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Rehabilitation of the Paralyzed Lower Limbs 
Using Functional Electrical Stimulation: Robust 

Closed Loop Control 

Samer Mohammed, Philippe Poignet, Philippe Fraisse & David Guiraud 
LIRMM – CNRS/INRIA – Université de Montpellier II 

France

1. Introduction 

The reliability, the ease of donning and doffing and the robustness of controllers constitute the 
primary criteria to evaluate any control strategy based on Functional Electrical Stimulation 
(FES). This technique is used to excite muscles that are under lesions and no more controlled by 
paraplegic patients. Consequently, the patient could recover partially some of its lower limb 
functions, improving the cardiovascular system and bettering the whole quality of life. Many 
FES based studies; both open loop and closed loop control showed satisfactory results in 
movement restoration. Although open loop control strategy induces excessive stimulation of 
the main muscles and consequently fast muscular fatigue, it is still adopted in most clinics till 
now. This could be explained mainly by their relative simple implantation (Bajd et al., 1981). 
Actually closed loop control strategies still have several drawbacks, such as overwhelming the 
patient by sensors’ feedback, tuning the parameters of the controllers and identification for 
every patient, the lack of understanding the muscle contraction phenomena, etc. Closed loop 
controllers in FES context have been reported in many studies (Riener & Fuhr, 1998); (Mulder et 
al., 1992); (Donaldson & Yu, 1996). Some authors use a simple PID controller (Wood et al., 1998), 
Knee Extension Controller KEC (Poboroniuc et al., 2003), a combination of feedback and feed-
forward control or an adaptive approach (Ferrarin et al., 2001). Others use a first or a second 
order switching curve in the state space to control patient movements: The On/Off controller 
(Mulder et al., 1992) and the ONZOFF controller (Poboroniuc et al., 2002), in the so-called 
“controller-centered” strategies. The main advantage of these strategies is their low number of 
parameters to be tuned during stimulation. The so-called “subject centered” strategies, (PDMR: 
Patient-Driven Motion Reinforcement (Riener & Fuhr, 1998), CHRELMS: Control by Handle 
REactions of Leg Muscle Stimulation (Donaldson & Yu, 1996)), introduce the voluntary 
contribution of the upper body of the patient as an essential part of the control diagram. This 
latter is not yet adopted in clinical use because of the relative high number of parameters to be 
identified. In order to overcome these drawbacks, we have applied two robust control strategies 
that are, the High Order Sliding Mode (HOSM) controller (Fridman & Levant, 2002) and the 
Model Predictive Controller (MPC) also known as receding horizon controller (Allgöwer et al., 
1999). These controllers have been evaluated in simulation to highlight i) their performance in 
terms of capability of tracking a pre-defined reference trajectory and ii) the robustness against 
force perturbation and model mismatch. Furthermore the MPC technique constitutes an 
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adequate controller for nonlinear multivariable systems and enables us to incorporate explicitly 
constraints on inputs, outputs and system states. The performances of these controllers have 
also been compared with a classical pole placement controller. The originality of the presented 
study comes also from the fact that these control strategies rely on the use of a physio-
mathematical based muscle model. In fact, few studies have treated the human muscle as an 
entire physiological element in a control scheme. Some authors used linear muscle models; 
others represent the muscle as a non-linear function of recruitment with dynamics activation, 
angle and angular velocity dependence (Riener & Fuhr, 1998); (Veltink et al., 1992). The muscle 
model used in this study has been recently published (El-Makssoud et al., 2004-a) and it is 
based on a complex physio-mathematical formulation of the macroscopic Hill and microscopic 
Huxley concepts reflecting the dynamic phenomenon that occurred during muscle contraction 
and relaxation. In this model, the number of recruited motor units increases as a function of 
both the intensity and the pulse width of the stimulus. This phenomenon is modeled by an 
activation model (representing the ratio of recruited fibers). The contraction dynamics is 
expressed by a set of nonlinear differential equations representing the mechanical model. The 
goal of the present study is to represent the interaction between a closed loop controller and a 
closely physiological muscle model matching. 
In next section, the system modeling is presented; it includes the knee-muscle 
biomechanical model, its state space formulation and parameter identification based on 
experimental setup. In the third and fourth sections, simulation results for controllers based 
on HOSM and MPC are presented. A comparison study of the controller performance is 
presented in the fifth section. 

2. System modeling 

Since closed loop control of different muscles actuating the knee joint of a paraplegic patient 
constitutes a prerequisite step before any upward mobility such as: standing up, standing, 
walking, climbing stairs, etc., we limited, in this stage, the study to a small scale 
biomechanical system. It consists of two segments representing respectively the shank and 
the thigh connected to each other by a revolute joint of one degree of freedom. The thigh is 
supposed to be fixed with respect to the patient while the shank is free to move around the 
knee joint (Fig.1). Two agonist/antagonist muscles act on the knee, the quadriceps acts as an 
extensor muscle while the hamstrings are the flexor muscle group. As a result two forces Fq

and Fh cause respectively the extension and the flexion of the knee. 

Stimulator

Knee

Stimulator

Knee

Stimulator

Knee

Stimulator

Knee

Stimulator

Knee

Fig. 1. Functional Electrical Stimulation applied to skeletal muscles. 
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Fig. 2. Biomechanical model of the knee actuated by two groups of antagonistic muscles. 

These forces are supposed to be constant along their directions on the whole corresponding 
muscle (Fig.2), (  = 0 corresponds to full extension of the knee and  = 90 represents the rest 
position). Fq and Fh are the inputs of the biomechanical model while the angle  is the 
corresponding output. The geometric equations allow us to evaluate quadriceps length Lq

depending on the knee angle variable theta: 

2 2 2 2

0( )q iqL L r r L r
 (1) 

And the hamstrings length Lh( ) : 

2 2

0 0( ) 2 cos( )h ii iiL L L L L
 (2) 

From the above equations, we can deduce the relative elongation of quadriceps and 
hamstrings. 

2 2 2 2

0 00

0 0

2 2

0 0 00

0 0

( )

2 cos( )
( )

iq qq q

q

q q

ii ii hh h
h

h h

L r r L r LL L

L L

L L L L LL L

L L

 (3) 

L0q and L0h correspond respectively to the initial quadriceps and hamstrings lengths. 
Moment arm of the quadriceps is assumed to be constant and equal to the pulley radius r 
while the moment arm of the hamstrings depends on theta. 
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0

2 2

0 0

sin( )
( )

2 cos( )

ii

ii ii

L L
OH

L L L L
 (4) 

From the equations (3), (4) and the equation of motion that is a nonlinear second order 

equation, we obtained the acceleration  (Eq. 5) as a function of the inertia about the knee 

joint I, gravity,  joint damping factor Fv and joint elasticity Ke.

0
1

2 2

0 0

sin( )1
cos( )

2 cos( )

ii
q e v h

ii ii

L L
rF mg L K F F

I L L L L

 (5) 

Identifications of the above parameters were performed based on experiments and are 
presented in the next section. 

2.1 Muscle model 

In previous papers (El-Makssoud et al., 2004-a; b), a physiological skeletal muscle model has 
been proposed to describe the complex internal physiological mechanism controlled by FES. 
In order to develop strategies for simulation, motion synthesis and motor control during 
clinical restoration of movement, we have adopted this model. In (Fig.3) we show the 
muscle model with the parallel element Ep representing the passive properties of the muscle
and two elements in series: the serial element Es and the contractile element Ec. This model 

is controlled by two variables: uch, a chemical control input and  the ratio of recruited 
fibers. This model has been described by two sets of differential equations (Eq.6) where the 
outputs are Kc and Fc representing, respectively, the stiffness and force generated by the 
contractile element. K0 and F0 are the maximum values of Kc and Fc. These equations could 
be expressed as follow: 

0 0
0 0

0 0

1 1

1 1

u c v c
c u c v c ch

c v c c v c

u c c v c
c ch

c v c c v c

s F s F s aK
K s k s K s q K u

pK s qF pK s qF

s F s F bK s aF
F u

pK s qF pK s qF

 (6) 

1 0 1 0
( ) ( )

1 0 1 0

ch c

u ch v c

ch c

if u if
s sign u s sign

if u if
 (7) 

0
0 0

0 0

0 0 0

0 0 0

1 1 1

2

u

c s c s

c c s s
c s c s

c s

s L
s a b L p q

L k L k

L L L L L L
L L L

L L L

 (8) 

Where su, and sv are the sign functions related respectively to the control and velocities of 
the contractile element, Lc and Ls represent respectively the length of the contractile and 

the elastic elements. The ratio of recruited fibers  is considered as a global scale factor 
which gives the percentage of the maximal possible force that could be generated by the 
muscle. 
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Fig. 3. Muscle model and particularity of Ec (El-Makssoud et al., 2004-a).

2.2 State space model of the muscles-knee 

Let us consider the model of the muscles and knee joint as a non-linear state space model: 

( , , )fx x t u  (9) 

Where
1 2 1 21 6

TT

c c c cx x K K F Fx is the state vector while the control vector is 

expressed by 
ch ch

T

q q h hu uu . The variable  represents the joint knee angle. The state 

variables Kc1, Fc1, uqch, q and Kc2, Fc2, uhch, h are respectively the state variables of the 
quadriceps and hamstrings. Consequently, the state representation of the biomechanical 
model (knee-muscles) could be expressed as: 
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2.3 Model parameters identification 

The parameters of the biomechanical system have been identified based on different 
protocols. The geometric parameters such as the insertion points, the muscle lengths, the 
moment arms, etc., were identified based on the Hawkins model (Hawkins & Hull, 1990) 
and using the Levenberg-Marquardt (Levenberg, 1944) algorithm. The knee joint dynamic 
parameters such as the joint stiffness and viscosity were identified through linear least 
square algorithm (Gautier & Poignet, 2002). Some muscle parameters such as the maximal 
muscle force and the force-length relationship were identified using non-linear 
interpolation. Other muscle parameters not yet identified on humans were taken from 
literature (El-Makssoud et al., 2004-a), basically the muscle stiffness and the contractile-
elastic muscle length distribution. 

2.3.1 Knee joint parameters identification 

Kinematics data for the knee joint were measured through a motion analysis system and 
using the passive pendulum test. This test consists in recording the knee joint angle and 
velocity during a passive movement. The table 1 summarizes the identified knee joint 
parameters for a given subject. These parameters correspond respectively to the thigh length 
L0, the quadriceps moment arm r and the two muscles insertion points Liq and Lii and their 
standard deviation. The hamstrings moment arm is position dependent (Eq. 4). 

Parameter L0 r Liq Lii

Value (m) 0.3726 0.0397 0.0401 0.0648 

Standard deviation (%) 0.335 3.230 3.138 0.441 

Table 1. Knee joint parameter identification. 

The parameters shown above, have been satisfactory identified and close to those found 
in literature (Kromer, 1994). The standard deviations were less than 4%. We can notice 
that the chosen movement trajectories excite sufficiently the unknown parameters. Figure 
1 shows the muscle length computed by the Hawkins model and the model described 
above (Eq. 1, 2). 
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The dynamic parameters of the knee joint such as the knee stiffness and the knee viscosity 
were identified based on the following equation and using the linear least square method: 

cos( ) e vI mgl K F  (11) 

We should notice that during a passive movement, the active moment produced by the 
muscles is equal to zero. Different subjects (healthy and paralyzed) have participated in 
the identification process. This latter was performed with the subject laying semi-supine 
with the lower legs hanging over the edge of a chair (Fig. 5). The operator raised the 
shank of the subject to given angle (about 45°) and leave the shank to swing freely until 
it reached the resting position (90°). The movement was recorded using a video based on 
motion analysis system (Vicon). Passive markers were fixed on the hip, knee and ankle 
(Fig. 5-b, 5-c). Kinematic data were acquired at 50 Hz sampling rate. In this application 
only three markers were sufficient to compute the knee joint angle and velocity. This 
system has the advantage to not overwhelming the subject by an external sensor that 
could affect the accuracy of the identification. Several tests were performed for each 
subject. The EMG signal analysis of the main muscles (quadriceps and hamstrings), 
serves only to identify any undesired voluntary muscle contractions and then reject the 
trial. 

Fig. 5. a) Vicon system – b) Healthy subject - c) Paraplegic patient. 

The anthropometric parameters such as the shank mass and inertia were estimated by using 
the regression equation proposed by DeLeva and Zatsiorsky (DeLeva, 1996), and by 
measuring the weight and the height of each subject. The anthropometric parameters of the 
subjects who participated in the identification are shown in table 2. 

Subject I (Kg.m2) m (Kg) l (cm) 

Healthy 0.1682 4.8852 19.46 

Paraplegic 1 0.1536 4.5830 19.2 

Paraplegic 2 0.2092 5.6162 20.26 

Table 2. Estimation of the anthropometric parameters (Inertial moment, mass and length). 

The dynamic parameters of the knee joint such as viscosity and stiffness were identified by 
means of linear least square methods (Gautier & Poignet, 2002). The knee angle position was 
extracted from the kinematic data, while velocity and acceleration were computed by 
numeric derivation using a low-pass filter. The identified parameters as well as their 
standard deviation (sd) are shown in table 3. These results could be compared to some 
results in literature (Ferrarin et al., 2001), computed in the same context. 
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Subject Fv (N.m.s/rad) sd (%) Ke (N.m/rad) sd (%) 

Healthy 0.0838 6.4845 0.17 2.266 

Paraplegic 1 0.0659 13.3589 0.1095 6.0050 

Paraplegic 2 0.0897 10.6973 0.0529 10.1739 

Table 3. Dynamic parameter identification. 

2.3.2 Muscle parameters identification 

The force-length relation (Riener & Fuhr, 1998) expressed by equation (Eq. 12) as well as the 
maximal isometric force that could be generated by a muscle were identified using a special 
experimental platform (Fig. 6)(Mohammed 2006). This latter is equipped by a force sensor, 
position sensor, a mechanical shank and foot blocking system, allowing force and position 
measurements during isometric stimulation tests. 

2

1
( ) exp

l

l
F L

b
 (12) 

Where
0

L
l

L
, L is the muscle length and L0 the muscle length at the rest position . 

lb  could 

be easily identified based on equation (Eq. 12). 

Fig. 6. Experimental platform and muscle parameter identification. 

The muscle stiffness and the contractile-elastic muscle length distribution as shown in table 
(4), were taken from (El-Makssoud et al., 2004-a). 

Muscle model parameters Variable quadriceps hamstrings Unit 

Stiffness of the serial element Es Ks 1.104  1.104 N/m 

Contractile element length Ec Lco 41.10 – 2  38.10 - 2 m 

Elastic element length Es Lso  8.10 - 2   10.10 - 2 m 

Table 4. Parameters of both muscles: quadriceps and hamstrings 
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3. Sliding mode control 

The nonlinearities of the muscle model and the required robustness regarding parameter 
variations and external disturbances lead us to adopt a controller relying on the sliding 
mode theory. This latter became recently widely used due to its high accuracy and 
robustness with respect to parameters’ uncertainty and external disturbances. The control 
task is to keep a constraint, given by equality of a smooth function called sliding surface, 
equal to zero. The dynamic smoothness in the vicinity of the sliding surface represents the 
sliding order of the system. In this study, the goal was to control the muscles-knee 
biomechanical system under FES by means of high order sliding mode controller (HOSM) 
(Fridman, & Levant, 2002). The HOSM generalizes the basic sliding mode approach by 
acting on the higher order time derivatives of the sliding variable instead of influencing the 
first time derivative as it happens in the standard sliding mode control or first order sliding 
mode. Consequently, the discontinuity of the control vector does not appear in the first (r-
1)th total time derivative (Eq. 13,14). The HOSM has the potential to provide greater 
accuracy and decrease the chattering phenomenon. A 2-sliding mode control may provide 
up to second order of sliding precision with respect to measurement interval. In this 
application, a state model of the knee with two antagonist muscles was derived. Here, the 
term antagonist will be used for muscles, whose moment in a two-dimensional system 
about a joint is in the opposite direction as the resulting joint moment. The antagonistic 
function of a muscle is not necessarily restricted to oppose motion but may give stability 
and stiffness to a joint. Unknown perturbations were added to the muscle forces generated 
in order to study the accuracy and robustness of the controller under external disturbances. 

( ) ( )

0, ( 1,2, , 1), 0
i rs s

i r
u u

 (13) 

( 1) 0rs s s s  (14) 

Where s, r and u represent respectively the sliding surface, the relative degree and the 
resulting control vector. 

3.1 Position control law strategy 

The sliding surface used to constraint the dynamic behaviour of the biomechanical model is 
a first order differential equation chosen as: 

d ds  (15) 

Where
d

 and 
d

are respectively the desired velocity and position,  is a positive 

coefficient. Higher values of , lead to a faster convergence along the sliding surface to the 
zero point of the phase-plane. Let us consider the sliding surface (Eq. 15) in order to 
determine the relative order of the controlled system. We obtain the following result: 

0, 0
s s

u u
 (16) 

Therefore, the relative degree of the sliding mode control is r = 2. Considering the step 

response case (
d

=
d

= 0), the second order time derivative of the sliding surface can be 

written as: 

6 6s x x  (17) 
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The expression of the second order time derivative of the state variable 6x  is given by: 
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Inserting the expressions of 6x  and 6x  within equation (Eq. 17) allows writing the second 

order time derivative of the sliding surface as: 

( , ) ( , )s x t x t u  (19) 

It is assumed that | | , 0 < m M (Levant, 1993), where m, M and  are positive 

constants. We express the equation (Eq. 19) as: 

1 2

2 ( , ) ( , )

y y

y x t x t u

 (20) 

Where 1y s . In that case, the problem is equivalent to the finite time stabilization problem 

for a second order system. 

3.2 Statement of the control algorithm 

(Levant, 1993) presented a range of 2-sliding algorithms to stabilise second order uncertain 
nonlinear systems. In the current study we implemented the algorithm with prescribed law 
of variation of the sliding surface. This choice has been made based on criteria of relative 
robustness and finite time convergence (Fridman, & Levant, 2002). The general formulation 
of such a class of a sliding mode control algorithm is: 

2 1

1

( ( )) 1M c

u if u
u

V sign y g y if u

 (21) 

Where VM is a positive constant and gc a continuous function (Fig. 7) as given by Eq. 22. 
Moreover, this function must verify some specific conditions (Fridman, & Levant, 2002). 

1 1 1 1 1, 0, 0.5 1cg y y sign y  (22) 

The sufficient condition for the finite time convergence to the sliding manifold is defined by 
the following inequality: 

1 1sup ( ) ( )c c

m

m

g y g y
V  (23) 
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Larger values of 
1
 accelerate the convergence to reach the sliding surface and provide better 

robustness and stability. A substitution of 2y by 1y  is theoretically possible if 2y is not available. 

Fig. 7. Phase plot of the prescribed convergence law algorithm (Levant, 1993). 

3.3 Simulation results 

We have implemented the control algorithm defined by equation (Eq. 21) on the simulator 
of the knee-muscle biomechanical model (cf. Eq. 10). The components of the control vector 

u are the chemical inputs (uq, uh) and the ratio of the recruited fibers ( q, h). These 

coefficients depend on sliding mode controller output. In our case, the knee joint is 
controlled by two muscle’s groups: quadriceps and hamstrings. Consequently, there are two 
electrical currents, Iq and Ih as well as two Pulse Width Modulation values, PWq and PWh

which have to be deduced from the sliding mode control variable u (Mohammed, et al. 
2005). According to the sign of the resulting control variable at the output of the HOSM
controller, we have chosen to stimulate either the quadriceps or the hamstrings (Eq. 25). 

2 1( ( )) (if 1)M cu V sign y g y dt u  (24) 

max

max

0

If ( 0) If ( 0)

0

q

q

nom

h

h nom

Iu
I I

uu u u
I I

I u

 (25) 

Where, unom and Imax represent respectively the nominal value of the sliding control variable 
u and the maximal value authorized to stimulate a muscle (around 200 mA). The current 
values for quadriceps Iq and hamstrings Ih and/or the Pulse Width, respectively PWq and 

PWh enable us to evaluate the required ratios of fibers to be recruited ( q, h). The chemical 
inputs uq and uh are automatically activated when the electrical currents are respectively 
superior to zero. We have implemented this algorithm on a simulator built with the Matlab-
Simulink environment. In the following simulations, we have applied two different knee 

desired positions, starting from the rest position, d = 90° as:

1) 1 4 : 130

2) 6 9 : 50

3) O therw ise : 90

d

d

d

s t s

s t s
 (26) 
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The coefficients of the 2-sliding controller were chosen to verify the condition equations (Eq. 
23). The following values have been used:  = 10, 1 = 20,  = 0.7, VM = 1. Figure 8-a shows 
the step response for different desired values. Desired and current angle curves match when 
sliding surface reaches zero. As we can notice, the dynamic of the system is constrained to 
the dynamic of the sliding surface. The finite time convergence of the sliding surface is 
about 1sec in knee flexion and extension (Fig.8-b). In Fig.9-a, we present the resulting 
stimulation currents for both quadriceps and hamstrings Iq and Ih. The control vector u

computed by the equation (Eq. 24) is shown in Fig.9-b. 
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4. Model predictive control MPC 

The ability to handle nonlinear multi-variable systems that are constrained in states and/or 
control variables motivates the use of Model Predictive Control (MPC), (Allgöwer et al., 
1999). This approach proved its efficiency in a large variety of industrial processes, 
especially in chemical processes. The MPC problem is usually stated as an optimization one 
subject to physical coherent constraints, and is solved with classical optimization 
algorithms. The MPC has been widely used in different applications due to their interesting 
properties (Camacho & Bordons, 1995). In our particular case, the nonlinearities of the 
muscle model, the constraints on the input stimulation current and on the output knee joint 
position lead us to adopt a controller relying on MPC. Few studies applied this technique to 
a musculoskeletal system. Some authors have used MPC with black-box models instead of 
continuous time physiological models (Schauer & Hunt, 2000). 

4.1 Problem formulation 

The MPC problem is usually formulated as a constrained optimization problem, (Allgöwer 
et al., 1999): 

min ( , )pH p
k

H

k ku
J x u

 subject to: 

|

|

, 0,

, 0,

i k u

i k p

u U i H

x X i H
 (27) 

where

min max

min max

: R |

: R |

m

k k

m

k k

U u u u u

X x x x x

Internal controller variables predicted from time instance k are denoted by a double index 
separated by a vertical line where the second argument denotes the time instance from which 

the prediction is computed. 
0|k kx x is the initial state of the system to be controlled at time 

instance k and: 0| 1| 1 1 1
ˆ , , , ,

u u uk k k H H Hu u u u u u  an input vector of dimension 

pH  (prediction horizon). At each sample, a finite optimal control problem is solved over the 

prediction horizon. We assume that we would like the controlled variables, ky  (Fig.10), to 

follow some reference trajectory r. Predictive control consists in computing the vector ˆ
ku  of 

consecutive inputs 
|i ku over the control horizon 

uH by optimizing the objective function J

under given constraints (Eq. 27). The control signal is assumed to be constant after
uH samples 

over a horizon of (
pH uH ) dimension. When the solution of the optimal control problem has 

been obtained, the value of the first control variable in the optimal trajectory, |k ku , is applied to 

the process. The rest of the predicted control variable trajectory is discarded, and at the next 
sampling interval the entire procedure is repeated (Kesson, 2003). These computations are 
updated at each sampling time. 
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Fig. 10. Principles of the predictive control strategy design (Seborg et al., 2004). 

The nonlinear equality constraint on the state represents the dynamic model of the system. 
Bounding constraints over the inputs ui|k and the state variables xi|k over the prediction 
horizon Hp are defined through the sets U and X (Eq. 27). The objective function J is usually 
defined as: 

| | |

0

( , ) ( ) ( , )
u

p

p

H
H

k k H k i k i k

i

J x u x L x u  (28) 

where  is a constraint on the state at the end of the prediction horizon, called state terminal 
constraint, and L a quadratic function of the state and inputs. The computation of the 

solution 
pH

ku can be divided in two steps: firstly, computation of a solution satisfying the 

constraints (including the state terminal constraint), and secondly optimization. The first 
step involves bounding constraints (Eq. 27), and nonlinear constraints expressing the 
dynamic model of the system (Eq. 9). Simulations were performed in Matlab-Simulink 
environment using the “ode45” integration algorithm with variable step size. The 
simulation codes were adapted from MPCtools, (Kesson, 2003). 

4.2 Model Linearization 

The system (Eq. 9) is a nonlinear multivariable system. In a first step and in order to apply a 
linear predictive controller, we made some assumptions to the nonlinear system. The goal 
was to get a feasible solution before applying the controller to the non linear plant. Some 
hypotheses make this nonlinear system easier: 

We consider that the chemical control uch is a positive constant indicating a 
muscular fiber fusion. This hypothesis could be justified in our case by the fact that 
the stimulation frequency is much greater then the muscular fiber fusion. 

r
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Consequently, during stimulation, we have only contractions and no relaxations:  

1, 1, ,u v c cs s u u

Only one muscle, the quadriceps has been taken into account in the following 
causing knee extension. When no extension, the gravity induces knee flexion to the 
rest position. 

We suppose that the stiffness of the serial element which represents the tendon is 
much greater than the stiffness of the contractile element. This hypothesis is true 
since we are performing only dynamic movements and no isometric stimulations 
were considered. 

0

0 0

1
c c

c c s

L
F

L L K

In the above conditions, the term 
0

1

c s

F
L K

is less than 10-3 0

0c

L

L

By taking into account the above assumptions, the plant model will have a reduced 

nonlinear form where 1 2 3 4

TT
x x x x K Fx is the state vector and u  is the 

control input. The plant model could thus be expressed by the following set of differential 
equations:

1 1 1 4 3

2 1 4 2 2 4 3

3 4

4 2 3 4
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l
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The above hypotheses were validated through simulations as shown in figure (11). This 
latter presents the responses of both, the original non linear model (Eq. 9) and the reduced 
non linear model (Eq. 29). On the left side, we show the force generated by both models. The 
original non linear model presents some oscillations reflecting the contraction-relaxation 
cycle. These oscillations results from the stimulation frequency. On the right side of figure 
(11), we present the knee position output of both models. We can notice that the linearized 
model fits well with the original one in terms of force generation as well as knee angular 

position. A linearization of this system around an arbitrary operating point ( , )x u  has been 

computed using its Jacobian. The linear model could be formulated as follows: 

A B

C D

x x u

y x u
 (30) 
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4.3 Simulation results (MPC) 

Different simulation tests have been carried out. The sample period was set to 0.01 sec, the 
prediction and control horizon Hp and Hu were computed as a function of the system time 

constant: Hp =30 and Hu =10. The constrained input u =  was the recruitment variable. 
Since the recruitment function is static, the optimal pulse width or stimulation amplitude 
could be easily computed. The recruitment variable has been constrained to be between 0 
and 1 representing respectively no fiber recruited and full recruitment. The controlled 
variable, which is the system output, was constrained to stay between  = 0°

(hyperextension) and  = 90° (resting position). Only the knee angle was used as feedback to 
update the control input. Controller parameters were calculated offline. Simulation results 
are shown in figures 12, 13 and 14. 
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In figure (12), initial conditions correspond to  =90°, which means the knee joint is in the 
rest position. After 2 seconds, the desired trajectory was stepped to  = 45° which 
corresponds to medial knee extension. The controller converges to the desired position in a 
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finite time while maintaining the control input between its limits. At time = 6 s, we perform 
a 15° knee flexion inducing a muscle force and stiffness decrease. The controller managed to 
converge to the desired position and to fully compensate the position change without need 
for any feedback observer and respecting at the same time the constraints on input and 
output. Figure (13) shows the optimization time needed to perform the above simulation. It 
should be noticed that the muscle parameters used in these simulation relate to a healthy 
subject (Tables 2 and 3). The inaccuracy that may occur on these parameters when dealing 
with paraplegic patients could be compensated by the robustness of the (MPC) controller. In 
figure (14), we studied the controller robustness against parameter variations. In fact, the 
uncertainty could affect mainly the inertial parameters which have been estimated, based on 
statistical abacuses and regression equations (De Leva, 1996). Although the parameters 
uncertainties imposed were relatively important (20% - 25%) from the initial value, the MPC 
controller showed a satisfactory robustness regardless these uncertainties. 

5. Controllers performance – comparative study 

In this section, we have drawn a comparison between the controllers’ performance (HOSM 
and MPC) in terms of input control and state regulation. These controllers were simulated 
under the same conditions. A classical linear controller based on poles placement (PP) 
serves as a reference controller. 
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In figure (15), we have simulated a 45° knee extension by activating the quadriceps muscle. 
Unlike the PP controller which takes the longest time to converge to the desired position 
and presents at the same time an input saturation during the transient period, the MPC 
controller converged to the desired position in a relatively limited time. Saturation of the 
input control means an important rate of stimulation firing during the transient period. The 
HOSM controller shows a satisfactory performance in terms of time convergence and 
position regulation. We can notice that the system dynamics evolution is constrained to the 
sliding surface dynamic (Eq. 15). Input control does not show also any overshoot, and the 
chattering effect has been considerably reduced. In order to study the robustness of these 
controllers, we have induced a position perturbation that corresponds to a quick and limited 
knee flexion. In terms of position regulation figure (16) shows that the different controllers 
succeed to converge to the desired position. In terms of input control, the PP controller is 
very sensitive to this perturbation; the MPC controller is much less sensitive and finally the 
HOSM controller that showed the best performance against external perturbation. 
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6. Conclusion 

The main challenge that we face when applying FES to the paralyzed lower limbs is to 
avoid hyperstimulation and to defer the muscular fatigue as much as possible. Few 
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studies have treated the human muscle as an entire physiological element in a closed loop 
system. Known by their robustness against unknown perturbation and their accuracy 
against model mismatch, we have used robust control techniques such as the High Order 
Sliding mode (HOSM) and the Model Predictive Control (MPC) in a closed loop control 
scheme. The MPC offers the possibility to integrate constraints on input, output and 
measured states explicitly in its formulation. These strategies have ensured, by 
simulations, a robust control and a safer movement of the paralysed lower extremities. 
The controllers were applied to a multi-scale muscle model developed within the DEMAR 
project and recently published (El-Makssoud et al., 2004 -a). It is based on internal 
physiological characteristics assembling two levels: the microscopic one, involving the 
sliding actin-myosin filaments and the macroscopic part represented by a contractile 
element and an elastic element. This highly non linear model has been described by a set 
of differential equations. We have made some realistic assumptions to the biomechanical 
model of the knee joint actuated by two groups of antagonistic muscles (quadriceps and 
hamstrings). As a result we obtained a simplified nonlinear version of the knee-muscle 
formulation. Dynamic and geometric parameters were identified based on experimental 
kinematics data recorded using a video based motion analysis. Different identification 
techniques were applied such as the least square, non-linear interpolation, regression 
equations, etc. We were able to control the quadriceps-hamstrings muscles for the knee 
flexion-extension in order to track a predefined position trajectory within a large range of 
movement. Satisfactory stability and tracking error were achieved after a finite time 
delay. The performance of the closed loop system has been assessed in the presence of 
external force perturbations. Controller responses to these perturbations vary from the 
most sensitive (PP) to the MPC controller and finally the HOSM controller which seemed 
to be the most robust against external perturbations. We should notice that the system 
dynamic was constrained to follow the sliding surface dynamics. The MPC had shown a 
better performance in terms of time response than the HOSM. The results show that we 
respect the constraints on input and output. We are trying to limit the computational 
effort which is a common deficit of the MPC design. Actually, the optimisation time 
obtained (Fig.13) is around 20 ms in Matlab environment which is quite encouraging for a 
real time implementation. Experiments are ongoing to validate the control scheme on 
paraplegic patients by using the multi-moment platform used during the identification 
protocol (Fig. 6). 
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