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1. Introduction 

In the theory of scheduling, a problem type is categorized by its machine environment, job 
characteristic and objective function. According to the way information on job characteristic 
being released to the scheduler, scheduling models can be classified in two categories. One 
is termed off-line in which the scheduler has full information of the problem instance, such 
as the total number of jobs to be scheduled, their release times and processing times, before 
scheduling decisions need to be made. The other is called on-line in which the scheduler 
acquires information about jobs piece by piece and has to make a decision upon a request 
without information of all the possible future jobs. For the later, it can be further classified 
into two paradigms. 
1. Scheduling jobs over the job list (or one by one). The jobs are given one by one 

according to a list. The scheduler gets to know a new job only after all earlier jobs have 
been scheduled. 

2. Scheduling jobs over the machines' processing time. All jobs are given at their release 
times. The jobs are scheduled with the passage of time.  At any point of the machines' 
processing time, the scheduler can decide whether any of the arrived jobs is to be 
assigned, but the scheduler has information only on the jobs that have arrived and has 
no clue on whether any more jobs will arrive. 

Most of the scheduling problems aim to minimize some sort of objectives. A common 
objective is to minimize the overall completion time Cmax, called makespan. In this chapter 
we also adopt the same objective and our problem paradigm is to schedule jobs on-line over 
a job list. We assume that there are a number of identical machines available and measure 
the performance of an algorithm by the worst case performance ratio. An on-line algorithm 

is said to have a worst case performance ratio σ if the objective of a schedule produced by 

the algorithm is at most σ times larger than the objective of an optimal off-line algorithm for 
any input instance. 
For scheduling on-line over a job list, Graham (1969) gave an algorithm called List 
Scheduling (LS) which assigns the current job to the least loaded machine and showed that 

LS has a worst case performance ratio of  where m denotes the number of machines 

available. Since then no better algorithm than LS had been proposed until Galambos & 
Woeginger (1993) and Chen et al. (1994) provided algorithms with better performance for 

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria
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m  4. Essentially their approach is to schedule the current job to one of the two least loaded 
machines while maintaining some machines lightly loaded in anticipation of the possible 
arrival of a long job. However for large m, their performance ratios still approach 2 because 
the algorithms leave at most one machine lightly loaded. The first successful approach to 
bring down the ratio from 2 was given by Bartal et al. (1995), which keeps a constant fraction 
of machines lightly loaded. Since then a few other algorithms which are better than LS have 
been proposed (Karger et al. 1996, Albers 1999). As far as we know, the current best 
performance ratio is 1.9201 which was given by Fleischer & Wahl (2000). 
For scheduling on-line over the machines' processing time, Shmoys et al. (1995) designed a 
non-clairvoyant scheduling algorithm in which it is assumed any job's processing time is not 
known until it is completed. They proved that the algorithm has a performance ratio of 2. 
Some other work on the non-clairvoyant algorithm was done by Motwani et al. (1994). On 
the other hand, Chen & Vestjens (1997) considered the model in which jobs arrive over time 
and the processing time is known when a job arrives. They showed that a dynamic LPT 
algorithm, which schedules an available job with the largest processing time once a machine 
becomes available, has a performance ratio of 3/2. 
In the literature, when job's release time is considered, it is normally assumed that a job 
arrives before the scheduler needs to make an assignment on the job. In other words, the 
release time list synchronizes with the job list. However in a number of business operations, 
a reservation is often required for a machine and a time slot before a job is released. Hence 
the scheduler needs to respond to the request whenever a reservation order is placed. In this 
case, the scheduler is informed of the job's arrival and processing time and the job's request 
is made in form of order before its actual release or arrival time. Such a problem was first 
proposed by Li & Huang (2004), where it is assumed that the orders appear on-line and 
upon request of an order the scheduler must irrevocably pre-assign a machine and a time 
slot for the job and the scheduler has no clue or whatsoever of other possible future orders. 
This problem is referred to as an on-line job scheduling with arbitrary release times, which 
is the subject of study in the chapter. The problem can be formally defined as follows. For a 
business operation, customers place job orders one by one and specify the release time rj

and the processing time pj of the requested job Jj. Upon request of a customer's job order, the 
operation scheduler has to respond immediately to assign a machine out of the m available 
identical machines and a time slot on the chosen machine to process the job without 
interruption. This problem can be viewed as a generalization of the Graham's classical on-
line scheduling problem as the later assumes that all jobs' release times are zero. 
In the classical on-line algorithm, it is assumed that the scheduler has no information on the 
future jobs. Under this situation, it is well known that no algorithm has a better performance 
ratio than LS for m 3 (Faigle et al. 1989) . It is then interesting to investigate whether the 
performance can be improved with additional information. To respond to this question, the 
semi-online scheduling is proposed. In the semi-online version, the conditions to be 
considered online are partially relaxed or additional information about jobs is known in 
advance and one wishes to make improvement of the performance of the optimal algorithm 
with respect to the classical online version. Different ways of relaxing the conditions give 
rise to different semi-online versions (Kellerer et al. 1997). Similarly several types of 
additional information are proposed to get algorithms with better performance. Examples 
include the total length of all jobs is known in advance (Seiden et al. 2000), the largest length 
of jobs is known in advance (Keller 1991, He et al. 2007), the lengths of all jobs are known in 
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[p, rp] where p > 0 and r  1 which is called on-line scheduling for jobs with similar lengths 
(He & Zhang 1999, Kellerer 1991), and jobs arrive in the non- increasing order of their 
lengths (Liu et al. 1996, He & Tan 2001, 2002, Seiden et al. 2000). More recent publications on 
the semi-online scheduling can be found in Dosa et al. (2004) and Tan & He (2001, 2002). In 
the last section of this chapter we also extend our problem to be semi-online where jobs are 
assumed to have similar lengths. 
The rest of the chapter is organized as follows. Section 2 defines a few basic terms and the 
LS algorithm for our problem. Section 3 gives the worst case performance ratio of the LS 
algorithm. Section 4 presents two better algorithms, MLS and NMLS, for m  2. Section 5 
proves that NMLS has a worst case performance ratio not more than 2.78436. Section 6 
extends the problem to be semi-online by assuming that jobs have similar lengths. For 
simplicity of presentation, the job lengths are assumed to be in [l, r] or p is assumed to be 1. 
In this section the LS algorithm is studied. For m  2, it gives an upper bound for the 
performance ratio and shows that 2 is an upper bound when . For m = 1, it shows 

that the worst case performance ratio is and in addition it gives a lower bound for 

the performance ratio of any algorithm. 

2. Definitions and algorithm LS 

Definition 1. Let L = {J1, J2,... , Jn} be any list of jobs, where job Jj(j = 1, 2, ... , n) arrives at its 
release time rj and has a processing time of pj. There are m identical machines available. 
Algorithm A is a heuristic algorithm. and denote the makespans of 

algorithm A and an optimal off-line algorithm respectively. The worst case performance 
ratio of Algorithm A is defined as 

Definition 2. Suppose that Jj is the current job with release time rj and processing time pj.
Machine Mi is said to have an idle time interval for job Jj, if there exists a time interval [T1,T2]
satisfying the following conditions: 

1. Machine Mi is idle in interval [T1,T2J and a job has been assigned on Mi to start processing at time 
T2.

2. T2 – max{T1, rj}  pj.

It is obvious that if machine Mi has an idle time interval [T1,T2] for job Jj, then job Jj can be 
assigned to machine Mi in the idle interval. 
Algorithm LS 
Step 1. Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... ,m).

Reorder machines such that L1  L2  ... Lm and let Jn be a new job given to the 
algorithm with release time rn and running time pn.

Step 2. If there exist some machines which have idle intervals for job Jn, then select a 
machine Mi which has an idle interval [T1,T2] for job Jn with minimal T1 and assign 
job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle interval. 
Otherwise go to Step 3. 

Step 3. Let s = max{rn, L1}. Job Jn is assigned to machine M1 at time s to start the processing. 
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We say that a job sequence is assigned on machine Mi if starts at its 

release time and starts at its release time or the completion time of ,

depending on which one is bigger. 

In the following we let denote the job list assigned on machine 

Mi in the LS schedule and  denote the job list assigned on 

machine Mi in an optimal off-line schedule, where (s = 1, 2, ... , q).

3. Worst case performance of algorithm LS 

For any job list L = {J1, J2, ... , Jn}, if r1  r2  ...  rn, it is shown that R(m, LS)  2 in Hall and 
Shmoys(1989). In the next theorem we provide the exact performance ratio. 
Theorem 1 For any job list L = {J1, J2, ... , Jn}, if r1  r2  ...  rn, then we have 

(1)

Proof: We will prove this theorem by argument of contradiction. Suppose that there exists 
an instance L, called a counterexample, satisfying: 

Let L = {J1, J2, ... , Jn} be a minimal counterexample, i.e., a counterexample consisting of a 
minimum number of jobs. It is easy to show that, for a minimal counterexample L,

holds. 

Without loss of generality we can standardize L such that r1 = 0. Because if this does not 
hold, we can alter the problem instance by decreasing the releasing times of all jobs by r1.
After the altering, the makespans of both the LS schedule and the optimal schedule will 
decrease by r1, and correspondingly the ratio of the makespans will increase. Hence the 
altered instance provides a minimal counterexample with r1 = 0.
Next we show that, at any time point from 0 to , at least one machine is not idle in 

the LS schedule. If this is not true, then there is a common idle period within time interval 
[0, ] in the LS schedule. Note that, according to the LS rules and the assumption 

that r1  r2  ...  rn, jobs assigned after the common idle period must be released after this 
period. If we remove all the jobs that finish before this idle period, then the makespan of the 
LS schedule remains the same as before, whereas the corresponding optimal makespan does 
not increase. Hence the new instance is a smaller counterexample, contradicting the 
minimality. Therefore we may assume that at any time point from 0 to at least one 

machine is busy in the LS schedule. 
As r1  r2  ...  rn, it is also not difficult to see that no job is scheduled in Step 2 in the LS 
schedule. 
Now we consider the performance ratio according to the following two cases: 
Case 1. The LS schedule of L contains no idle time. 
In this case we have 
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Case 2. There exists at least a time interval during which a machine is idle in the LS
schedule. In this case, let [a, b] be such an idle time interval with a < b and b being the 
biggest end point among all of the idle time intervals. Set 

A = {Jj|Jj finishes after time b in the LS schedule}. 

Let B be the subset of A consisting of jobs that start at or before time a. Let S(Jj)(j = 1, 2, ... ,n)
denote the start time of job Jj in the LS schedule. Then set B can be expressed as follows: 

B = {Jj|b — pj < S(Jj) a}.

By the definitions of A and B we have S(Jj) > a for any job Jj  A\ B. If both rj < b and rj < S(Jj)
hold for some Jj  A \ B, we will deduce a contradiction as follows. Let 

be the completion times of Mi just before job Jj is assigned in the LS 

schedule. First observe that during the period [a, b], at least one machine must be free in the 
LS schedule. Denote such a free machine by  and let  be the machine to which Jj is

assigned. Then a < S(Jj) = because rj < S(Jj) and Jj is assigned by Step 3. On the other hand 

we have that  a because rj < b and must be free in (a, ) in the LS schedule before 

Jj is assigned as all jobs assigned on machine to start at or after b must have higher 

indices than job Jj. This implies < and job Jj should be assigned to machine  , 

contradicting the assumption that job Jj is assigned to machine  instead. Hence, for any 

job Jj  A \ B, either rj  b or rj = S(Jj). As a consequence, for any job Jj  A \ B, the
processing that is executed after time b in the LS schedule cannot be scheduled earlier than b
in any optimal schedule. Let  = 0 if B is empty and if B is 

not empty. It is easy to see that the amount of processing currently executed after b in the LS 
schedule that could be executed before b in any other schedule is at most |B|. Therefore, 
taking into account that all machines are busy during [b,L1] and that |B|  m — 1, we obtain 
the following lower bound based on the amount of processing that has to be executed after 
time b in any schedule: 

On the other hand let us consider all the jobs. Note that, if  > 0, then in the LS schedule, 
there exists a job Jj with S(Jj)  a and S(Jj) – rj = . It can be seen that interval [rj, S(Jj)] is a 
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period of time before a with length of , during which all machines are busy just before Jj is
assigned. This is because no job has a release time bigger than rj before Jj is assigned and, by 

the facts that S(Jj) – rj = > 0, and . Combining with the 

observations that during the time interval [b, L1] all machines are occupied and at any other 
time point at least one machine is busy, we get another lower bound based on the total 
amount of processing: 

Adding up the two lower bounds above, we get 

Because rn b, we also have 

Hence we derive 

Hence we have . This creates a contradiction as L is a counterexample 

satisfying  . It is also well-known in Graham (1969) that, when  r1= r2 = 

...= rn = 0, the bound is tight. Hence (1) holds.  
However, for jobs with arbitrary release times, (1) does not hold any more, which is stated in 
the next theorem. 
Theorem 2. For the problem of scheduling jobs with arbitrary release times, 

Proof: Let L = { J1, J2, ... , Jn} be an arbitrary sequence of jobs. Job Jj has release time rj and 
running time pj (j = 1, 2, ... ,n). Without loss of generality, we suppose that the scheduled 
completion time of job Jn is the largest job completion time for all the machines, i.e. the 

makespan. Let P be , ui (i = 1, 2, ... , m) be the total idle time of machine Mi, and s be

the starting time of job Jn. Let u = s — L1, then we have 

It is obvious that 
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Because  max {r1, r2, ... , rn} we have ui (i = 1, 2, ... ,m). So

By the arbitrariness of L we have .  The following example shows that 

the bound of  is tight. 

Let  with 

It is easy to see that the LS schedule is 

Thus . One optimal off-line schedule is 

Thus . Hence

Let  tend to zero, we have . That means .

The following theorem says that no on-line algorithm can have a worst case performance 
ratio better than 2 when jobs' release times are arbitrary. 
Theorem 3. For scheduling jobs with arbitrary release times, there is no on-line algorithm 
with worst case ratio less then 2. 
Proof. Suppose that algorithm A has worst case ratio less than 2. Let L = { J1, J2, ... , Jm+1}, with 
r1 = l, p1 = , rj = 0, pj = S +  (j = 2, 3, ... , m + 1), where S  1 is the starting processing time of 
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job J1. Let  = { J1; ... , Jk}(k = 1, 2, ... , m + 1). Because R(m, A) < 2, any two jobs from the job 

set cannot be assigned to the same machine and also . But 

, so

Let  tend to zero, we get R(m, A)  2, which leads to a contradiction. 
From the conclusions of Theorem 2 and Theorem 3, we know that algorithm LS is optimal 
for m = 1. 

4. Improved Algorithms for m  2

For m  2, to bring down the performance ratio, Li & Huang (2004) introduced a modified 

LS algorithm, MLS, which satisfies R(m, MLS) with . To 

describe the algorithm, we let 

where denotes the largest integer not bigger than .

In MLS, two real numbers and will be used. They satisfy 

and  > 0, where  and   is a root of the following equation 

Algorithm MLS
Step 1.  Assume that Li is the scheduled completion time of machine Mi (i = 1, 2, ... , m).

Reorder machines such that L1 L2  ...   Lm and let Jn be a new job given to the 
algorithm. Set Lm+1 = + .

Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a 
machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we 
assign job Jn to machine Mi to be processed starting at time max{T1, rn} in the idle 
interval. If no such Mi exists, go to step 3. 

Step 3. If rn L1, we assign Jn on machine M1 to start at time L1.
Step 4. If Lk < rn Lk+1 for some 1 k  m and pn mrn, then we assign Jn on machine Mk to

start at time rn.
Step 5. If Lk < rn Lk+1 for some 1 k  m and pn < mrn and Lk+1 + pn (rn + pn), then we 

assign Jn on machine Mk+1 to start at time Lk+1.
Step 6. If Lk < rn Lk+1 for some 1 k  m and pn < mrn and Lk+1 + pn > (rn + pn), then we 

assign Jn on machine Mk to start at time rn.
The following theorem was proved in Li & Huang (2004).  
Theorem 4. For any m  2, we have 
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Furthermore, there exists a fixed positive number  independent of m such that 

Another better algorithm, NLMS, was further proposed by Li & Huang (2007). In the 
following we will describe it in detail and reproduce the proofs from Li & Huang (2007). In 
the description, three real numbers , and  will be used, where 

and they are the roots of the next three equations. 

(2)

(3)

(4)

The next lemma establishes the existence of the three numbers and relate them to figures. 
Lemma 5. There exist  = , y =  and z =  satisfying equations (2), (3) and (4) with 

 and 2 < 2.78436 for 

any m  2. 
Proof. By equation (3) and (4), we have 

 (5) 

Let . It is easy to check that 

Hence there exists exactly one real number 1 < < 2 satisfying equation (5). 
By equation (2), we have 

where the two inequalities result from > 1. 

By equation (3), we get  and

Let . It is easy to show that  and 

. Because , we have . Because of equation (5), we get 
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Hence  = 1.75831. In addition, by equation (5), we have  = 1.56619. 

Noticing that  is an increasing function on q as , we have 

That means  holds. In the same way as above, we can show that 

 holds. Thus  holds for any m  2. 

By equation (4), we have and hence 

. Thus we get  and 

i.e. . Similarly we can get . That means 

2< 2.78436 holds for any m  2.  
For simplicity of presentation, in the following we drop the indices and write the three 
numbers as  if no confusion arises. The algorithm NMLS can be described as 
follows: 
Algorithm NMLS

Step 0.  := 0, Li := 0, i = 1, 2, ... , m. Lm+1 := + .

Step 1. Assume that Li is the scheduled completion time of machine Mi after job Jn-1 is

assigned. Reorder machines such that L1  L2  ... Lm. (s) (s = 1, 2, ... , m)

represents the sth smallest number of , i = 1, 2, ... , m. Let Jn be a new job 

given to the algorithm. 
Step 2. Suppose that there exist some machines which have idle intervals for job Jn. Select a 

machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1. Then we 

assign job Jn on machine Mi to start at time max{T1, rn} in the idle interval.  := 

, i = 1, 2, ... , m. If no such Mi exists, go to Step 3. 

Step 3. If rn < L1, we assign Jn on machine M1 to start at time L1.  := , i = 1, 2, ... , m.

Step 4. If Lk  rn < Lk+1 and all of the following conditions hold: 

(a) ,

(b) ,

(c) ,

(d) ,

then we assign Jn on machine Mk+1 to start at time Lk+1 and set  := , i = 1, 

2, ... , m. Otherwise go to Step 5. 

Step 5. Assign job Jn on machine Mk to start at time rn. Set ,i  k.
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5. Performance ratio analysis of algorithm NMLS 

In the rest of this section, the following notation will be used: For any 1 j < n, 1 i  m, we 

use to denote the job list {J1, J2, ... , Jj} and to denote the completion time of machine 

Mi before job Jj is assigned. For a given job list L , we set 

where ui (L) (i = 1, 2, ... , m) is the total idle time of machine Mi when job list L is scheduled 
by algorithm NMLS. We first observe the next two simple inequalities which will be used in 
the ratio analysis. 

(6)

(7)

Also if there exists a subset in job list L satisfying ,

then the next inequality holds. 

(8)

In addition, if j1 > j2, then

In order to estimate U(L), we need to consider how the idle time is created. For a new job Jn

given to algorithm NMLS, if it is assigned in Step 5, then a new idle interval [Lk, rn] is 
created. If it is assigned in Step 3 or Step 4, no new idle time is created. If it is assigned in 
Step 2, new idle intervals may appear, but no new idle time appears. Hence only when a job 
is assigned in Step 5 can it make the total sum of idle time increase. Because of this fact, we 
will say idle time is created only by jobs which are assigned in Step 5. We further define the 
following terminologies 

• A job J is referred to as an idle job on machine Mi, 1  i  m, if it is assigned on machine 
Mi in Step 5. An idle job J is referred to as a last idle job on machine Mi, 1  i  m, if J is 
assigned on machine Mi and there is no idle job on machine Mi after job J.

In the following, for any machine Mi, we will use  to represent the last idle job on 

machine Mi if there exist idle jobs on machine Mi, otherwise  to represent the first job 

(which starts at time 0) assigned on machine Mi.
Next we set 

By the definitions of our notation, it is easy to see that the following facts are true: 
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For the total idle time U(L), the next lemma provides an upper bound. 
Lemma 6. For any job list L = {J1, J2, ... , Jn}, we have 

Proof. By the definition of R, no machine has idle time later than time point R. We will 
prove this lemma according to two cases. 
Case 1. At most machines in A are idle simultaneously in any interval [a, b] with 

 a < b.

Let vi be the sum of the idle time on machine Mi before time point and be the sum of 

the idle time on machine Mi after time point , i = 1, 2, ... , m. The following facts are 

obvious:

In addition, we have 

because at most machines in A are idle simultaneously in any interval [a, b] with 

 a < b  R. Thus we have 
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Case 2. At least  machines in A are idle simultaneously in an interval [a, b]

with  a < b.

In this case, we select a and b such that at most machines in A are idle 

simultaneously in any interval [a', b'] with a < b  a' < b'. Let

That means >  by our assumption.  Let , be such a machine that its 

idle interval [a, b] is created last among all machines . Let

Suppose the idle interval [a, b] on machine is created by job . That means that the idle 

interval [a, b] on machine Mi for any i A' has been created before job  is assigned. Hence 

we have  for any i A'. In the following, let 

We have  b because  b and b,   i A'.

What we do in estimating is to find a job index set S such that each job Jj (j  S)

satisfies and . And hence by (8) we have 

To do so, we first show that 

 (9) 

holds. Note that job must be assigned in Step 5 because it is an idle job. We can conclude 

that (9) holds if we can prove that job  is assigned in Step 5 because the condition (d) of 

Step 4 is violated. That means we can establish (9) by proving that the following three 
inequalities hold by the rules of algorithm NMLS: 

(a)

(b)

(c) 

The reasoning for the three inequalities is: 

(a). As  we have 
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Next we have because idle interval [a, b] on machine is created by job .

Hence we have 

i.e. the first inequality is proved. 

(b). This follows because .

(c). As  we have .

For any i A', by (9) and noticing that and , we 

have

That means job  appears before , i.e. . We set 

is  processed  in  interval  on  machine  Mi},  i A';

We have because  is the last idle job on machine Mi for any i

A'. Hence we have 

(10)

Now we will show the following (11) holds: 

(11)

It is easy to check that and for any i A', i.e.  (11) holds for any 

j Si (i A') and j = . For any j Si (i A') and j , we want to establish (11) by 
showing that Jj is assigned in Step 4.  It is clear that job Jj is not assigned in Step 5 because it 

is not an idle job. Also  > j because . Thus we have 

where the first inequality results from j and the last inequality results from  > j. That 
means Jj is not assigned in Step 3 because job Jj is not assigned on the machine with the 

smallest completion time. In addition, observing that job  is the last idle job on machine 

Mi and  by the definition of Si, we can conclude that Jj is assigned on machine Mi

to start at time . That means j >  and Jj cannot be assigned in Step 2. Hence Jj must be 

assigned in Step 4. Thus by the condition (b) in Step 4, we have 
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where the second inequality results from j > . Summing up the conclusions above, for any 
j S, (11) holds. By (8), (10) and (11) we have 

Now we begin to estimate the total idle time U(L). Let be the sum of the idle time on 
machine Mi before time point  and  be the sum of the idle time on machine Mi after

time point  , i = 1, 2, ... , m. The following facts are obvious by our definitions: 

By our definition of b and k1, we have that b  and hence at most machines in 

A are idle simultaneously in any interval [a', b'] with  a' < b'  R. Noting that no 

machine has idle time later than R, we have 

Thus we have 

The last inequality follows by observing that the function is a 

decreasing function of  for . The second inequality follows because 

 and is a decreasing function of 

on . The fact that is a decreasing function follows because < 0 as 

The next three lemmas prove that is an upper bound for  .  Without loss of 

generality from now on, we suppose that the completion time of job Jn is the largest job 

completion time for all machines, i.e. the makespan . Hence according to this 

assumption, Jn cannot be assigned in Step 2. 
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Lemma 7. If Jn is placed on Mk with Lk  rn < Lk+1 , then

Proof. This results from  = rn+pn and  rn+pn.

Lemma 8. If Jn is placed on Mk+1 with Lk  rn < Lk+1, then

Proof. Because  = Lk+1+pn and  rn +pn, this lemma holds if Lk+1+pn

(pn + rn).

Suppose Lk+1+pn > (pn + rn). For any 1 i  m, let 

is  processed  in interval on  machine  Mi}.

It is easy to see that 

hold. Let 

By the rules of our algorithm, we have 

because Jn is assigned in Step 4. Hence we have  and .

By the same way used in the proof of Lemma 6, we can conclude that the following 
inequalities hold for any i B:
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Thus by (8) and (10) we have 

The second last inequality results from that   and 

as .  The last equality follows because  and rn r11.  Also we have 

 because Jn is assigned in Step 4. Hence we have 

The second inequality results from the fact that  is a decreasing 

function of  for . The last inequality results from 

 and the last equation results from equation (4).  

Lemma 9. If job Jn is placed on machine M1, then we have 
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Proof. In this case we have L1 rn and  = L1 + pn . Thus we have 

The next theorem proves that NMLS has a better performance than MLS for m  2. 
Theorem 10. For any job list L and m  2, we have 

Proof. By Lemma 5 and Lemma 7—Lemma 9, Theorem 10 is proved. 
The comparison for some m among the upper bounds of the three algorithms' performance 

ratios is made in Table 1, where .

m αm m R(m, LS) R(m, MLS) R(m, NMLS)

2 2.943 1.443 2.50000 2.47066 2.3465

3 3.42159 1.56619 2.66667 2.63752 2.54616

9 3.88491 1.68955 2.88889 2.83957 2.7075

12 3.89888 1.69333 2.91668 2.86109 2.71194

oo 4.13746 1.75831 3.00000 2.93920 2.78436

Table 1. A comparison of LS, MLS, and NMLS 

6. LS scheduling for jobs with similar lengths 

In this section, we extend the problem to be semi-online and assume that the processing 
times of all the jobs are within [l,r], where r  1. We will analyze the performance of the LS 
algorithm. First again let L be the job list with n jobs. In the LS schedule, let Li be the 
completion time of machine Mi and ui1, ... , uiki denote all the idle time intervals of machine 

Mi (i = 1, 2, ... , m) just before Jn is assigned. The job which is assigned to start right after uij is 
denoted by Jij with release time rij and processing time pij. By the definitions of uij and rij, it is 
easy to see that rij is the end point of uij. To simplify the presentation, we abuse the notation 
and use uij to denote the length of the particular interval as well. 
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The following simple inequalities will be referred later on. 

(12)

(13)

(14)

where U is the total idle time in the optimal schedule. 
The next theorem establishes an upper bound for LS when m  2 and a tight bound when   
m = 1. 
Theorem 11.    For any m  2, we have 

(15)

and .

We will prove this theorem by examining a minimal counter-example of (15). A job list L = { 
J1, J2, ... Jn} is called a minimal counter-example of (15) if (15) does not hold for L, but (15) 
holds for any job list L' with |L'| < |L|. In the following discussion, let L be a minimal 
counter-example of (15). It is obvious that, for a minimal counter-example L, the makespan 
is the completion time of the last job Jn, i.e. L1 + pn. Hence we have 

We first establish the following Observation and Lemma 12 for such a minimal counter-
example.
Observation. In the LS schedule, if one of the machines has an idle interval [0, T] with T > r,
then we can assume that at least one of the machines is scheduled to start processing at time 
zero.
Proof. If there exists no machine to start processing at time zero, let  be the earliest starting 

time of all the machines and . It is not difficult to see that any job's 
release time is at least t0 because, if there exists a job with release time less than t0, it would 
be assigned to the machine with idle interval [0, T] to start at its release time by the rules of 
LS. Now let L' be the job list which comes from list L by pushing forward the release time of 
each job to be t0 earlier. Then L' has the same schedule as L for the algorithm LS. But the 
makespan of L' is t0 less than the makespan of L not only for the LS schedule but also for the 
optimal schedule. Hence we can use L' as a minimal counter example and the observation 
holds for L'.
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Lemma 12. There exists no idle time with length greater than 2r when m  2 and there is no 
idle time with length greater than r when m = 1 in the LS schedule. 
Proof. For m  2 if the conclusion is not true, let [T1, T2] be such an interval with T2—T1 > 2r.
Let L0 be the job set which consists of all the jobs that are scheduled to start at or before time 

T1. By Observation , L0 is not empty. Let  = L \ L0. Then  is a counter-example too 

because  has the same makespan as L for the algorithm LS and the optimal makespan of 

 is not larger than that of L. This is a contradiction to the minimality of L. For m = 1, we 
can get the conclusion by employing the same argument.  
Now we are ready to prove Theorem 11. 
Proof. Let  be the largest length of all the idle intervals. If , then by (12), (13) and 

(14) we have 

Next by use of  1 +  instead of pn and observe that pn r we have 

So if m  2, r  and , we have 

because  is a decreasing function of . Hence the conclusion for m  2 

and r  is proved. If  m  2 and 
1

m
r
m

<

−

we have 

because  2 by Lemma 12 and  is an increasing function of .

Hence the conclusion for m  2 is proved. For m = 1 we have 
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because  < 1 by Lemma 12. Consider L = {J1, J2} with r1 = r — ,p1 = 1, r2 = 0, p2 = r and let 
tend to zero. Then we can show that this bound is tight for m = 1. 
From Theorem 11, for m  2 and 1 r <  we have R(m, LS) < 2 because  

 is an increasing function of r and . This 

is significant because no online algorithm can have a performance ratio less than 2 as stated 
in Theorem 3. An interesting question for the future research is then how to design a better 
algorithm than LS for this semi-online scheduling problem. The next theorem provides a 
lower bound of any on-line algorithm for jobs with similar lengths when m = 1. 
Theorem 13. For m = 1 and any algorithm A for jobs with lengths in [1, r], we have 

where  satisfies the following conditions: 

a)

b)
Proof. Let job J1 be the first job in the job list with p1 = 1 and r1 = . Assume that if J1 is 
assigned by algorithm A to start at any time in [ , r), then the second job J2 comes with p2= r
and r2 = 0. Thus for these two jobs,  1 + r +  and  = 1 + r. Hence we get 

On the other hand, if J1 is assigned by algorithm A to start at any time k, k  [r, ), then the 

second job J2 comes with p2 = r and r2 = k — r + . Thus for these two jobs,  1 + r + k

and  = 1 +k + . Hence we get 

Let  tend to zero, we have 

where the second inequality results from the fact that  is a decreasing function of 

for  0. Lastly assume that if J1 is assigned by algorithm A to start at any time after , then 

no other job comes. Thus for this case,  1 +  and  = 1 + . Hence we get 

For r = 1, we get  = 0.7963 and hence R(l, A)  1.39815. Recall from Theorem 11, R(l, LS) = 
1.5 when r = 1. Therefore LS provides a schedule which is very close to the lower bound. 
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