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1. Introduction

Cerebrovascular accident or stroke is one of the major causes of debilitation in the world. 
The major symptoms of stroke are loss of muscle power, spasticity and in-coordination of 
muscle activation. In the past, the assessment of above symptoms were quite subjective by 
using Medical Research Council scale, Brunnstrom’s stage and modified Ashworth scale 
and the rehabilitation of these patients was a labor intensive work. In the past decade, a 
series of researches was conducted at National Cheng Kung University (NCKU) for 
applying robotic technology to biomechanical assessments of spasticity and the neuro-
rehabilitation of stroke patients in chronic stage. In particular, applications of robotics to the 
assessments of functional recovery, the individualized rehabilitation program and modeling 
of the motor learning of normal subjects and stroke patients treated by a de novo robot
developed in Taiwan will be presented. The advantages and impact of utilizing robots to 
assist physicians on treating stroke patients will be discussed. 

1.1 Symptoms of stroke 
Stroke is the primary cause of disability and the second leading cause of death in many 
countries, including Taiwan. Although the mortality rate of stroke has declined, the 
incidence and prevalence of stroke continue to rise. The goal of rehabilitation is to help 
stroke patients to achieve as much functional independence as possible and to maintain 
quality of life. Rehabilitation has an important role in reducing the burden of long-term 
stroke care on society. By definition, stroke is a non-traumatic brain injury, caused by 
occlusion or rupture of cerebral blood vessels, and manifests as sudden appearance of 
neurological deficits characterized by loss of motor control, altered sensation, cognition or 
language impairment and disequilibrium. Intracranial hemorrhage accounts for about 10-
15% of all strokes, and the remaining 80-85% is caused by infarction. 
Disability in stroke affects physical, cognitive and psychological functions in variable severity. 
No two strokes are identical and no two patients respond to treatments identically. Therefore, 
the therapeutic approach requires assessment of every individual patient and demands 
specialized professional knowledge, skills and creativity. Hemiplegia or hemiparesis caused 
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by a stroke in the middle cerebral artery distribution area is commonly seen within the 
rehabilitation setting. Initially, limb weakness and poor control of voluntary movement are 
noted and associated with reduced muscle tone. As voluntary movement improves, non-
functional mass flexion and extension of the limbs becomes apparent, i.e., synergy patterns and 
mass contraction of multiple muscle groups. Later, synergistic movement patterns gradually 
disappear and, following the neurological motor recovery, more isolated joint movements 
gradually develop (Sawner & La Vigne, 1992). Spasticity is a velocity-dependent increase in 
resistance to muscle stretch that develops after an upper motor neuron lesion (Lance, 1981; 
Katz, 1992). Spasticity develops shortly after a completed stroke and usually persists if 
recovery is incomplete and it contributes to pain, motor impairment and disability. Jackson 
classified symptoms after a central nervous system lesion as positive or negative. Positive 
symptoms are spontaneous and exaggerated version of normal functions that reacts to specific 
external stimuli. They include spasticity, increased deep tendon reflexes and hyperactive 
flexion reflexes. In contrast, negative symptoms are deficits of normal behavior or performance 
and they include loss of dexterity, loss of strength, and restricted ability to move. Therapeutic 
interventions are performed under the assumption that a cause-and-effect relationship exists 
between these two groups of symptoms. And the major focus is to decrease the positive 
symptoms and improve the negative symptoms. 

1.2 Biomechanical assessments of stroke 
The motor deficits and functional capability of stroke patients are usually evaluated by 
qualitative and semi-quantitative scales, such as Brunnstrom’s stage and Fugl-Meyer 
assessment. Spasticity, the abnormally increased muscle tone, is evaluated similarly by the 
modified Ashworth scale. Though quantitative assessment of motor functions in stroke 
patients is less developed due to its complexity, many biomechanical methods have been 
employed to quantify spasticity by measuring the muscle response to the passive stretch 
(Firoobakhsh, 1993, Otis, 1983, Rebersek, 1986). Three types of stretch methods are 
commonly utilized, i.e., pendular motion (Lin, 1991, Rack, 1983), sinusoidal excitation 
(Agrawal, 1977, Lehmann, 1989) and constant velocity stretch (Powers, 1989). 

1.3 Therapeutic Exercise Training for Motor Recovery after Stroke 

In consequence of lacking inhibition within the central nervous system, abnormal 
coordination of movement patterns combined with abnormal postural tone are two of the 
major plastic responses that impede restoration of motor functions for patients with post-
stroke hemiparesis (Bobath 1990). On account of weakness-related neurological deficits, the 
patients would rely unconsciously on various compensatory attempts to move limb 
segments that result in atypical synergy patterns and enhanced hypertonus during the 
rehabilitation process (Lum et al., 2003). Therapeutic intervention therefore focuses on 
relearning normal movements through experience with active participation of the patients. 
Correct movement patterns can be facilitated with appropriate application of proprioceptive, 
cutaneous, or reflexive inputs in the beginning of the recovery phase. Reinforced successful 
sensorimotor experiences could expedite recovering from upper limb paralysis of stroke 
patients with manual stretch (Carey et al., 1990), tactile stimulation (Mark et al., 2005), or 
joint compression (Brouwer and Ambury, 1994). As the individual becomes more effective 
and independent in the motor task, this handling of external sensory inputs is gradually 
withdrawn, in replace of strengthening exercises against resistance (Ada et al., 2006) with 
designed patterns and training of goal-oriented and skilled movements (Bobath 1990). 
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A number of neurological treatment approaches have been proposed to facilitate motor 
recovery of stroke patients, including Bobath (Bobath 1990; Davies 1991), Brunnstrom 
(Sawner and Lavigne, 1992), Proprioceptive Neuromuscular Facilitation (PNF) (Dickstein et 
al., 1986), Motor Relearning Program (MRP) (Carr and Shepherd, 1989; Langhammer and 
Stanghelle, 2000), constraint-induced movement therapy (CIMT) (Blanton and Wolf , 1999; 
Taub and Uswatt 2006), task-related training (Dean and Shepherd, 1997; Jang et al., 2003) 
and bilateral training (Mudie and Matyas, 2000;Whitall et al., 2000; Tijs and Matyas, 2006). 
Forms of the rehabilitative practices claimed effective regain of motor control based on 
different conceptual assumptions that lead to a variety of technical emphases. For example, 
the Brunnstrom PNF and bilateral training approaches made use of resistance-induced 
associated movements or widespread mass synergies to strengthen unresponsive muscles 
(Whitall et al., 2000; Hwang et al., 2005). On the other hand, the Bobath approach which 
persisted to restore motor functions with functional activities according to neuro-
developmental sequences and considered reflex-inhibiting patterns to counteract abnormal 
postural tone (Bobath 1990). According to the MRP, training in motor control of stroke 
patients contained two fundamental elements, i.e., anticipatory actions and ongoing practice 
(Carr and Shepherd, 1989). The patients practiced motor task of environment specific to 
enrich relearning (Davis et al., 2006). The CIMT approach addressed massed practice with 
the affected limb. The shaping technique was extensively employed in CIMT by using 
operant conditioning, so that successful performance was consistently rewarded to reverse 
of the “learn non-use” mechanism (Taub et al., 1999; Liepert et al., 2000). Although those 
different approaches showed some degree of improvements in multiple physiological 
domains and longitudinal outcomes after stroke, recent studies have not reached a 
consensus for any of prevailing prescription to optimize performance outcomes and 
neuromuscular adaptations (Pollock et al., 2003; Van Peppen et al., 2004). 

1.4 Robot-aided Assessment and Rehabilitation 
For the rehabilitation of stroke patients, many robotic systems have been developed 
(Noritsugu, 1997, Krebs, 1998, Ju, 2002, Cozens, 1999, Reinkensmeyer, 1999). One of the 
major difficulties in realizing robot-assisted rehabilitation is the controller design. Manual 
treatments usually involve complex maneuvers with resistive or assistive force imposed at 
specific points along a specific direction of the movement. Circular or more complex 
movements with predefined imposing force are difficult to implement by using either 
conventional position or force control alone. Three types of controllers have been employed, 
isotropic or impedance control that maintained a constant stiffness and damping at the end
effector, hybrid position/force controller that controlled position in one direction and force 
in the orthogonal direction, and hardware method to constrain position in the direction 
orthogonal to the tangential velocity (Reinkensmeyer, 1999, Raibert, 1981, Suh, 1991, Lum, 
2002, Burgar, 2000). In a robot-assisted rehabilitation program, the subject is part of the 
man-machine system and dynamic model of the subject is not as clear and invariant as the 
manipulator. To solve this problem fuzzy control was employed to develop a hybrid 
position/force control for a shoulder-elbow rehabilitation robot (Ju et al, 2005). 
In recent years, the fast advancement in robotics has made the appearance of many 
sophisticated robots in industrial, home, entertainment and medical industries. Most of 
these robots are equipped with vision system, tactile sensors and hearing system and the 
control system even has some kind of artificial intelligence. It is believed that robotic 
technology may have a contribution to the assessment and neuro-rehabilitation of stroke 



246 Rehabilitation Robotics 

patients during the acute and the chronic stages. The long-term goals of these researches are 
three-folds. First, devices for biomechanical assessments of the syndromes of stroke are 
developed. Second, neuromuscular mechanism of the syndromes has to be explored. Third, 
based on the mechanism, a neuro-rehabilitation robot is developed to assist physicians and 
physical therapists to provide objective assessments and treatments of the stroke patients. 
Organization of this chapter is summarized in the following. In section 2, two spasticity 
measuring systems for quantifying the degree of spasticity of stroke patients are presented. 
In section 3, a rehabilitation robot developed at NCKU and its applications to the 
assessments of motor functions and clinical treatment of patients is introduced. In section 4, 
a recent improvement of the above-mentioned robot for quantifying the abnormal 
synergistic forearm movement and model simulation of the subjects for monitoring the 
motor adaptation progress is presented. In the last section, the advantages and 
disadvantages of applying robotics on the assessments and treatment will be discussed 
followed by a description of the future aspects of neuro-rehabilitation robots. 

2. Spasticity Measurement Systems 

2-1 Single-axis manipulator for biomechanical assessment of spasticity 

At NCKU, two devices were developed for the assessments of spasticity and tracking 
performance of stroke patients for time course study. Figure 1 shows the schematic and 
the control block diagram of a single-axis manipulator system for quantifying spasticity 
of stroke patients. The system was designed to perform passive stretch on spastic 
muscles of upper and lower limbs. The mechanism was capable of positioning and 
manipulation of elbow, knee or ankle joint. The DC servomotor could drive the 
manipulandum to perform constant velocity or ramp-and-hold, sinusoidal and arbitrary 
movements. A very sensitive torque sensor was utilized to measure the stretch reflex 
torque exerted on the manipulandum by the spastic muscles. The subjects were tested in 
the supine position. The hypothesis to be examined was that tonic stretch reflex of stroke 
patients was first decreased at the acute stage and latter increased at the chronic stage. 
Figure 2 shows the ramp-and-hold stretch of the elbow of a stroke patient. A simple 
method to eliminate the gravitational torque was developed. First, a baseline was 
measured when the manipulandum was driven at an average speed of 5 deg/s. Then, by 
subtracting the baseline from the reflex torques measured at 20, 40, 60 and 80 deg/s, we 
could eliminate the gravitational torque of the manipulandum and the forearm. Four 
stroke patients were recruited for a time course evaluation. The subjects were tested on 
the spasticity measurement system 72 hours, 1 week, 1 month, 3 months and 6 months 
from the onset of the last stroke. The protocol of the human tests was approved by the 
human study ethics committee of National Cheng Kung University Hospital. A 
biomechanical model for the spastic joint was written as: 

)(gr KBI  (1) 

in which I was the inertia of forearm and manipulandum, B was the viscous damping 
coefficient of the robotic system, K was the stiffness constant,  was the angular 

displacement of the manipulator, g was the gravitational torque and r was the stretch 
reflex torque. Figure 2 shows the stretch reflex torque of a typical stroke patient. Note that 
the area between the dotted baseline and the measured torque at various stretch speeds was 
proportional to the stretch speed. The averaged stretch reflex torque (ASRT) was found to 
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be a suitable index for quantifying the degree of spasticity and the single-axis robot system 
provided an on-line examination of spasticity. Details of the development can be found in 
(Ju et al, 2000). 

Fig. 1. Schematic diagram of a Spasticity. 

Fig. 2. Stretch reflex torques of a Stroke Patient Measurement System. 

2-2 Pendulum test system for muscle tone 
The other system that we developed was a pendulum test system for estimating the degree 
of spasticity of the elbow of the strokes. Figure 3 shows a picture of the pendulum system. 
In the past, the pendulum system was developed for the knee joint. The main difficulties of 
applying the conventional method to the elbow were the relatively small inertia of the 
forearm and the uncomfortable testing posture. The system was similar to a clock 
pendulum and a biomechanical model similar to Equation (1) was employed for off-line 
estimation of model parameters of the elbow. From the estimated parameters one could 
quantify the degree of spasticity. Eleven stable stroke patients and eleven normal subjects 
were recruited for the testing. Figure 4 shows the biomechanical model of the man-machine 
system. In this model, mf was the mass of forearm, ma was mass of the apparatus, K and C 
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were stiffness and damping coefficients respectively. The subjects were asked to relax and 
the pendulum was released from an angle of 130º (full extension 0º). The angular trajectory 
of the pendulum was recorded and filtered with a fourth order Butterworth low pass filter 
(cutoff band 10Hz). The model was simulated with the same initial state as the experiment 
and the mean squared error between the model output and the experiment data was 
minimized by finding the optimal parameters K, C and c. The sequential quadratic 
program method was utilized. Figure 5 shows that the damping ratio derived from the 
proposed model could differentiate spasticity from normotonus and it increased as 
spasticity increased. The system was also applied to a normal subject group and to a 
diabetic neuropathic patient group. The results from the normal group (n=192) showed that 
the biomechanical properties of the elbow joints (K and C) was similar in men and women 
when the body weight was adjusted and did not change with age until 70 years old. The 
results from the patients with diabetic neuropathy (n=53) indicated that the pendulum test 
could be used in this patient group to monitor the decreased muscle tone. Details of this 
development can be found in (Lin et al, 2003, 2005, 2006). 

Fig. 3. Pendulum Fig. 4 Biomechanical Model Fig.5 Damping ratio vs Ashworth Scale. 

3. Neuro-Rehabilitation Robot and Treatment Movements 

3-1 Single axis robot for elbow 
To investigate the influence of external constant torque on voluntary elbow movements of 
stroke and normal subjects, the spasticity measurement system was modified (Figure 6). A 
control system that could compensate gravitational torque and generate a constant-torque 
from the manipulandum was developed. Two groups of subjects were recruited, including 
six stroke patients and six normal subjects. Selection criterion of stroke patients were 
normotonic hemiparesis caused by one episode of stroke, clear consciousness and good 
cooperation and free from other central nervous system diseases. A voluntary tracking 
control test was designed for quantitative evaluation of the active tracking capability of the 
subjects. Target and actual elbow trajectories were displayed on a monitor. The target 
trajectory was a ramp-and-hold movement with a speed of 20º/sec. Both the intact and 
affected sides of the stroke patients were tested. The subjects were asked to extend the 
elbow joint from 55º to 110º under three, i.e., free, assistive and resistive, loading conditions. 
The intensity of the assistive/resistive torque was controlled to be 10% of the maximum 
isometric flexion/extension torque. Three tracking performance indices, namely, root mean 
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squares (RMS) error, integration of squared jerks, integration of rectified electromyogram 
were compared. Figure 7 shows the comparison of the intact side with the affected side of a 
stroke patient. One may observe that the tracking performance of the affected side could be 
improved by either the resistive or assistive torque. Details of the developed techniques can 
be found in (Ju et al, 2002). The findings of this work paved the way for the development of 
a five-bar robot which could apply either assistive or resistive force to the wrist of a subject 
who was instructed to actively perform a therapeutic movement on the horizontal plane at 
the shoulder level. 

Fig. 6. Single-axis rehabilitation robot. 

Fig. 7. Affected versus intact sides. 

Various facilitation methods have been developed for the neuro-rehabilitation of paretic 
muscles. Up to now, the true mechanism of neuromuscular facilitation remains obscure. A 
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possible explanation of the rehabilitation process was suggested (Reinkesmeyer, 2004). 
When the upper neurons are injured, the planner, controller and sensing elements of the 
neuromuscular system may loss their functions and the paths between the limbs and the 
sensing elements may be broken. The self repair of the human body is an adaptive process 
which can adjust the unused neurons in the planner, controller, sensing elements and limbs. 
To accelerate this adaptation process there are two approaches, one is to manipulate the 
paralyzed limbs and the other is to instruct the patient to move his/her paralyzed muscles 
and induce the desired movement. The facilitation processes of neuromuscular system 
include passively guiding the spastic limb movement, imposing resistance to strengthen 
muscle power and patterning of treatment movements. 

3-2 Five-Axis Planar robot for shoulder and elbow 
At NCKU a five-bar planar robot was developed for neuro-rehabilitation of shoulder and 
elbow joints of stroke subjects. Figure 8 shows a picture and the schematic diagram of the 
robot. The robot was able to guide patients’ wrists to move along the planned linear or 
circular trajectories on the horizontal plan when the upper arm was abducted by 90º. A 
hybrid position/force controller incorporating fuzzy logic was implemented to control the 
movement in the desired direction and to maintain a constant force along the moving 
direction. Figure 9 shows the tangential and normal directions of movement and a block 
diagram of the hybrid controller. The circular trajectory, with a radius of 14cm, was chosen 
as the treatment movement. The movement involved coordination between shoulder and 
elbow joints and major muscle groups such as deltoid, pectoralis, biceps and triceps were all 
facilitated. A treatment protocol was developed and clinical tests on normal subjects and 
stroke patients have been performed at NCKU Hospital since 1999. Figure 10 shows the 
treatment protocol, in which graded resistive force ranged from 0N to 9N was applied by 
the robot on the wrist when the subject performed the horizontal circular movements. 

 (a)  (b) 
Fig. 8. (a) Picture of the shoulder-elbow rehabilitation robot and (b) schematic diagram of 
the five-bar mechanism. 

The average RMS tracking error of the movement from the normal group was utilized to 
score the performance. When the RMS tracking error was smaller than a threshold of the 
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age-matched normal group, the resistance force was increased. An index called dynamic 
stiffness was employed to evaluate the goodness of motor coordination. The robot could 
apply a radial perturbing force at + 45 degree from the far point (0 degree) of the circular 
trajectory. The subject would react to this unexpected perturbing force. By measuring the 
maximum perturbed displacement of the wrist and the perturbing force. A stiffness matrix 
could be calculated as: 
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Through the similarity transform the dynamic stiffness of the elbow and shoulder joints 
could be obtained, 
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where Kee and Kss are the dynamic stiffness of the elbow and shoulder joints, respectively. 
Figure 11 shows the perturbed movement of a typical stroke patient and Figure 12 shows 
the time course variation of joint dynamic stiffness during the treatment period with the 
protocol depicted in Figure 10. 

Fig.9 (a) Tangential and normal directions, (b) Control algorithm. 
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Fig.10 Clinical treatment protocol. 

Fig. 11. Perturbed arm movement, (a)intact(b)affected. 
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Fig. 12. Changes of dynamic stiffness. 

3.3 Wrist Unit for assessing Forearm Synergistic Patterns 
A new torque measurement system was developed to quantify the abnormal synergistic 
patterns of the strokes when they were performing upper limb movements on the 
horizontal plane. The same protocol for treatment was employed and the 
pronation/supination torque and the tracking trajectories were recorded. An index IADT 
(integration of absolute deviation torque) written as 

dMMIADT ff

2

0
 (4) 

was employed for quantifying the synergistic torque of the affected muscles. In Eqn. (4) Mf 
is the pronation/supination torque of forearm, over bar means the average, and  is the 
angle that defines the position of wrist on the circular trajectory. We found that IADT could 
be utilized to quantify the degree of in-coordination of the affected joints. Two types of 
movements, namely, passive and active constrained movement were performed by the 
subjects. Figure 13 shows the comparison between four stroke patients and six normal 
subjects during the active constrained movements. The results showed that for three out of 
four stroke patients, IADT of affected side was higher than that of the intact side. Subject S3 
had a motor capability very close to the normal level. We found that IADT could be used to 
quantify the degree of synergistic movement and the stroke patients manifested significant 
abnormal pronation/supination movements during the circular treatment exercise. Details 
of this research can be found in (Kung et al, 2005). 

Fig. 13. IADT for normal group and stroke.
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Fig. 14 Biomechanical model of subject. 

4. Biocybernetic Models for Evaluating Motor Adaptation 

4.1 Modeling of Subjects interacting with the Five-Axis Planar Robot 
To explore the motor learning and adaptation of stroke patients during the time-course of robot-
aided rehabilitation, a biomechanical model of the upper limb of a subject was developed 
(Figure 14). Simulations of the model could probe the interaction between the subject and the 
robot. The model consisted of the skeletal system and the Hill-type muscles. The inverse 
dynamics problem was solved by using the recursive Newton-Euler Equation to obtain the 
torque trajectories of shoulder and elbow. The static optimization problem was then solved to 
obtain the force distribution of the ten muscles. In the static optimization the objective function 
of sum of muscle stress squares which was an approach for minimum muscle fatigue was 
employed (Crowninshield et al, 1981). From the Hill-type muscle model and the angle 
trajectories of shoulder and elbow the neural excitation history of all muscles could be calculated. 

4.2 Comparison of motor strategies between the normal and the stroke subjects 
Seven subjects including a stroke and six normal subjects were recruited for a 6-week training 
program. All of them were new to the five-bar planar robot and they were asked to perform 
the transverse circular movement under a 10N resistive force. For the normal subjects, both 
speed and accuracy were improved progressively (Figures 15(a) and (b)). However, the 
performance of the stroke subject was not improved as steadily as that of the normal subjects 
(Figures 15(c) and (d)). Comparison between EMG signals and calculated activations showed 
that the normal subjects used minimum muscle fatigue strategy for the movements throughout 
the training program (Figures 16(a) and (b)). The stroke adopted a different strategy in the 2nd

week and then returned to minimum muscle fatigue strategy in the later 4 weeks (Figures 16(c), 
(d), (e), and (f)). It might imply that the normal subjects could determine their motor strategies 
in the beginning for learning the movement and the training program might help the stroke 
subject to return to the “normal” strategy for the movement. 
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Fig. 15 Speed and accuracy of the subjects. 
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Fig. 16. Normalized EMG signals & calculated muscle activations. 

5. Discussion 

5-1 Advantages and Disadvantages of Robotics for Rehabilitation of Stroke Patients 
One may find that robotics provides an integral solution to the treatments and objective 
assessments of some neurological diseases such as stroke. The robots can perform repeated 
treatment protocols without the need of continuous involvement of therapists. A robot can 
save therapists’ arduous efforts by helping with heavy, challenging and repetitious 
movements. Physical strain and professional injury in therapists can be minimized. It is 
cost-effective to strengthen some basic elements, such as muscle strength, range of motion, 
and sensorimotor coordination, in preparation for higher skill-level movement patterns on a 
mass-practice basis. Robotic therapy techniques can mimic appropriate functional 
kinematics or apply novel patterns of force with precision, such as isokinetic contraction, 
that are potentially effective for muscle strengthening. More advanced robots can even 
provide tactile feedback that kinetically and kinematically corrects the impaired movements. 
Data collected during the robot training sessions can be quantified with ease to complement 
the subjective and qualitative observation of clinicians. 
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On the other hand, although biomedical robots have been used for surgery, life support and 
rehabilitation, the acceptance by patients and physicians are still low. There are several 
obstacles needing to be solved. Robotic training can just perform standard paradigm of limited 
combination of movement patterns in proximal joints. Currently, it cannot provide some 
sensory inputs, such as temperature, touch, stroking and psychological support. Robotic 
training is less flexible than hands-on therapy that most therapists consider essential to 
revitalize residual motor power of the arm and hand in neurologically impaired patients. The 
most central concern of patients about treatments is the beneficial effects on daily living 
activities, such as grooming, hygiene, dressing, undressing and toileting. The effects of robotic 
training might not be necessarily able to be translated into functional recovery. In the last, 
robotic therapy for shoulder and elbow joints can not be directly generalized to robotic therapy 
for the wrist and hand, which involves more degrees of freedom in joint space. 

5-2 Future Aspects of Robotics in Rehabilitation Medicine 
The challenge for the next step in robotic rehabilitation is to develop more creative, 
functional, interesting, task-oriented intervention with demonstrated effectiveness that 
maximize functioning and independence for stroke patients. The robotic system can be 
miniaturized for home and personal use and the interface can be more humanoid. Robotic 
therapy is convenient to combine several different prevailing techniques, such as functional 
electrical stimulation, biofeedback, and virtual reality, to optimize treatment effects for 
patients with different needs. 
Studies of larger scale and more objective evaluating tools are necessary to firmly establish the 
efficacy of robotic rehabilitation. Recent development of function brain imaging methods such 
as the near infrared spectroscopy (NIR), functional magnetic resonance image (fMRI) and others 
have made possible the non-invasive functional imaging of cortex, especially the motor and 
sensory areas (Rolfe, 2000, Hu & Norris, 2004). We believe that direct observation of treatment 
effects on the specific areas of the cortex is essential for designing treatment protocols to provide 
more efficient rehabilitation of patients in the near future. However, there are several technical 
problems to be solved before the integration of rehabilitation robot with these imaging 
modalities. First, the strong magnetic field of MRI has a large disturbance on the sensors such as 
load cells, electromyography electrodes and electro-goniometer. Second, the metal structure and 
the actuators of the robots have high interference on the brain images and there is a need for 
developing rehabilitation devices that have less interference to fMRI. 

6. Conclusions 

In this paper a review on the biomechanical assessment of spasticity and the development 
of neuro-rehabilitation robots for stroke patients is presented. The robots provide precise 
physical therapy and objective evaluation of stroke patients. With the aid of emerging 
functional brain imaging tools and new robotic technologies, more effective treatments can 
be delivered in the future. 
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