
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a

Single Machine

George Steiner and Rui Zhang1

DeGroote School of Business, McMaster University
Canada

1. Introduction

We study a single machine scheduling problem with batch setup time and batch delivery
cost. In this problem, n jobs have to be scheduled on a single machine and delivered to a
customer. Each job has a due date, a processing time and a weight. To save delivery cost,
several jobs can be delivered together as a batch including the late jobs. The completion
(delivery) time of each job in the same batch coincides with the batch completion (delivery)
time. A batch setup time has to be added before processing the first job in each batch. The
objective is to find a batching schedule which minimizes the sum of the weighted number of
late jobs and the delivery cost. Since the problem of minimizing the weighted number of late
jobs on a single machine is already -hard [Karp, 1972], the above problem is also -
hard. We propose a new dynamic programming algorithm (DP), which runs in
pseudopolynomial time. The DP runs in O(n5) time for the special cases of equal processing
times or equal weights. By combining the techniques of binary range search and static
interval partitioning, we convert the DP into a fully polynomial time approximation scheme
(FPTAS) for the general case. The time complexity of this FPTAS is O(n4/ + n4logn).
Minimizing the total weighted number of late jobs on a single machine, denoted by

[Graham et. al, 1979], is a classic scheduling problem that has been well studied in
the last forty years. Moore [1968] proposed an algorithm for solving the unweighted
problem on n jobs in O(nlogn) time. The weighted problem was in the original list of -
hard problems of Karp [1972]. Sahni [1976] presented a dynamic program and a fully
polynomial time approximation scheme (FPTAS) for the maximization version of the
weighted problem in which we want to maximize the total weight of on-time jobs. Gens and
Levner [1979] developed an FPTAS solving the minimization version of the weighted
problem in O(n3/) time. Later on, they developed another FPTAS that improved the time
complexity to O(n2logn + n2/) [Gens and Levner, 1981].
In the batching version of the problem, denoted by , jobs are processed in batches
which require setup time s, and every job's completion time is the completion time of the
last job in its batch. Hochbaum and Landy [1994] proposed a dynamic programming
algorithm for this problem, which runs in pseudopolynomial time. Brucker and Kovalyov

1 email:steiner@mcmaster.ca, zhangr6@mcmaster.ca

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Multiprocessor Scheduling: Theory and Applications 86

[1996] presented another dynamic programming algorithm for the same problem, which
was then converted into an FPTAS with complexity O(n3/ + n3logn).
In this paper, we study the batch delivery version of the problem in which each job must be
delivered to the customer in batches and incurs a delivery cost. Extending the classical
three-field notation [Graham et. al., 1979], this problem can be denoted by bq,
where b is the total number of batches and q is the batch delivery cost. The model, without
the batch setup times, is similar to the single-customer version of the supplier's supply chain
scheduling problem introduced by Hall and Potts [2003] in which the scheduling
component of the objective is the minimization of the sum of the weighted number of late
jobs (late job penalties). They show that the problem is -hard in the ordinary sense by
presenting pseudopolynomial dynamic programming algorithms for both the single-and
multi-customer case [Hall and Potts, 2003]. For the case of identical weights, the algorithms
become polynomial. However, citing technical difficulties in scheduling late jobs for
delivery [Hall and Potts, 2003] and [Hall, 2006], they gave pseudopolynomial solutions for
the version of the problem where only early jobs get delivered. The version of the problem in
which the late jobs also have to be delivered is more complex, as late jobs may need to be
delivered together with some early jobs in order to minimize the batch delivery costs. In
Hall and Potts [2005], the simplifying assumption was made that late jobs are delivered in a
separate batch at the end of the schedule. Steiner and Zhang [2007] presented a
pseudopolynomial dynamic programming solution for the multi-customer version of the
problem which included the unrestricted delivery of late jobs. This proved that the problem
with late deliveries is also -hard only in the ordinary sense. However, the algorithm had
the undesirable property of having the (fixed) number of customers in the exponent of its
complexity function. Furthermore, it does not seem to be convertible into an FPTAS. In this
paper, we present for bq a different dynamic programming algorithm with
improved pseudopolynomial complexity that also schedules the late jobs for delivery.
Furthermore, the algorithm runs in polynomial time in the special cases of equal tardiness
costs or equal processing times for the jobs. This proves that the polynomial solvability of

can be extended to , albeit by a completely different algorithm. We
also show that the new algorithm for the general case can be converted into an FPTAS.
The paper is organized as follows. In section 2, we define the bq problem in
detail and discuss the structure of optimal schedules. In section 3, we propose our new
dynamic programming algorithm for the problem, which runs in pseudopolynomial time.
We also show that the algorithm becomes polynomial for the special cases when jobs have
equal weights or equal processing times. In the next section, we develop a three-step fully
polynomial time approximation scheme, which runs in O(n4/ + n4logn) time. The last
section contains our concluding remarks.

2. Problem definition and preliminaries

The problem can be defined in detail as follows. We are given n jobs, J = {1,2,..., n}, with
processing time pj, weight wj, delivery due date . Jobs have to be scheduled

nonpreemptively on a single machine and delivered to the customer in batches. Several jobs
could be scheduled and delivered together as a batch with a batch delivery cost q and
delivery time . For each batch, a batch setup time s has to be added before processing the
first job of the batch. Our goal is to find a batching schedule that minimizes the sum of the

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 87

weighted number of late jobs and delivery costs. Without loss of generality, we assume that
all data are nonnegative integers.
A job is late if it is delivered after its delivery due date, otherwise it is early. The batch
completion time is defined as the completion time of the last job in the batch on the machine.
Since the delivery of batches can happen simultaneously with the processing of some other
jobs on the machine, it is easy to see that a job is late if and only if its batch completion time
is greater than its delivery due date minus . This means that each job j has an implied due
date on the machine. This implies that we do not need to explicitly schedule the

delivery times and consider the delivery due dates, we can just use the implied due dates, or
due dates in short, and job j is late if its batch completion time is greater than dj. (From this
point on, we use the term due date always for the dj.) A batch is called an early batch if all
jobs are early in this batch, it is called a late batch if every job is late in this batch, and a batch
is referred to as mixed batch if it contains both early and late jobs. The batch due date is defined
as the smallest due date of any job in the batch. The following simple observations
characterize the structure of optimal schedules we will search for. They represent
adaptations of known properties for the version of the problem in which there are no
delivery costs and/or late jobs do not need to be delivered.
Proposition 2.1. There exists an optimal schedule in which all early jobs are ordered in EDD
(earliest due date first) order within each batch.
Proof. Since all jobs in the same batch have the same batch completion time and batch due
date, the sequencing of jobs within a batch is immaterial and can be assumed to be EDD.
Proposition 2.2. There exists an optimal schedule in which all late jobs (if any) are scheduled in the
last batch (either in a late batch or in a mixed batch that includes early jobs).
Proof. Suppose that there is a late job in a batch which is scheduled before the last batch in an
optimal schedule. If we move this job into this last batch, it will not increase the cost of the
schedule.
Proposition 2.3. There exists an optimal schedule in which all early batches are scheduled in EDD
order with respect to their batch due date.
Proof. Suppose that there are two early batches in an optimal schedule with batch
completion times ti < tk and batch due dates di > dk. Since all jobs in both batches are early,
we have di > dk tk > ti. Thus if we schedule batch k before batch i, it does not increase the
cost of the schedule.
Proposition 2.4. There exists an optimal schedule such that if the last batch of the schedule is not a
late batch, i.e., there is at least one early job in it, then all jobs whose due dates are greater than or
equal to the batch completion time are scheduled in this last batch as early jobs.
Proof. Let the batch completion time of the last batch be t. Since the last batch is not a late
batch, there must be at least one early job in this last batch whose due date is greater than or
equal to t. If there is another job whose due date is greater than or equal to t but it was
scheduled in an earlier batch, then we can simply move this job into this last batch without
increasing the cost of the schedule.
Proposition 2.2 implies that the jobs which are first scheduled as late jobs can always be
scheduled in the last batch when completing a partial schedule that contains only early jobs.
The dynamic programming algorithm we present below uses this fact by generating all
possible schedules on early jobs only and designating and putting aside the late jobs, which
get scheduled only at the end in the last batch. It is important to note that when a job is
designated to be late in a partial schedule, then its weighted tardiness penalty is added to
the cost of the partial schedule.

Multiprocessor Scheduling: Theory and Applications 88

3. The dynamic programming algorithm

The known dynamic programming algorithms for do not have a straightforward
extension to bq, because the delivery of late jobs complicates the matter. We
know that late jobs can be delivered in the last batch, but setting them up in a separate batch
could add the potentially unnecessary delivery cost q for this batch when in certain
schedules it may be possible to deliver late jobs together with early jobs and save their
delivery cost. Our dynamic programming algorithm gets around this problem by using the
concept of designated late jobs, whose batch assignment will be determined only at the end.
Without loss of generality, assume that the jobs are in EDD order, i.e., d1 d2 ... dn and let

. If d1 P + s, then it is easy to see that scheduling all jobs in a single batch will

result in no late job, and this will be an optimal schedule. Therefore, we exclude this trivial
case by assuming for the remainder of the paper that some jobs are due before P + s. The
state space used to represent a partial schedule in our dynamic programming algorithm is
described by five entries {k, b, t, d, v}:
k: the partial schedule is on the job set {1,2,..., k}, and it schedules some of these jobs as early

while only designating the rest as late;
b: the number of batches in the partial schedule;
t: the batch completion time of the last scheduled batch in the partial schedule;
d: the due date of the last batch in the partial schedule;
v: the cost (value) of the partial schedule.
Before we describe the dynamic programming algorithm in detail, let us consider how we
can reduce the state space. Consider any two states (k, b, t1, d,v1) and (k, b, t2, d,v2). Without
loss of generality, let t1 t2. If v1 v2, we can eliminate the second state because any later
states which could be generated from the second state can not lead to better v value than the
value of similar states generated from the first state. This validates the following elimination
rule, and a similar argument could be used to justify the second remark.
Remark 3.1. For any two states with the same entries {k,b,t,d, }, we can eliminate the state
with larger v.
Remark 3.2. For any two states with the same entries {k, b, ,d,v}, we can eliminate the state
with larger t.
The algorithm recursively generates the states for the partial schedules on batches of early
jobs and at the same time designates some other jobs to be late without actually scheduling
these late jobs. The jobs designated late will be added in the last batch at the time when the
partial schedule gets completed into a full schedule. The tardiness penalty for every job
designated late gets added to the state variable v at the time of designation. We look for an
optimal schedule that satisfies the properties described in the propositions of the previous
section. By Proposition 2.2, the late jobs should all be in the last batch of a full schedule. It is
equivalent to say that any partial schedule {k, b, t, d, v} with 1 b n — 1 can be completed
into a full schedule by one of the following two ways:
1. Add all unscheduled jobs {k + 1, k + 2,..., n} and the previously designated late jobs to

the end of the last batch b if the resulting batch completion time (P + bs) does not exceed
the batch due date d (we call this a simple completion); or

2. Open a new batch b+1, and add all unscheduled jobs {k + 1, k + 2,..., n} and the
previously designated late jobs to the schedule in this batch. (We will call this a direct
completion.)

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 89

We have to be careful, however, as putting a previously designated late job into the last
batch this way may make such a job actually early if its completion time (P+bs or P + (b + l)
s, respectively) is not greater than its due date. This situation would require rescheduling
such a designated late job among the early jobs and removing its tardiness penalty from the
cost v. Unfortunately, such rescheduling is not possible, since we do not know the identity
of the designated late jobs from the state variables (we could only derive their total length
and tardy weight). The main insight behind our approach is that there are certain special
states, that we will characterize, whose completion never requires such a rescheduling. We
proceed with the definition of these special states.
It is clear that a full schedule containing exactly l (1 l n) batches will have its last batch
completed at P + ls. We consider all these possible completion times and define certain
marker jobs mi and batch counters i in the EDD sequence as follows: Let m0 be the last job with

 < P + s and m0 +1 the first job with P+s. If m0 +1 does not exist, i.e., m0 = n, then
we do not need to define any other marker jobs, all due dates are less than P + s, and we will
discuss this case separately later. Otherwise, define 0 = 0 and let 1 1 be the largest integer

for which P + 1s. Let the marker job associated with 1 be the job m1 m0 + 1 whose

due date is the largest due date strictly less than P + (1 +1)s, i.e., < P + (1 + 1)s and

 P + (1 + 1)s. Define recursively for i = 2,3,...,h — 1, i i-1 + 1 to be the smallest counter for

which there is a marker job mi mi-1 +1 such that < P + (i + 1) s and P+(i + 1) s.

The last marker job is mh = n and its counter h is the largest integer for which P + h s dn <
P + (h + 1)s. We also define h+1 = h +1. Since the maximum completion time to be
considered is P+ns for all possible schedules (when every job forms a separate batch), any
due dates which are greater than or equal to P + ns can be reduced to P + ns without
affecting the solution. Thus we assume that dn P+ns for the rest of the paper, which also
implies h +1 n+1.
For convenience, let us also define T1,0 = P + 1s, Ti,k = P + (i + k)s for i = 1,..., h and k = 0,1,...,

k(i), where each k(i) is the number for which Ti, k (i) = P + (i + k(i))s = P + i+1 s = Ti+1,0 , and Th,1

= P + (h + l)s. Note that this partitions the time horizon [P, P + (h + l)s] into consecutive
intervals of length s. We demonstrate these definitions in Figure 1.

Figure 1. Marker Jobs and Corresponding Intervals

We can distinguish the following two cases for these intervals:
1. Ti,1 = Ti+1,0, i.e., k(i) = 1: This means that the interval immediately following Ii = [Ti,0, Ti,1)

contains a due date. This implies that i+1 = i + 1;

2. Ti,1 Ti+1,0, i.e., k(i) > 1: This means that there are k(i) — 1 intervals of length s starting at
P + (i + 1)s in which no job due date is located.

In either case, it follows that every job j > m0 has its due date in one of the intervals Ii = [Ti,0, Ti,1)
for some i {1,..., h}, and the intervals [Ti,l, Ti,l+1) contain no due date for i = 1,...,h and l>0.
Figure 1 shows that jobs from m0+1 to m1 have their due date in the interval [T1,0, T1,1). Each
marker job mi is the last job that has its due date in the interval Ii = [Ti,0, Ti,1) for i = 1,..., h, i.e.,
we have .

Multiprocessor Scheduling: Theory and Applications 90

Now let us group all jobs into h +1 non-overlapping job sets G0 = {1,..., m0}, G1 = {m0 + 1,...,
m1} and Gi = {mi-1 + 1,..., mi} for i = 2,..., h. Then we have and i 1. We also

define the job sets J0 = Go, Ji = G0 G1 ... Gi, for i = 1,2,..., h — 1 and Jh = G0 G1 ... Gh = J.
The special states for DP are defined by the fact that their (k, b) state variables belong to the
set H defined below:
If m0 = n, then let H = {(n, 1), (n, 2), ..., (n, n — 1)};
If m0 < n, then let H = H1 H2 H3, where
1. If 1 > 1, then H1 = {(m0, 1), (m0, 2), ..., (m0, 1–1)}, otherwise H1 = ;

2. H2 = , ..., , ...,
, ..., ;

3. If 1 < h < n, then H3 = , otherwise H3 = .
Note that mh = n and thus the pairs in H3 follow the same pattern as the pairs in the other
parts of H. The dynamic program follows the general framework originally presented by
Sahni [1976].
The Dynamic Programming Algorithm DP
[Initialization] Start with jobs in EDD order
1. Set (0, 0, 0, 0, 0) S(0), S(k) = , k = 1, 2, ..., n, * = , and define m0, i and mi , i = 1,2,..., h;

2. If m0 + 1 does not exist, i.e., m0 = n, then set H = {(n, 1), (n, 2), ..., (n, n — 1)}; Otherwise
set H = H1 H2 H3.

Let I = the set of all possible pairs and =I—H , the complementary
set of H.
[Generation] Generate set S(k) for k = 1 to n + 1 from S(k-1) as follows:

Set = ;
[Operations] Do the following for each state (k — 1,b,t, d, v) in S(k-1)

Case (k - 1, b) H
1. If t < P + bs, set * = * (n, b + 1, P + (b + 1)s, d', v + q) /* Generate the direct

completion schedule and add it to the solution set *, where d' is defined as the due date of
the first job in batch b+ 1;

2. If t = P + bs, set * = * (n, b, P + bs, d, v) /* We have a partial schedule in which all
jobs are early. (This can happen only when k — 1 = n.)

Case (k - 1, b)
1. If t + pk d and k n, set = (k, b, t + pk, d, v) /* Schedule job k as an early job in

the current batch;
2. If t + pk + s dk and k n, set = (k, b + 1, t + pk + s, dk, v + q) /* Schedule job k as

an early job in a new batch;
3. If k n, set = (k, b, t, d, v + wk) /* Designate job k as a late job by adding its weight

to v and reconsider it at the end in direct completions.
Endfor
[Elimination] Update set S(k)

1. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v v', eliminate the one with
v' from set based on Remark 3.1;

2. For any two states (k, b, t, d, v) and (k, b, t', d, v) with t t', eliminate the one with t'
from set based on Remark 3.2;

3. Set S(k) = .
Endfor

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 91

[Result] The optimal solution is the state with the smallest v in the set *. Find the optimal
schedule by backtracking through all ancestors of this state.
We prove the correctness of the algorithm by a series of lemmas, which establish the crucial
properties for the special states.
Lemma 3.1. Consider a partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b) H. If its
completion into a full schedule has b+1 batches, then the final cost of this completion is exactly v + q.
Proof. We note that completing a partial schedule on b batches into a full schedule on b + 1
batches means a direct completion, i.e., all the unscheduled jobs (the jobs in J — Ji, if any)
and all the previously designated late jobs (if any) are put into batch b+1, with completion
time P + (b + 1)s.
Since all the previously designated late jobs are from Ji for a partial schedule (mi, b, t, d, v),
their due dates are not greater than . Therefore, all
designated late jobs stay late when scheduled in batch b+1. Next we show that unscheduled
jobs j (J — Ji) must be early in batch b+1. We have three cases to consider.
Case 1. m0 = n and i = 0:

In this case, H = {(n, 1), (n, 2),..., (n,n — 1)} and J0 = J, i.e. all jobs have been scheduled
early or designated late in the state (m0, b, t, d, v). Therefore, there are no unscheduled
jobs.

Case 2. m0 < n and b = i :
Since 0 = 0 by definition, we must have i 1 in this case. The first unscheduled job j (J
— Ji) is job mi + 1 with due date . Thus mi +1 and all
other jobs from J — Ji have a due date that is at least P + (b + 1)s, and therefore they will
all be early in batch b+1.

Case 3. m0 < n and b > i :
This case is just an extension of the case of b = i.
If i = 0, then the first unscheduled job for the state (m0, b, t, d, v) is m0 +1. Thus every
unscheduled job j has a due date , where the last
inequality holds since (m0, b) Hi and therefore, b 1 — 1.
If 1 i < h, then we cannot have k(i) = 1: By definition, if k(i) =1, then i + k(i)—1 = i = i

+1—1, which contradicts b > i and (mi,b) H. Therefore, we must have k(i) > 1, and b
could be any value from { i + 1,..., i + k(i) — 1}. This means that P + (b + l)s < P + (i +
k(i))s = P + i+1 s. We know, however, that every unscheduled job has a due date that is
at least Ti+1, 0 = P + i+1 s. Thus every job from J — Ji will be early indeed.
If i = h, then we have mh = n and Jh = J, and thus all jobs have been scheduled early or
designated late in the state (mi, b, t, d, v). Therefore, there are no unscheduled jobs.

In summary, we have proved that all previously designated late jobs (if any) remain late in
batch b+1, and all jobs from J — Ji (if any) will be early. This means that v correctly accounts
for the lateness cost of the completed schedule, and we need to add to it only the delivery
cost q for the additional batch b+1. Thus the cost of the completed schedule is v + q indeed.
Lemma 3.2. Consider a partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b) H and b n — 1.
Then any completion into a full schedule with more than b + 1 batches has a cost that is at least v + q,
i.e., the direct completion has the minimum cost among all such completions of (mi, b,t,d, v).
Proof. If mi = n, then the partial schedule is of the form (n, b, t,d,v), (n,b) H, b n — 1. (This
implies that either m0 = n with i = 0 or (mi, b) H3 with i = h.) Since there is no unscheduled
job left, all the new batches in any completion are for previously designated late jobs. And
since all the previously designated late jobs have due dates that are not greater than

Multiprocessor Scheduling: Theory and Applications 92

, these jobs will stay late in the completion. The number of
new batches makes no difference to the tardiness penalty cost of late jobs. Therefore, the best
strategy is to open only one batch with cost q. Thus the final cost of the direct completion is
minimum with cost v + q.
Consider now a partial schedule (mi, b, t, d, v), (mi, b) H, b n—1 when mi < n. Since all the
previously designated late jobs (if any) are from Ji, their due dates are not greater than

. Furthermore, since all unscheduled jobs are from J — Ji, their
due dates are not less than . Thus scheduling all of these jobs
into batch b + 1 makes them early without increasing the tardiness cost. It is clear that this is
the best we can do for completing (mi, b, t, d, v) into a schedule with b + 1 or more batches.
Thus the final cost of the direct completion is minimum again with cost v + q.
Lemma 3.3. Consider a partial schedule (mi, b, t, d, v} on job set Ji (i 1), where (mi, b) H and b >
1. If it has a completion into a full schedule with exactly b batches and cost v', then there must exist
either a partial schedule whose direct completion is of the same cost v' or there exists
a partial schedule whose direct completion is of the same cost v'.
Proof. To complete the partial schedule (mi,b,t,d,v) into a full schedule on b batches, all
designated late jobs and unscheduled jobs have to be added into batch b.
Case 1. b > i:

Let us denote the early jobs by Ei Ji in batch b in the partial schedule (mi, b, t, d, v).
Adding the designated late jobs and unscheduled jobs to batch b will result in a batch
completion time of P+bs. This makes all jobs in Ei late since
for j Ei. Thus the cost of the full schedule should be . We cannot do this

calculation, however, since there is no information available in DP about what Ei is. But
if we consider the partial schedule =

with one less batch, where is the smallest due date in batch b — 1 in the

partial schedule (mi, b, t, d, v), the final cost of the direct completion of the partial

schedule would be exactly by

Lemma 3.1. We show next that this partial schedule
does get generated in the algorithm.

In order to see that DP will generate the partial schedule
suppose that during the generation of the partial schedule (mi, b, t, d, v), DP starts batch b by
adding a job k as early. This implies that the jobs that DP designates as late on the path of
states leading to (mi, b, t, d, v) are in the set Li = {k, k + 1, ..., mi } — Ei. In other words, DP has
in the path of generation for (mi ,b,t,d,v) a partial schedule .

Then it will also generate from the partial schedule

by simply designating all jobs in Ei Li as late.

Case 2. b = i 1:
Suppose the partial schedule (mi, b, t, d, v) has in batch b the sets of early jobs Ei-1 E,
where Ei-1 Ji-1 and E (Ji — Ji-1). Adding the designated late jobs and unscheduled jobs
to batch b will result in a batch completion time of P + bs. This makes all jobs in Ei-1 late
since . On the other hand, if L (Ji—Ji-1—E) denotes the
previously designated late jobs from Ji — Ji-1 in (mi, b, t, d, v), then these jobs become
early since +1 for j L. For similar reasons, all previously designated

late jobs not in L stay late, jobs in E remain early and all other jobs from J — Ji will be
early too. In summary, the cost for the full completed schedule derived from (mi,b,t,d,v)
should be . Again, we cannot do this calculation, since

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 93

there is no information about Ei-1 and L. However, suppose that Ei-1 , and consider

the partial schedule =

 with one less batch, where d is the smallest due date in batch b — 1 in

the partial schedule (mi, b, t, d, v). The final cost of the direct completion of the partial
schedule would be exactly

 by Lemma 3.1. Next, we show that this partial schedule

does get generated during the

execution of DP.
To see the existence of the partial schedule =

) note that DP must start batch b on the path of

states leading to (mi, b, t, d, v) by scheduling a job k mi-1 early in iteration k from a state

 (We cannot have k >

mi-1 since this would contradict Ei-1 . Note also that accounts for the

weight of those jobs from {k, k+l,..., mi-1} that got designated late between iterations k and mi-1

during the generation of the state (mi,b,t,d,v).) In this case, it is clear that DP will also
generate from a

partial schedule on Ji-1 in which all jobs in Ei-1 are designated late, in addition to those jobs (if
any) from {k, k+1,..., mi-1} that are designated late in (mi, b, t, d, v). Since this schedule will
designate all of {k, k+1,..., mi-1} late, the lateness cost of this set of jobs must be added, which
results in a state . This is the state

whose existence we claimed.
The remaining case is when Ei-1 = . In this case, batch b has no early jobs in the partial
schedule (mi,b,t,d,v) from the set Ji-1 and if k again denotes the first early job in batch b, then k

Ji – Ji-1. This clearly implies that (mi,b,t,d,v) must have a parent partial schedule

. Consider the direct completion of this schedule: All designated
late jobs must come from Ji-1 and thus they stay late with a completion time of P + bs.
Furthermore, all jobs from J – Ji-1 will be early, and therefore, the cost of this direct
completion will be .

The remaining special cases of b = 1, which are not covered by the preceding lemma, are (mi,
b) = (m1, 1) or (mi, b) = (m0, 1), and they are easy: Since all jobs are delivered at the same time
P + s, all jobs in J0 or J, respectively, are late, and the rest of the jobs are early. Thus there is

only one possible full schedule with cost .
In summary, consider any partial schedule (mi, b, t, d, v) on job set Ji, where (mi, b) H , or a
partial schedule (n, b, t, d, v) on job set J and assume that the full schedule S' = (n, b' , P + b's,
d' , v') is a completion of this partial schedule and has minimum cost v'. Then the following
schedules generated by DP will contain a schedule among them with the same minimum
cost as S':

1. the direct completion of (mi,b,t,d,v), if (mi, b) (mi, i) and b' > b, by Lemma 3.1 and
Lemma 3.2;

2. the direct completion of a partial schedule , if (mi, b) (mi, i) and b' =
b, by Lemma 3.3;

3. the direct completion of a partial schedule , if (mi, b) = (mi, i), i > 1 and
b' = b, by Lemma 3.3;

4. the full schedule if m0 < n and b' b = 1 = 1 i.e., (mi, b)

= (m1, 1);

Multiprocessor Scheduling: Theory and Applications 94

5. the full schedule , if m0 = n and b' b = 1. i.e., (mi, b) =

(m0, 1).
Theorem 3.1. The dynamic programming algorithm DP is a pseudopolynomial algorithm, which
finds an optimal solution for in min time and space,
where .

Proof. The correctness of the algorithm follows from the preceding lemmas and discussion.
It is clear that the time and space complexity of the procedures [Initialization] and [Result] is
dominated by the [Generation] procedure. At the beginning of iteration k, the total number of
possible values for the state variables {k, b, t, d, v} in S(k) is upperbounded as follows: n is the
upper bound of k and b; n is the upper bound for the number of different d values; min{dn, P
+ ns} is an upper bound of t and W + nq is an upper bound of v, and because of the
elimination rules, min{dn, P+ns, W+nq} is an upper bound for the number of different
combinations of t and v. Thus the total number of different states at the beginning of each
iteration k in the [Generation] procedure is at most O(n2 min{dn, P + ns, W + nq}). In each
iteration k, there are at most three new states generated from each state in S(k-1) and this takes
constant time. Since there are n iterations, the [Generations] procedure could indeed be done
in O(n3 min{dn, P + ns, W + nq}) time and space.
Corollary 3.1. For the case of equal weights, the dynamic programming algorithm DP finds an
optimum solution in O(n5) time and space.
Proof. For any state, v is the sum of two different cost components: the delivery costs from {q,
2q,..., nq} and the weighted number of late jobs from {0, w,..., nw}, where wj = w, .
Therefore, v can take at most n(n + 1) different values and the upper bound for the number
of different states becomes O(n3 min{dn, P + ns, n2}) = O(n5).
Corollary 3.2. For the case of equal processing times, the dynamic programming algorithm DP finds
an optimum solution in O(n5) time and space.
Proof. For any state, t is the sum of two different time components: the setup times from {s,
...,ns} and the processing times from {0,p, ...,np}, where pj = p, . Thus, t can take at most
n(n + 1) different values, and the upper bound for the number of different states becomes
O(n3 min{dn, n2, W + nq}) = O(n5).

4. The Fully Polynomial Time Approximation Scheme

To develop a fully polynomial time approximation scheme (FPTAS), we will use static
interval partitioning originally suggested by Sahni [1976] for maximization problems. The
efficient implementation of this approach for minimization problems is more difficult, as it
requires prior knowledge of a lower (LB) and upper bound (UB) for the unknown optimum
value v*, such that the UB is a constant multiple of LB. In order to develop such bounds, we
propose first a range algorithm R(u,), which for given u and , either returns a full schedule
with cost v u or verifies that (1 —) u is a lower bound for the cost of any solution. In the
second step, we use repeatedly the range algorithm in a binary search to narrow the range
[LB, UB] so that UB 2LB at the end. Finally, we use static interval partitioning of the
narrowed range in the algorithm DP to get the FPTAS. Similar techniques were used by
Gens and Levner [1981] for the one-machine weighted-number-of-late-jobs problem

and Brucker and Kovalyov [1996] for the one-machine weighted-number-of-late-
jobs batching problem without delivery costs .
The range algorithm is very similar to the algorithm DP with a certain variation of the
[Elimination] and [Result] procedures.

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 95

The Range Algorithm R(u,)
[Initialization] The same as that in the algorithm DP.
[Partition] Partition the interval [0, u] into equal intervals of size u /n, with the last one
possibly smaller.
[Generation] Generate set S(k) for k = 1 to k = n + 1 from S(k-1) as follows:

Set = ;
[Operations] The same as those in the algorithm DP.
[Elimination] Update set S(k)

1. Eliminate any state (k, b, t, d, v) if v > u.
2. If more than one state has a v value that falls into the same interval, then discard all

but one of these states, keeping only the representative state with the smallest t
coordinate for each interval.

3. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v < v', eliminate the one with
v' from set based on Remark 3.2;

4. Set S(k) = .
Endfor
[Result]
If * = , then v* > (1 -) u;
If * , then v* u.
Theorem 4.1. If at the end of the range algorithm R(u,), we found * = , then v* > (1—)u;
otherwise v* u. The algorithm runs in O(n4/) time and space.
Proof. If * is not empty, then there is at least one state (n, b, t, d, v) that has not been
eliminated. Therefore, v is in some subinterval of [0, u] and v* v u. If * = , then all
states with the first two entries (k, b) H have been eliminated. Consider any feasible
schedule (n,b,t,d,v). The fact that * = means that any ancestor state of (n,b,t,d,v) with cost

must have been eliminated at some iteration k in the algorithm either because > u
or by interval partitioning, which kept some other representative state with cost ' and
maximum error u/n. In the first case, we also have v > u. In the second case,
let v' ' be the cost of a completion of the representative state and we must have v' > u
since * = . Since the error introduced in one iteration is at most u/n, the overall error is at
most n(u/n) = u, i.e., v v'— n(u/n) = v' — u > u — u = (1 —)u. Thus v > (1 —)u for
any feasible cost value v.
For the complexity, we note that for k = 1,2,...,n. Since all operations on a single
state can be performed in O(1) time, the overall time and space complexity is O(n4/).
The repeated application of the algorithm R(u,) will allow us to narrow an initially wide
range of upper and lower bounds to a range where our upper bound is only twice as large
as the lower bound. We will start from an initial range v' v* nv'. Next, we discuss how
we can find such an initial lower bound v'.
Using the same data, we construct an auxiliary batch scheduling problem in which we want
to minimize the maximum weight of late jobs, batches have the same batch-setup time s, the
completion time of each job is the completion time of its batch, but there are no delivery
costs. We denote this problem by . It is clear that the minimum cost of this
problem will be a lower bound for the optimal cost of our original problem.
To solve the problem, we first sort all jobs into smallest-weight-first order,
i.e., w[1] w[2] ... w[n]. Here we are using [k] to denote the job with the kth smallest weight.
Suppose that [k*] has the largest weight among the late jobs in an optimal schedule. It is

Multiprocessor Scheduling: Theory and Applications 96

clear that there is also an optimal schedule in which every job [i], for i = 1,2,..., k*, is late,
since we can always reschedule these jobs at the end of the optimal schedule without
making its cost worse. It is also easy to see that we can assume without loss of generality
that the early jobs are scheduled in EDD order in an optimal schedule. Thus we can restrict
our search for an optimal schedule of the following form:
There is a k {0,1,..., n} such that jobs {[k + 1],..., [n]} are early and they are scheduled in EDD
order in the first part of the schedule, followed by jobs {[1], [2],..., [k]} in the last batch in any
order. The existence of such a schedule can be checked by the following simple algorithm.
The Feasibility Checking Algorithm FC(k)
[Initialization] For the given k value, sort the jobs {[k + 1],..., [n]} into EDD order, and let this

sequence be , where f = n — k.
Set i = 1, j = , t = s + pj and d = dj

lf t > d, no feasible schedule exists and goto [Report];
If t d, set i = 2 and goto [FeasibilityChecking].

[FeasibilityChecking] While i f do

Set j = ,
If t + pj > d, start a new batch for job j;

if t + s + pj > dj, no feasible schedule exists and goto [Report};
if t+s+pj dj, set t = t+s+pj, d = dj, i = i+1 and goto [FeasibilityChecking].

If t + pj d, set t = t + pj, i = i + 1 and goto [FeasibilityChecking].
Endwhile

[Report] If i f, no feasible schedule exists. Otherwise, there exists a feasible batching
schedule for jobs in which these jobs are early.

The problem can be solved by repeatedly calling FC(k) for increasing k to
find the first k value, denoted by k*, for which FC(k) returns that a feasible schedule exists.
The Min-Max Weight Algorithm MW
[Initialization] Sort the jobs into a nondecreasing sequence by their weight

w[1] w[2] ... w[n] and set k = 0.
[AlgorithmFC] While k n call algorithm FC(k).

If FC(k) reports that no feasible schedule exists, set k = k+1 and goto [AlgorithmFC] ;
Otherwise, set k* = k and goto [Result];
Endwhile

[Result] If k* = 0 then there is a schedule in which all jobs are early and set w* = 0; otherwise,
is the optimum.

Theorem 4.2. The Min-Max Weight Algorithm MW finds the optimal solution to the problem
 in O(n2) time.

Proof. For k = 0, FC(k) constructs the EDD sequence on the whole job set J, which requires
O(nlogn) time. We can obtain the sequence (f = n — k) in the initialization step of
FC(k + 1), from the sequence constructed for FC(k) in O(n) time by simply deleting
the job [k] from it. It is clear that all other operations in FC(k) need at most O(n) time. Since MW
calls FC(k) at most (n + 1) times, the overall complexity of the algorithm is O(n2) indeed.
Corollary 4.1. The optimal solution v* to the problem of minimizing the sum of the weighted number
of late jobs and the batch delivery cost on a single machine, , is in the interval

[v', nv'], where v' = w* + q.
Proof. It is easy to see that there is at least one batch and there are at most n — k* + 1 batches
in a feasible schedule. Also the weighted number of late jobs is at least w* and at most k*w*

Minimizing the Weighted Number of Late Jobs
with Batch Setup Times and Delivery Costs on a Single Machine 97

in an optimal schedule for . Thus v' = w* + q is a lower bound and k*w* +

(n — k* + 1)q nw* + nq = n(w* + q) = nv' is an upper bound for the optimal solution v* of
.

Next, we show how to narrow the range of these bounds. Similarly to Gens and Levner [1981],
we use the algorithm R(u,) with = 1/4 in a binary search to narrow the range [v', nv'].
The Range and Bound Algorithm RB
[Initialization] Set u' = nv'/2;
[BinarySearch] Call R(u', 1/4);

If R(u', 1/4) reports that v* u', set u' = u' /2 and goto [BinarySearch];
If R(u', 1/4) reports v* > 3 u'/4, set u' = 3u'/2.

[Determination] Call R(u', 1/4).
If R(u', 1/4) reports v* u', set = u'/2 and stop;
If R(u', 1/4) reports v* > 3 u'/4, set = 3u'/2 and stop.

Theorem 4.3. The algorithm RB determines a lower bound for v* such that v* 2 and it
requires O(n4logn) time.
Proof. It can be easily checked that when the algorithm stops, we have v* 2 . For each
iteration of the range algorithm R(u', 1/4), the whole value interval is divided into
subintervals with equal length (the last subinterval may be less), where u' v'. Since only

values v u' are considered in this range algorithm, the maximum number of subintervals is
less than or equal to . By the proof of Theorem 4.1, the time complexity of

one call to R(u', 1/4) is O(n4). It is clear that the binary search in RB will stop after at most
O(logn) calls of R(u', 1/4), thus the total running time is bounded by O(n4logn).
Finally, to get an FPTAS, we need to run a slightly modified version of the algorithm DP
with static interval partitioning. We describe this below.
Approximation Algorithm ADP
[Initialization] The same as that in the algorithm DP.
[Partition] Partition the interval [, 2] into equal intervals of size /n, with the last

one possibly smaller.
[Generation] Generate set S(k) for k = 1 to k = n + 1 from S(k-1) as follows:

Set = ;
[Operations] The same as those in the algorithm DP.
[Elimination] Update set S(k).
1. If more than one state has a v value that falls into the same sub-interval, then

discard all but one of these states, keeping only the representative state with the
smallest t coordinate.

2. For any two states (k, b, t, d, v) and (k, b, t, d, v') with v v', eliminate the one with v'
from set based on Remark 3.2;

3. Set S(k) = .
Endfor
[Result] The best approximating solution corresponds to the state with the smallest v over all
states in *. Find the final schedule by backtracking through the ancestors of this state.
Theorem 4.4. For any > 0, the algorithm ADP finds in O(n4/) time a schedule with cost v for the

 problem, such that v (1 +)v*.

Proof. For each iteration in the algorithm ADP, the whole value interval [, 2] is divided
into subintervals with equal length (the last subinterval may be less). Thus the maximum

Multiprocessor Scheduling: Theory and Applications 98

number of the subintervals is less than or equal to . By the proof of Theorem 3.1,

the time complexity of the algorithm is O(n4/) indeed.
To summarize, the FPTAS applies the following algorithms to obtain an -approximation for
the problem.

The Fully Polynomial Time Approximation Scheme (FPTAS)
1. Run the algorithm MW by repeatedly calling FC(k) to determine v' = w* + q;
2. Run the algorithm RB by repeatedly calling R(u', 1/4) to determine ;
3. Run the algorithm ADP using the bounds v* 2 .
Corollary 4.2. The time and space complexity of the FPTAS is O(n4logn + n4/).
Proof. The time and space complexity follows from the proven complexity of the component
algorithms.

5. Conclusions and further research

We presented a pseudopolynomial time dynamic programming algorithm for minimizing the sum
of the weighted number of late jobs and the batch delivery cost on a single machine. For the special
cases of equal weights or equal processing times, the algorithm DP requires polynomial time. We
also developed an efficient, fully polynomial time approximation scheme for the problem.
One open question for further research is whether the algorithm DP and the FPTAS can be
extended to the case of multiple customers.

6. References

P. Brucker and M.Y. Kovalyov. Single machine batch scheduling to minimize the weighted
number of late jobs. Mathematical Methods of Operation Research, 43:1-8, 1996.

G.V. Gens and E.V. Levner. Discrete optimization problems and efficient approximate
algorithms. Engineering Cybernetics, 17(6):1-11, 1979.

G.V. Gens and E.V. Levner. Fast approximation algorithm for job sequencing with
deadlines. Discrete Applied Mathematics, 3(4):313-318, 1981.

R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete
Math., 4:287-326, 1979.

N.G. Hall and C.N. Potts. The coordination of scheduling and batch deliveries. Annals Of
Operations Research, 135(1):41-64, 2005.

N.G. Hall. Private communication. 2006.
N.G. Hall and C.N. Potts. Supply chain scheduling: Batching and delivery. Operations

Research, 51(4):566-584, 2003.
D.S. Hochbaum and D. Landy. Scheduling with batching: minimizing the weighted number

of tardy jobs. Operations Research Letters, 16:79-86, 1994.
R.M. Karp. Reducibility among combinatorial problem. In R.E. Miller and Thatcher J.W., editors,

Complexity of Computer Computations, pages 85-103. Plenum Press, New York, 1972.
J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of late

jobs. Management Science, 15:102-109, 1968.
S.K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23(1): 116-127, 1976.
G. Steiner and R. Zhang. Minimizing the total weighted number of late jobs with late

deliveries in two-level supply chains. 3rd Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA), 2007.

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

George Steiner and Rui Zhang (2007). Minimizing the Weighted Number of Late Jobs with Batch Setup Times

and Delivery Costs on a Single Machine, Multiprocessor Scheduling, Theory and Applications, Eugene Levner

(Ed.), ISBN: 978-3-902613-02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/minimizing_the_weight

ed_number_of_late_jobs_with_batch_setup_times_and_delivery_costs_on_a_single_ma

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

