Mi if starts at its

release time and starts at its release time or the completion time of ,

depending on which one is bigger.

In the following we let denote the job list assigned on machine

Mi in the LS schedule and denote the job list assigned on

machine Mi in an optimal off-line schedule, where (s = 1, 2, ... , q).

3. Worst case performance of algorithm LS

For any job list L = {J1, J2, ... , Jn}, if r1 r2 ... rn, it is shown that R(m, LS) 2 in Hall and
Shmoys(1989). In the next theorem we provide the exact performance ratio.
Theorem 1 For any job list L = {J1, J2, ... , Jn}, if r1 r2 ... rn, then we have

(1)

Proof: We will prove this theorem by argument of contradiction. Suppose that there exists
an instance L, called a counterexample, satisfying:

Let L = {J1, J2, ... , Jn} be a minimal counterexample, i.e., a counterexample consisting of a
minimum number of jobs. It is easy to show that, for a minimal counterexample L,

holds.

Without loss of generality we can standardize L such that r1 = 0. Because if this does not
hold, we can alter the problem instance by decreasing the releasing times of all jobs by r1.
After the altering, the makespans of both the LS schedule and the optimal schedule will
decrease by r1, and correspondingly the ratio of the makespans will increase. Hence the
altered instance provides a minimal counterexample with r1 = 0.
Next we show that, at any time point from 0 to , at least one machine is not idle in

the LS schedule. If this is not true, then there is a common idle period within time interval
[0,] in the LS schedule. Note that, according to the LS rules and the assumption

that r1 r2 ... rn, jobs assigned after the common idle period must be released after this
period. If we remove all the jobs that finish before this idle period, then the makespan of the
LS schedule remains the same as before, whereas the corresponding optimal makespan does
not increase. Hence the new instance is a smaller counterexample, contradicting the
minimality. Therefore we may assume that at any time point from 0 to at least one

machine is busy in the LS schedule.
As r1 r2 ... rn, it is also not difficult to see that no job is scheduled in Step 2 in the LS
schedule.
Now we consider the performance ratio according to the following two cases:
Case 1. The LS schedule of L contains no idle time.
In this case we have

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 103

Case 2. There exists at least a time interval during which a machine is idle in the LS
schedule. In this case, let [a, b] be such an idle time interval with a < b and b being the
biggest end point among all of the idle time intervals. Set

A = {Jj|Jj finishes after time b in the LS schedule}.

Let B be the subset of A consisting of jobs that start at or before time a. Let S(Jj)(j = 1, 2, ... ,n)
denote the start time of job Jj in the LS schedule. Then set B can be expressed as follows:

B = {Jj|b — pj < S(Jj) a}.

By the definitions of A and B we have S(Jj) > a for any job Jj A\ B. If both rj < b and rj < S(Jj)
hold for some Jj A \ B, we will deduce a contradiction as follows. Let

be the completion times of Mi just before job Jj is assigned in the LS

schedule. First observe that during the period [a, b], at least one machine must be free in the
LS schedule. Denote such a free machine by and let be the machine to which Jj is

assigned. Then a < S(Jj) = because rj < S(Jj) and Jj is assigned by Step 3. On the other hand

we have that a because rj < b and must be free in (a,) in the LS schedule before

Jj is assigned as all jobs assigned on machine to start at or after b must have higher

indices than job Jj. This implies < and job Jj should be assigned to machine ,

contradicting the assumption that job Jj is assigned to machine instead. Hence, for any

job Jj A \ B, either rj b or rj = S(Jj). As a consequence, for any job Jj A \ B, the
processing that is executed after time b in the LS schedule cannot be scheduled earlier than b
in any optimal schedule. Let = 0 if B is empty and if B is

not empty. It is easy to see that the amount of processing currently executed after b in the LS
schedule that could be executed before b in any other schedule is at most |B|. Therefore,
taking into account that all machines are busy during [b,L1] and that |B| m — 1, we obtain
the following lower bound based on the amount of processing that has to be executed after
time b in any schedule:

On the other hand let us consider all the jobs. Note that, if > 0, then in the LS schedule,
there exists a job Jj with S(Jj) a and S(Jj) – rj = . It can be seen that interval [rj, S(Jj)] is a

Multiprocessor Scheduling: Theory and Applications 104

period of time before a with length of , during which all machines are busy just before Jj is
assigned. This is because no job has a release time bigger than rj before Jj is assigned and, by

the facts that S(Jj) – rj = > 0, and . Combining with the

observations that during the time interval [b, L1] all machines are occupied and at any other
time point at least one machine is busy, we get another lower bound based on the total
amount of processing:

Adding up the two lower bounds above, we get

Because rn b, we also have

Hence we derive

Hence we have . This creates a contradiction as L is a counterexample

satisfying . It is also well-known in Graham (1969) that, when r1= r2 =

...= rn = 0, the bound is tight. Hence (1) holds.
However, for jobs with arbitrary release times, (1) does not hold any more, which is stated in
the next theorem.
Theorem 2. For the problem of scheduling jobs with arbitrary release times,

Proof: Let L = { J1, J2, ... , Jn} be an arbitrary sequence of jobs. Job Jj has release time rj and
running time pj (j = 1, 2, ... ,n). Without loss of generality, we suppose that the scheduled
completion time of job Jn is the largest job completion time for all the machines, i.e. the

makespan. Let P be , ui (i = 1, 2, ... , m) be the total idle time of machine Mi, and s be

the starting time of job Jn. Let u = s — L1, then we have

It is obvious that

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 105

Because max {r1, r2, ... , rn} we have ui (i = 1, 2, ... ,m). So

By the arbitrariness of L we have . The following example shows that

the bound of is tight.

Let with

It is easy to see that the LS schedule is

Thus . One optimal off-line schedule is

Thus . Hence

Let tend to zero, we have . That means .

The following theorem says that no on-line algorithm can have a worst case performance
ratio better than 2 when jobs' release times are arbitrary.
Theorem 3. For scheduling jobs with arbitrary release times, there is no on-line algorithm
with worst case ratio less then 2.
Proof. Suppose that algorithm A has worst case ratio less than 2. Let L = { J1, J2, ... , Jm+1}, with
r1 = l, p1 = , rj = 0, pj = S + (j = 2, 3, ... , m + 1), where S 1 is the starting processing time of

Multiprocessor Scheduling: Theory and Applications 106

job J1. Let = { J1; ... , Jk}(k = 1, 2, ... , m + 1). Because R(m, A) < 2, any two jobs from the job

set cannot be assigned to the same machine and also . But

, so

Let tend to zero, we get R(m, A) 2, which leads to a contradiction.
From the conclusions of Theorem 2 and Theorem 3, we know that algorithm LS is optimal
for m = 1.

4. Improved Algorithms for m 2

For m 2, to bring down the performance ratio, Li & Huang (2004) introduced a modified

LS algorithm, MLS, which satisfies R(m, MLS) with . To

describe the algorithm, we let

where denotes the largest integer not bigger than .

In MLS, two real numbers and will be used. They satisfy

and > 0, where and is a root of the following equation

Algorithm MLS
Step 1. Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... , m).

Reorder machines such that L1 L2 ... Lm and let Jn be a new job given to the
algorithm. Set Lm+1 = + .

Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a
machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we
assign job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle
interval. If no such Mi exists, go to step 3.

Step 3. If rn L1, we assign Jn on machine M1 to start at time L1.
Step 4. If Lk < rn Lk+1 for some 1 k m and pn mrn, then we assign Jn on machine Mk to

start at time rn.
Step 5. If Lk < rn Lk+1 for some 1 k m and pn < mrn and Lk+1 + pn (rn + pn), then we

assign Jn on machine Mk+1 to start at time Lk+1.
Step 6. If Lk < rn Lk+1 for some 1 k m and pn < mrn and Lk+1 + pn > (rn + pn), then we

assign Jn on machine Mk to start at time rn.
The following theorem was proved in Li & Huang (2004).
Theorem 4. For any m 2, we have

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 107

Furthermore, there exists a fixed positive number independent of m such that

Another better algorithm, NLMS, was further proposed by Li & Huang (2007). In the
following we will describe it in detail and reproduce the proofs from Li & Huang (2007). In
the description, three real numbers , and will be used, where

and they are the roots of the next three equations.

(2)

(3)

(4)

The next lemma establishes the existence of the three numbers and relate them to figures.
Lemma 5. There exist = , y = and z = satisfying equations (2), (3) and (4) with

 and 2 < 2.78436 for

any m 2.
Proof. By equation (3) and (4), we have

 (5)

Let . It is easy to check that

Hence there exists exactly one real number 1 < < 2 satisfying equation (5).
By equation (2), we have

where the two inequalities result from > 1.

By equation (3), we get and

Let . It is easy to show that and

. Because , we have . Because of equation (5), we get

Multiprocessor Scheduling: Theory and Applications 108

Hence = 1.75831. In addition, by equation (5), we have = 1.56619.

Noticing that is an increasing function on q as , we have

That means holds. In the same way as above, we can show that

 holds. Thus holds for any m 2.

By equation (4), we have and hence

. Thus we get and

i.e. . Similarly we can get . That means

2< 2.78436 holds for any m 2.
For simplicity of presentation, in the following we drop the indices and write the three
numbers as if no confusion arises. The algorithm NMLS can be described as
follows:
Algorithm NMLS

Step 0. := 0, Li := 0, i = 1, 2, ... , m. Lm+1 := + .

Step 1. Assume that Li is the scheduled completion time of machine Mi after job Jn-1 is

assigned. Reorder machines such that L1 L2 ... Lm. (s) (s = 1, 2, ... , m)

represents the sth smallest number of , i = 1, 2, ... , m. Let Jn be a new job

given to the algorithm.
Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a

machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we

assign job Jn on machine Mi to start at time max{T1, rn} in the idle interval. :=

, i = 1, 2, ... , m. If no such Mi exists, go to Step 3.

Step 3. If rn < L1, we assign Jn on machine M1 to start at time L1. := , i = 1, 2, ... , m.

Step 4. If Lk rn < Lk+1 and all of the following conditions hold:

(a) ,

(b) ,

(c) ,

(d) ,

then we assign Jn on machine Mk+1 to start at time Lk+1 and set := , i = 1,

2, ... , m. Otherwise go to Step 5.

Step 5. Assign job Jn on machine Mk to start at time rn. Set ,i k.

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 109

5. Performance ratio analysis of algorithm NMLS

In the rest of this section, the following notation will be used: For any 1 j < n, 1 i m, we

use to denote the job list {J1, J2, ... , Jj} and to denote the completion time of machine

Mi before job Jj is assigned. For a given job list L , we set

where ui (L) (i = 1, 2, ... , m) is the total idle time of machine Mi when job list L is scheduled
by algorithm NMLS. We first observe the next two simple inequalities which will be used in
the ratio analysis.

(6)

(7)

Also if there exists a subset in job list L satisfying ,

then the next inequality holds.

(8)

In addition, if j1 > j2, then

In order to estimate U(L), we need to consider how the idle time is created. For a new job Jn

given to algorithm NMLS, if it is assigned in Step 5, then a new idle interval [Lk, rn] is
created. If it is assigned in Step 3 or Step 4, no new idle time is created. If it is assigned in
Step 2, new idle intervals may appear, but no new idle time appears. Hence only when a job
is assigned in Step 5 can it make the total sum of idle time increase. Because of this fact, we
will say idle time is created only by jobs which are assigned in Step 5. We further define the
following terminologies

• A job J is referred to as an idle job on machine Mi, 1 i m, if it is assigned on machine
Mi in Step 5. An idle job J is referred to as a last idle job on machine Mi, 1 i m, if J is
assigned on machine Mi and there is no idle job on machine Mi after job J.

In the following, for any machine Mi, we will use to represent the last idle job on

machine Mi if there exist idle jobs on machine Mi, otherwise to represent the first job

(which starts at time 0) assigned on machine Mi.
Next we set

By the definitions of our notation, it is easy to see that the following facts are true:

Multiprocessor Scheduling: Theory and Applications 110

For the total idle time U(L), the next lemma provides an upper bound.
Lemma 6. For any job list L = {J1, J2, ... , Jn}, we have

Proof. By the definition of R, no machine has idle time later than time point R. We will
prove this lemma according to two cases.
Case 1. At most machines in A are idle simultaneously in any interval [a, b] with

 a < b.

Let vi be the sum of the idle time on machine Mi before time point and be the sum of

the idle time on machine Mi after time point , i = 1, 2, ... , m. The following facts are

obvious:

In addition, we have

because at most machines in A are idle simultaneously in any interval [a, b] with

 a < b R. Thus we have

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 111

Case 2. At least machines in A are idle simultaneously in an interval [a, b]

with a < b.

In this case, we select a and b such that at most machines in A are idle

simultaneously in any interval [a', b'] with a < b a' < b'. Let

That means > by our assumption. Let , be such a machine that its

idle interval [a, b] is created last among all machines . Let

Suppose the idle interval [a, b] on machine is created by job . That means that the idle

interval [a, b] on machine Mi for any i A' has been created before job is assigned. Hence

we have for any i A'. In the following, let

We have b because b and b, i A'.

What we do in estimating is to find a job index set S such that each job Jj (j S)

satisfies and . And hence by (8) we have

To do so, we first show that

 (9)

holds. Note that job must be assigned in Step 5 because it is an idle job. We can conclude

that (9) holds if we can prove that job is assigned in Step 5 because the condition (d) of

Step 4 is violated. That means we can establish (9) by proving that the following three
inequalities hold by the rules of algorithm NMLS:

(a)

(b)

(c)

The reasoning for the three inequalities is:

(a). As we have

Multiprocessor Scheduling: Theory and Applications 112

Next we have because idle interval [a, b] on machine is created by job .

Hence we have

i.e. the first inequality is proved.

(b). This follows because .

(c). As we have .

For any i A', by (9) and noticing that and , we

have

That means job appears before , i.e. . We set

is processed in interval on machine Mi}, i A';

We have because is the last idle job on machine Mi for any i

A'. Hence we have

(10)

Now we will show the following (11) holds:

(11)

It is easy to check that and for any i A', i.e. (11) holds for any

j Si (i A') and j = . For any j Si (i A') and j , we want to establish (11) by
showing that Jj is assigned in Step 4. It is clear that job Jj is not assigned in Step 5 because it

is not an idle job. Also > j because . Thus we have

where the first inequality results from j and the last inequality results from > j. That
means Jj is not assigned in Step 3 because job Jj is not assigned on the machine with the

smallest completion time. In addition, observing that job is the last idle job on machine

Mi and by the definition of Si, we can conclude that Jj is assigned on machine Mi

to start at time . That means j > and Jj cannot be assigned in Step 2. Hence Jj must be

assigned in Step 4. Thus by the condition (b) in Step 4, we have

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 113

where the second inequality results from j > . Summing up the conclusions above, for any
j S, (11) holds. By (8), (10) and (11) we have

Now we begin to estimate the total idle time U(L). Let be the sum of the idle time on
machine Mi before time point and be the sum of the idle time on machine Mi after

time point , i = 1, 2, ... , m. The following facts are obvious by our definitions:

By our definition of b and k1, we have that b and hence at most machines in

A are idle simultaneously in any interval [a', b'] with a' < b' R. Noting that no

machine has idle time later than R, we have

Thus we have

The last inequality follows by observing that the function is a

decreasing function of for . The second inequality follows because

 and is a decreasing function of

on . The fact that is a decreasing function follows because < 0 as

The next three lemmas prove that is an upper bound for . Without loss of

generality from now on, we suppose that the completion time of job Jn is the largest job

completion time for all machines, i.e. the makespan . Hence according to this

assumption, Jn cannot be assigned in Step 2.

Multiprocessor Scheduling: Theory and Applications 114

Lemma 7. If Jn is placed on Mk with Lk rn < Lk+1 , then

Proof. This results from = rn+pn and rn+pn.

Lemma 8. If Jn is placed on Mk+1 with Lk rn < Lk+1, then

Proof. Because = Lk+1+pn and rn +pn, this lemma holds if Lk+1+pn

(pn + rn).

Suppose Lk+1+pn > (pn + rn). For any 1 i m, let

is processed in interval on machine Mi}.

It is easy to see that

hold. Let

By the rules of our algorithm, we have

because Jn is assigned in Step 4. Hence we have and .

By the same way used in the proof of Lemma 6, we can conclude that the following
inequalities hold for any i B:

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 115

Thus by (8) and (10) we have

The second last inequality results from that and

as . The last equality follows because and rn r11. Also we have

 because Jn is assigned in Step 4. Hence we have

The second inequality results from the fact that is a decreasing

function of for . The last inequality results from

 and the last equation results from equation (4).

Lemma 9. If job Jn is placed on machine M1, then we have

Multiprocessor Scheduling: Theory and Applications 116

Proof. In this case we have L1 rn and = L1 + pn . Thus we have

The next theorem proves that NMLS has a better performance than MLS for m 2.
Theorem 10. For any job list L and m 2, we have

Proof. By Lemma 5 and Lemma 7—Lemma 9, Theorem 10 is proved.
The comparison for some m among the upper bounds of the three algorithms' performance

ratios is made in Table 1, where .

m αm m R(m, LS) R(m, MLS) R(m, NMLS)

2 2.943 1.443 2.50000 2.47066 2.3465

3 3.42159 1.56619 2.66667 2.63752 2.54616

9 3.88491 1.68955 2.88889 2.83957 2.7075

12 3.89888 1.69333 2.91668 2.86109 2.71194

oo 4.13746 1.75831 3.00000 2.93920 2.78436

Table 1. A comparison of LS, MLS, and NMLS

6. LS scheduling for jobs with similar lengths

In this section, we extend the problem to be semi-online and assume that the processing
times of all the jobs are within [l,r], where r 1. We will analyze the performance of the LS
algorithm. First again let L be the job list with n jobs. In the LS schedule, let Li be the
completion time of machine Mi and ui1, ... , uiki denote all the idle time intervals of machine

Mi (i = 1, 2, ... , m) just before Jn is assigned. The job which is assigned to start right after uij is
denoted by Jij with release time rij and processing time pij. By the definitions of uij and rij, it is
easy to see that rij is the end point of uij. To simplify the presentation, we abuse the notation
and use uij to denote the length of the particular interval as well.

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 117

The following simple inequalities will be referred later on.

(12)

(13)

(14)

where U is the total idle time in the optimal schedule.
The next theorem establishes an upper bound for LS when m 2 and a tight bound when
m = 1.
Theorem 11. For any m 2, we have

(15)

and .

We will prove this theorem by examining a minimal counter-example of (15). A job list L = {
J1, J2, ... Jn} is called a minimal counter-example of (15) if (15) does not hold for L, but (15)
holds for any job list L' with |L'| < |L|. In the following discussion, let L be a minimal
counter-example of (15). It is obvious that, for a minimal counter-example L, the makespan
is the completion time of the last job Jn, i.e. L1 + pn. Hence we have

We first establish the following Observation and Lemma 12 for such a minimal counter-
example.
Observation. In the LS schedule, if one of the machines has an idle interval [0, T] with T > r,
then we can assume that at least one of the machines is scheduled to start processing at time
zero.
Proof. If there exists no machine to start processing at time zero, let be the earliest starting

time of all the machines and . It is not difficult to see that any job's
release time is at least t0 because, if there exists a job with release time less than t0, it would
be assigned to the machine with idle interval [0, T] to start at its release time by the rules of
LS. Now let L' be the job list which comes from list L by pushing forward the release time of
each job to be t0 earlier. Then L' has the same schedule as L for the algorithm LS. But the
makespan of L' is t0 less than the makespan of L not only for the LS schedule but also for the
optimal schedule. Hence we can use L' as a minimal counter example and the observation
holds for L'.

Multiprocessor Scheduling: Theory and Applications 118

Lemma 12. There exists no idle time with length greater than 2r when m 2 and there is no
idle time with length greater than r when m = 1 in the LS schedule.
Proof. For m 2 if the conclusion is not true, let [T1, T2] be such an interval with T2—T1 > 2r.
Let L0 be the job set which consists of all the jobs that are scheduled to start at or before time

T1. By Observation , L0 is not empty. Let = L \ L0. Then is a counter-example too

because has the same makespan as L for the algorithm LS and the optimal makespan of

 is not larger than that of L. This is a contradiction to the minimality of L. For m = 1, we
can get the conclusion by employing the same argument.
Now we are ready to prove Theorem 11.
Proof. Let be the largest length of all the idle intervals. If , then by (12), (13) and

(14) we have

Next by use of 1 + instead of pn and observe that pn r we have

So if m 2, r and , we have

because is a decreasing function of . Hence the conclusion for m 2

and r is proved. If m 2 and
1

m
r
m

<

−

we have

because 2 by Lemma 12 and is an increasing function of .

Hence the conclusion for m 2 is proved. For m = 1 we have

On-line Scheduling on Identical Machines for Jobs with Arbitrary Release Times 119

because < 1 by Lemma 12. Consider L = {J1, J2} with r1 = r — ,p1 = 1, r2 = 0, p2 = r and let
tend to zero. Then we can show that this bound is tight for m = 1.
From Theorem 11, for m 2 and 1 r < we have R(m, LS) < 2 because

 is an increasing function of r and . This

is significant because no online algorithm can have a performance ratio less than 2 as stated
in Theorem 3. An interesting question for the future research is then how to design a better
algorithm than LS for this semi-online scheduling problem. The next theorem provides a
lower bound of any on-line algorithm for jobs with similar lengths when m = 1.
Theorem 13. For m = 1 and any algorithm A for jobs with lengths in [1, r], we have

where satisfies the following conditions:

a)

b)
Proof. Let job J1 be the first job in the job list with p1 = 1 and r1 = . Assume that if J1 is
assigned by algorithm A to start at any time in [, r), then the second job J2 comes with p2= r
and r2 = 0. Thus for these two jobs, 1 + r + and = 1 + r. Hence we get

On the other hand, if J1 is assigned by algorithm A to start at any time k, k [r,), then the

second job J2 comes with p2 = r and r2 = k — r + . Thus for these two jobs, 1 + r + k

and = 1 +k + . Hence we get

Let tend to zero, we have

where the second inequality results from the fact that is a decreasing function of

for 0. Lastly assume that if J1 is assigned by algorithm A to start at any time after , then

no other job comes. Thus for this case, 1 + and = 1 + . Hence we get

For r = 1, we get = 0.7963 and hence R(l, A) 1.39815. Recall from Theorem 11, R(l, LS) =
1.5 when r = 1. Therefore LS provides a schedule which is very close to the lower bound.

7. References

Albers, S. (1999) Better bounds for online scheduling. SIAM J. on Computing, Vol.29, 459-473.

Multiprocessor Scheduling: Theory and Applications 120

Bartal, Y., Fiat, A., Karloff, H. & Vohra, R. (1995) New algorithms for an ancient scheduling
problem. J. Comput. Syst. Sci., Vol.51(3), 359-366.

Chen, B., Van Vliet A., & Woeginger, G. J. (1994) New lower and upper bounds for on-line
scheduling. Operations Research Letters, Vol.16, 221-230.

Chen, B. & Vestjens, A. P. A. (1997) Scheduling on identical machines: How good is LPT in
an on-line setting? Operations Research Letters, Vol.21, 165-169.

Dosa, G., Veszprem, & He, Y. (2004) Semi-online algorithms for parallel machine scheduling
problems. Computing, Vol.72, 355-363.

Faigle, U., Kern, W., & Turan, G. (1989) On the performance of on-line algorithms for
partition problems. Act Cybernetica, Vol.9, 107-119.

Fleischer R. & Wahl M. (2000) On-line scheduling revisited. Journal of Scheduling. Vol.3, 343-353.
Galambos, G. & Woeginger, G. J. (1993) An on-line scheduling heuristic with better worst

case ratio than Graham's List Scheduling. SIAM J. Comput. Vol.22, 349-355.
Graham, R. L. (1969) Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.

Vol.17, 416-429.
Hall, L. A. & Shmoys, D. B. (1989) Approximation schemes for constrained scheduling

problems. Proceedings of 30th Ann. IEEE Symp. on foundations of computer science,
IEEE Computer Society Press, Loss Alamitos, CA, 134-139.

He, Y., Jiang, Y., & Zhou, H. (2007) Optimal Preemptive Online Algorithms for Scheduling with
Known Largest Size on two Uniform Machines, Acta Mathematica Sinica, Vol.23, 165-174.

He, Y. & Tan, Z. Y. (2002) Ordinal on-line scheduling for maximizing the minimum machine
completion time. Journal of Combinatorial Optimization. Vol.6, 199-206.

He, Y. & Zhang, G. (1999) Semi on-line scheduling on two identical machines. Computing,
Vol.62, 179-187.

Karger, D. R., Philips, S. J., & Torng, E. (1996) A better algorithm for an ancient scheduling
problem. J. of Algorithm, vol.20, 400-430.

Kellerer, H. (1991) Bounds for non-preemptive scheduling jobs with similar processing times
on multiprocessor systems using LPT-algorithm. Computing, Vol.46, 183-191.

Kellerer, H., Kotov, V., Speranza, M. G., & Tuza, Z. (1997) Semi on-line algorithms for the
partition problem. Operations Research Letters. Vol.21, 235-242.

Li, R. & Huang, H. C. (2004) On-line Scheduling for Jobs with Arbitrary Release Times.
Computing, Vol.73, 79-97.

Li, R. & Huang, H. C. (2007) Improved Algorithm for a Generalized On-line Scheduling
Problem. European Journal of operational research, Vol.176, 643-652.

Liu, W. P., Sidney, J. B. & Vliet, A. (1996) Ordinal algorithm for parallel machine scheduling.
Operations Research Letters. Vol.18, 223-232.

Motwani, R., Phillips, S. & Torng, E. (1994) Non-clairvoyant scheduling. Theoretical computer
science, Vol.130, 17-47.

Seiden, S., Sgall, J., & Woeginger, G. J. (2000) Semi-online scheduling with decreasing job
sizes. Operations Research Letters. Vol.27, 215-221.

Shmoys, D. B., Wein, J. & Williamson, D. P. (1995) Scheduling parallel machines on-line.
SIAM. J. Computing, Vol.24, 1313-1331.

Tan, Z. Y. & He, Y. (2001) Semi-online scheduling with ordinal data on two Uniform
Machines. Operations Research Letters. Vol.28, 221-231.

Tan, Z. Y. & He, Y. (2002) Semi-online problem on two identical machines with combined
partial information. Operations Research Letters. Vol.30, 408-414.

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rongheng Li and Huei-Chuen Huang (2007). On-line Scheduling on Identical Machines for Jobs with Arbitrary

Release Times, Multiprocessor Scheduling, Theory and Applications, Eugene Levner (Ed.), ISBN: 978-3-

902613-02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/on-

line_scheduling_on_identical_machines_for_jobs_with_arbitrary_release_times

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

