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Robot Localisation Using a Distributed
Multi-Modal Kalman Filter 

Oleg Sushkov and William Uther 
University of New South Wales and National ICT Australia 

Australia

1. Introduction 

It is extremely important for any mobile robotics system to know where it is. If an agent 
does not know where it is or where the objects around it are, meaningful actions become 
very difficult to perform. The main obstacle to efficient and accurate robot localisation is 
noise. Noise is present in every part of a robotics system, both in the sensors as well as in the 
actuators. In a world without noise, with perfect sensors and actuators, localisation would 
be a relatively simple task. 
It is also important to note that localisation is not necessarily restricted to determining the 
pose of a robot, but can also include tracking the state of other objects. Taking the Robocup 
domain as an example, localisation could include discovering the ball position and velocity 
and team-mate robot poses as well as the robot's own position. 
The core concept of robot localisation is estimating the world state through sensor data. In 
most situations, the world state is not directly observable in its entirety – the world is only 
partially observable.  In such cases the state of the world must be inferred from the given 
sensor data, and integrated over time. Different algorithms for robot localisation provide 
varying ways of incorporating the partial observations of the world state into an internal 
representation of the complete world state. 
In this chapter we discuss one particular method of Robot localisation as applied to the 4-
Legged League as part of Robocup, developed by the rUNSWift team for the 2006 
competition.  We base our system on Bayesian probability theory.  The agent keeps a 
distribution over possible states of the world, and updates that distribution as it moves 
about and observes the world. 
The Bayesian foundation for localisation is extremely general, and hence leaves many 
choices in implementation.  What is the space over which the state is assumed to vary?  How 
is the probability distribution over that space represented?  Which observations and actions 
are used to update the distribution. 

2. Bayesian Localisation 

As an initial example of Bayesian localization we'll use a small robot in a world made up of 
a 5 by 5 grid of states.  Initially we'll assume that the robot is completely uncertain about its 

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria
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location, and so all states in the world are given equal probability.  As the agent moves, we 
shift the probability distribution to account for the movement, and blur the distribution 
slightly as the movement is noisy.  The exact amount of movement and blur is recorded by a 
motion model. 
When the agent makes an observation, for example it notes that a wall appears two units 
north, that observation is processed through a sensor model.  This sensor model records the 

probability of seeing each possible observation in each possible state )|( SOP .  This model is 

discovered prior to attempting to localise by conducting experiments on the sensors. 
With our prior distribution over states, and our sensor model, we can calculate a posterior 
distribution over states using Bayes' rule.  For each state: 

)(

)|()(
)|(

OP

SOPSP
OSP =

(1)

We do not usually know the probability of a given observation, P(O) , but luckily that is a 

constant. As we know that the resulting probability distribution must be normalised, we can 
ignore P(O)  and simply renormalise the resulting distribution. 

2. State of the Art 

Representing probability distributions as tables of probabilities and doing these calculations 
individually for each state can be very slow.  Luckily, there are common representations for 
probability distributions which allow efficient updates. 
The currently preferred methods of localisation in the 4-legged Robocup league include 
Monte Carlo Particle Filters, and uni-modal Extended Kalman Filters. By far the most 
popular of these is the particle filter method. Particle filters approximate a probability 
distribution with a sample of points drawn from that distribution.  Updates are then only 
required for the sampled points. Some reasons for the popularity of particle filters (Fox et 
al., 1999) include their ability to handle non-linear observations (where the mapping from 
observation space to state space is a non-linear function), their quick convergence, and their 
multi-modal nature (being able to track many different possible positions at the same time, 
termed Global Localization). The other popular method of robot localisation is the Kalman 
Filter (Kalman, 1960). This is a state estimation filter which uses a Gaussian probability 
distribution to approximate the current state of the world. The main advantage of this 
method is that it is very computationally efficient, being able to compute the updates 
algebraically in closed form. 
In this chapter we describe a system for robot localisation which is a hybrid of the Extended 
Kalman Filter and the Monte-Carlo particle filter.  Our representation for our probability 
distributions is a weighted sum of Gaussians – similar to having a small set of particles, 
where each particle is itself a Gaussian. We apply observation and motion updates to each 
Gaussian particle in the same way as for a standard Kalman Filter. Each Gaussian particle is 
then weighted according to how well the observation matched the hypothesis. This method 
combines the advantages of both the particle filter method and the Kalman Filter method. 
We are able to approximate arbitrary probability distributions (given enough Gaussian 
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particles), handle high dimensional state spaces, ambiguous observations, and at the same 
time keep computational costs reasonable. 

3. Issues in the Localization Domain 

The task of robot localization can be seen as calculating the belief distribution of the robot 
position with given observations and control updates. Measurement updates are 
observations of landmarks, in our case distance and heading measurements to the coloured 
beacons. Control updates are a prediction of the belief state after the robot performs some 
movement. 
The task of robot localisation can vary in difficulty depending on various factors. Each of 
these factors will influence the choice of algorithm used for the particular situation, since 
some algorithms are adept at handling certain classes of problems but not others. 
We can categorise localisation problems based on the type of measurements available and 
knowledge of the initial state of the system. Based on these we can classify the problem into 
either Local or Global localisation. In the case of Local localisation, the probability 
distribution function has only a single mode, meaning that the localisation algorithm is only 
required to deal with a small pose error, with the uncertainty confined to a small region 
around the robot’s true pose. In the case of Global localisation, the probability distribution 
function needs to be able to handle multiple modes, and the algorithm used must be able to 
handle high uncertainty in the robot pose. This may be due to large errors in robot motion 
and measurements, or due to the presence of non-unique landmarks. For example, in the 
situation where there are two identical rooms connected by a corridor, the localisation 
algorithm must be able handle a probability distribution function which has a mode in each 
room.
The ”kidnapped robot” problem is related to the problem of Global localisation. This arises 
if at some point in time the robot is taken from its current location and placed in a 
completely different location. In the case of the Robocup domain, this is especially 
prevalent, since robots are frequently taken off the field or placed back on the field in a new 
location. It is very important that the chosen algorithm can deal with ”kidnapping” quickly 
and efficiently. This problem is magnified even further if the place where the robot is 
replaced has almost symmetrical landmarks when compared to its belief location. 
Whether the environment is static or dynamic will also affect the choice of suitable 
algorithm. In the case of a static environment, the objects which are of concern for the robot 
are stationary during the operating cycle. A dynamic environment, however, may have 
moving objects which can affect the robot, or which the robot must interact with. In this case 
the algorithm must track not only the robot pose, but also the position of the moving objects. 
When applied to the Robocup domain, we can clearly see that it is a dynamic environment. 
Specifically, the orange ball is a moving object which we must track. The team-mate robot 
and opponent robots may also be considered as dynamic objects, but often, as in our case, 
they are ignored because they are very hard to observe. 
The final distinguishing feature of robot localisation that we will consider is the issue of 
single-robot and multi-robot localisation. The simple case is single-robot localisation, in 
which case observations are all made by the one robot, only one pose needs to be tracked, 
and there is no need for communication between robots. Multi-robot localisation offers the 
advantage of the availability of a greater number of sensors and thus a greater number of 
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observations. We can use this increased observational power to improve the accuracy of the 
system as a whole. However, multi-robot localisation also brings with it many challenges. 
The localisation algorithm used must be able to incorporate the observations of other robots 
in the system, which in itself brings about issues such as communication lag. In our case, we 
can use the observations of other robots on the team to better track the position and velocity 
of the ball, and can also set up correlations in order to be able to use the ball as a beacon, 
thus improving not only the accuracy of the ball location, but also of the robots pose itself. 

4. Kalman-Bucy Filter Algorithm 

At its core the Kalman-Bucy Filter is a recursive solution to the discrete-data linear filtering 
problem. It allows us to estimate the state of a process minimising the squared error.  
Surprisingly, as already noted, this turns out to be equivalent to a Baysian tracking system 
when both prior and observation probability distributions are Gaussian. 
In the case of Robot localisation, the process is the movement of the robot around the field.  
The process to be estimated is governed by the stochastic difference equation: 

1kkkk w++=x −−− 11 BuAx (2)

And measurement update: 

kkk v+Hx=z (3)

In the equations above, A is an nxn  matrix which relates the process state at the previous 

time step to the current state in the absence of control input. The nxm  matrix B relates the 

control input u to the process state, and w is the process noise, which is assumed to behave 
as a Gaussian Distribution. 

Fig. 1. We approximate a probability distribution function with a uni-modal Gaussian 
distribution 
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The Discrete Kalman Filter consists of two distinct steps, the time update and the 
measurement update. The time update uses the control input to update the belief state of the 
system, and the measurement update uses possibly noisy observations of the system state to 
improve the state belief estimate. In terms of the Robocup domain, the time update is 
derived from the odometry data from the actuators, and the measurement update is derived 
from the visual sighting of various landmarks around the field such as beacons.  The 
variables which we must keep track of between time steps are the mean vector, and the 
covariance matrix. The mean vector is the best estimate of the world state, and the 
covariance matrix is the multi-dimensional measure of the uncertainty of the current 
estimate.

The time update equations: 

1k1kk Bu+Ax=x −−

Q+AAP=P T
1kk −

(4)

The Measurement update equations: 

1−−− R)+H(HPHP=K T
k

T
kk

)Hx(zK+x=x kkkkk
−−

−

−
− kkk H)PK(I=P

(5)

In the time update step we must do two things, we must update the mean state estimate 
based on the control input, and we also need to update the covariance matrix P, that is, we 
need to increase our uncertainty estimate, due to the noise present in the control input. 
The measurement update step is a more complicated process. Firstly we compute the 

Kalman Gain K, this is a measure of how much influence the observation kz  will have on 

the mean state estimate. For example, if we are very certain of our current estimate and we 

judge that the observation kz  is very unreliable, then the Kalman Gain K will be close to 0. 

However, if our uncertainty estimate is very high, that is, we consider the current mean to 
be very unreliable, and at the same time we consider the measurement to be very accurate, 
then the Kalman Gain will be close to 1. 

After we have computed the Kalman Gain, we can adjust the mean state estimate kx  by 

moving it in the direction of the Innovation Vector )Hx(z kk − . The Innovation Vector can 

be seen as the direction in state space in which the mean vector needs to be shifted in order 

for it to more closely agree with the current state observation kz . The more the currently 

observed state disagreed with the mean estimate, the greater will be the magnitude of the 
Innovation Vector, while if the mean estimate is in complete agreement with the observation 
then the Innovation Vector will be 0. 
Finally, we must recompute the covariance matrix P, the uncertainty estimate. In general, 
observations tend to decrease the uncertainty estimate, while control updates tend to 
increase the uncertainty estimate. The derivation of the update of the covariance matrix is 
beyond the scope of this report. See the seminal paper by Rudolf E. Kalman (Kalman, 1960). 
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We can apply the Kalman filter to the problem of Robot Localization as follows. The time 
update step is triggered by the walking module when the robot makes a step.  We can use 

the noisy odometry data to update the mean robot pose of the form )y,(x, .  Already we 

have violated the strict definition of a Kalman filter in that the motion of the robot is not a 
strictly linear change in state.  The direction of the robot relates to the position of the robot 
through various non-linear trigonometric functions as shown in Fig. 2. 
The measurement update is triggered when the vision system detects an object. Objects that 
can be detected include the four unique landmarks, or beacons, placed around the field, the 
ball, and the two goals. The vision system returns distance and angle estimates from the 
robot to the object detected. We could use the noisy distance and heading to the landmark to 
form an observed state estimate and then update the mean pose estimate. However, at this 
point the algorithm breaks down again. This is because the standard Kalman Filter assumes 
that the mapping between the state vector and any observation is linear, in the above case, 
represented by the matrix H. If we were able to observe directly, albeit with noise, the robot 

pose in )y,(x,  form, then we would be fine. When observing a beacon, however, the 

information given implies that the robot pose can be anywhere on a helix in )y,(x, space.

Knowing the distance to a landmark places you on a circle of a given radius around that 
landmark, and knowing the heading to it gives you a certain heading at every point on that 
circle, but they do not provide a single point.  The helix is non-linear and cannot be 
represented by a Gaussian. In order to deal with this issue, we need to move to the 
Extended Kalman Filter, which can handle non-linear mappings between observations and 
state.

Fig. 2. Gaussian approximation to a non-linear motion update 
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5. Extended Kalman Filter 

A Kalman Filter uses linear Gaussians over the state space to estimate the probability 
distribution function. However, as noted in the previous section, if a measurement or 
motion update has a non-linear nature, the classic Kalman Filter algorithm cannot handle 
this kind of situation. A solution to this problem is to linearise the function from state space 
to observation space around certain point such that we would now have a linear Gaussian 
approximation. We use the tangent line (or hyper-plane) which passes through the point x 
as the linear approximation. When applied to the Extended Kalman Filter, we must compute 
the multi-dimensional derivative of the non-linear function - the Jacobian Matrix. Take the 
function F which maps an n-dimensional state space onto an m-dimensional observation 
space:

=

)x,,(xf

)x,,(xfF

mn

m

...
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(6)

The corresponding Jacobian Matrix would be: 
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Each of the elements of the Jacobian Matrix is a partial derivative of the non-linear function 
F. We can now use this linearisation to be able to incorporate non-linear observations and 
time updates into our Kalman Filter. The time update equations become: 

)u,f(x=x kkk 1−

Q+AAP=P T
1kk −

(8)

In the above equation, f is the function which updates the mean state estimate position, it 
may be non-linear, and the matrix A is the Jacobian of this function. The measurement 
update equations become: 

1−−− R)+J(JPJP=K T
k

T
kk

)Jx(zK+x=x kkkkk
−−

−

−
− kkk J)PK(I=P

(9)

and we can now assume that the state to observation equation is no longer linear, becoming: 
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kkk u+)j(x=z (10)

If we consider beacon observations to be two dimensional observations, being heading and 
distance to the beacon, we can derive a Jacobian matrix which is a derivative of the mapping 
between robot pose state space and observation space. The mapping between state space 
and observation space is as follows: 

distance 22 )y(y+)x(x= beaconrobotbeaconrobot −−

heading robot
robotbeacon

robotbeacon

)x(x

)y(y
= −

−

−−1tan

(11)

If we now compute the first derivative of this function from state space to observation space, 
we get the following Jacobian matrix: 
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bcnrbtbcnrbt

bcnrbt
(12)

A more thorough derivation and explanation of the Extended Kalman Filter can be found in 
other papers (Thrun et al., 2005) (Zarchan et al., 2005). 

6. Multi-Modal Localization 

The Extended Kalman-Bucy Filter is a powerful algorithm for robot localisation. However, 
one of its major downfalls is the fact that it can only approximate a uni-modal probability 
distribution function. So, for example, if the robot knew it was in one of two positions, say, it 
knew it was next to one of the two goals, the probability distribution function for the pose of 
the robot would have two local maxima, each centred near one of the goals. The Extended 
Kalman Filter, which uses a single Gaussian to represent the pose and uncertainty, would be 
unable to model this situation sufficiently well. This hypothetical situation would be much 
better modelled by the sum of two separate Gaussians, each of which is centred on one of 
the modes. In fact, it is possible to approximate any probability distribution function 
arbitrarily accurately using a weighted sum of an arbitrary number of Gaussians. To 
incorporate multiple modes into the localisation algorithm we use an array of uni-modal 
Gaussians, each with an associated weight. We can then view the full probability 
distribution over the world state as a weighted sum of Gaussians. 
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N

=i

ii )x(G=)xP(

0

(13)

This weight ranges between 1.0 and 0.0 and is a measure of the probability that that 
particular Gaussian represents the state of the system. A Bayesian interpretation allows us to 
update the weights when an observation is made.  In practice, the Gaussians which match 
the observation well have a higher weight than the Gaussians which disagree with the 
observation. Given an observation covariance R, Jacobian J, and the covariance C of the 
Gaussian prior, we can calculate the combined covariance E. Combining this with the 
innovation vector v we calculate the weight scalar S, which allows us to update the weight 
of the Gaussian distribution. 

CJJ+R=E T

)E(=S T 1

2

1
exp −

−

i
=S

i 1

(14)

Fig. 3. A single Gaussian approximates a multi-modal probability distribution poorly 
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Fig. 4. A weighted sum of Gaussians provides a far closer approximation to the true 
distribution 

The sum of the weights of all of the Gaussians in the distribution must sum to 1.0 in order to 
make the entire distribution a valid probability distribution (one which integrates to 1.0 
from -1 to 1). In order to maintain this property a renormalisation must happen every time 
the weight of a Gaussian is modified. In addition to this, Gaussians which have a very low 
weight are removed from the distribution array. This is because they represent extremely 
unlikely modes, and for performance reasons we cannot keep track of unlikely modes. 
Another method used to reduce the number of Gaussians that form the distribution is 
merging similar Gaussians. If two Gaussians have a similar mean and similar covariance 
matrices, then one of them is removed and the other becomes the average of the two. To 
calculate the global maxima of the weighted sum of Gaussians distribution a simple 
approach is taken, the maxima is assumed to be the mean of the Gaussian of highest weight. 
This is not strictly correct, but is a good enough approximation, seeing as a correct solution 
for finding the global maximum of a sum of Gaussians is a lot more involved and does not 
provide enough of a benefit for it to be used in our system.  

7. The State 

An important part of building a tracking system is deciding which state to track.  It is 

possible to track the pose of a single robot as a three dimensional system )y,(x, .  This is 

very effective, but it is possible to do better. 
The current rUNSWift system tracks a 16 dimensional state, rather than a 3 dimensional one. 
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This state incorporates tracking the ball as well as tracking all four robots on the team.  This 
enables information from all four robots to be combined when determining the state.  The 
mechanism for distributing this information is discussed below. 
In addition to this, we use more complex motion update than the simple “shift-and-blur” 
model mentioned above.  A Kalman Filter can handle any linear transform on the state as a 
motion update.  If the robot is standing still, this update would normally be an identity 
matrix for a single robot – the robot stays where it is.  With the addition of a ball that moves 
when the robot is not moving, a non-identity transition matrix is required: the velocity of the 
ball is added to the location of the ball at each time step.  This simple change induces a 
correlation between the location of the ball and its velocity in the state distribution.  When 
we see the ball a second time, the new information about its position will also give 
information about its velocity. 

9,9

3,3

0.00.00.0

0.00.00.0

1.00.01.00.0

0.01.00.01.0

I

friction

friction

I=ixMotionMatr (16)
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8. Noise Filtering 

Using the power of a multi-modal filter we can improve the robustness of the system to 
spurious observations. In the 4-legged league it is very likely that the vision system will 
make false classifications of objects which are part of the background, such as spectators 
wearing coloured t-shirts. These may be classified as beacons, or goals, or the ball. This is a 
different type of noise in the system to what a standard filter is designed to handle, that is, 
noise that is centred on the mean. We need a way to be able to reject spurious observations, 
otherwise they will significantly reduce the accuracy of the localisation system, more so than 
standard “noisy” observations. Take as an example a seeing a spectator wearing an orange t-
shirt in the crowd, which the vision system classifies as a very large (and thus close) ball. 
The variance of this observation will be small because the closer the ball is the more certain 
we are about its observed distance. This results in our estimate of the ball position shifting 
significantly towards the observed “phantom” ball position, despite the observation being 
false.  
Our solution to this problem is to allow that the observation may or may not be correct, and 
as such when we apply the observation to every Gaussian in the weighted sum distribution 
we also make a copy of the Gaussians which do not have the observation applied, but we 
scale the associated weights down by a constant factor. This constant factor can be seen as 
the probability of a false observation. This means that for every observation, the system 
doubles the number of Gaussians which make up the distribution. These are later culled if 
there are too many or their weights are too small. An observation is said to be a phantom 
observation if the weight of the Gaussian with it applied is lower than the weight of the 
Gaussian without the observation applied. 
This technique works because the more an observation disagrees with the current state, the 
lower the weight will be of the resulting Gaussian after applying the observation. So if an 
observation is made which is extremely unlikely, and so is probably a false one, the 
resulting Gaussian will have a lower weight than the Gaussian without the observation 
applied.
The effectiveness of this approach was demonstrated to us when we accidentally swapped 
two of the beacons around and asked the robot to position itself at a kick-off position. This 
results in 4 valid landmarks (2 goals and 2 beacons), and 2 invalid landmarks (the 2 
swapped beacons). Despite expecting the robot to localise poorly due to the contradictory 
observations, the robot localised extremely well, rejecting almost all observations which 
were of the switched beacons. This robustness to false observations was extremely 
important at the competition due to the fact that there were spectators close to the field at 
”eye level” who were wearing coloured shirts. Without this noise filtering in the localisation 
system, the performance of the system would have been far lower. It is important to note 
that unlike some previous work (Browning et al., 2002), out system does not reject “bad” 
observations, but rather tracks all possibilities as different Gaussians, rejecting them only 
when they become extremely unlikely. 
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Fig. 5. shows two possible scenarios. One is where the original Gaussian (top left) is split 
into two, the resulting distribution is such that the Gaussian with an observation 
applied has a higher weight than the scaled down Gaussian with no observation 
applied (bottom left). The other is that the observation is spurious and thus the 
Gaussian with the observation applied has a lower weight than the scaled down 
Gaussian (bottom right)

9. Multiple Linearisation Points 

One of the sources of error in an Extended Kalman Filter comes from the fact that we are 
approximating a possibly non-linear probability distribution with a linear Gaussian 
function. This is one of the advantages of a particle filter approach to localisation, particle 
filters do not have to linearise a non-linear distribution, since they can approximate any 
probability distribution function. However, using a sum of multiple weighted Gaussians to 
represent our function, we can reduce the error from the linearisation process by better 
approximating non-linear function.  In effect we have a simple, and efficient, unscented 
Kalman Filter or Rao-Blackwellised particle filter. Figure 6 is a representation of the 
linearisation process for the standard Extended Kalman Filter approach. The true 
probability distribution function is not a linear Gaussian one, so in order to approximate it, a 
linear Gaussian distribution is used which is tangential to the true probability distribution at 
the current mean point. 
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Fig. 6. The standard Extended Kalman Filter linearises around only one point, the estimated 
mean of the world state 

The way in which we do this is every time a single beacon (note that for the purposes on this 
section, the ball should be considered as being a beacon) is observed, a copy is made of 
every Gaussian in the distribution, with the mean of each copy being offset such that it is the 
same distance from the observed beacon, but is rotated around by a given angle. The 
weights of these new displaced Gaussians are also scaled down. It is important to note that 
the displaced Gaussians can only be generated when only one landmark is observed. This is 
because it is not consistent with the observations to rotate a Gaussian around a beacon if 
there are multiple observed beacons. Every time there is a single beacon observation, only 
one displaced copy is made per existing Gaussian, whereas we would need 2 to maintain 
symmetry. This is done with the aim of improving the speed of the localisation module, 
spawning two additional Gaussians would have been too expensive, so instead we alternate 
whether to rotate the added displaced Gaussian clockwise or anti-clockwise around the 
beacon. In our implementation we chose to rotate the displaced Gaussian by 16 degrees, and 
the weights are multiplied by 0.1. 
The end result of this is a better approximation of the probability distribution function 
through a reduction in the inherent error introduced by the linearisation process. Figure 7 
shows how the two additional linearisation points are placed in relation to the mean, and 
how the multiple linear Gaussians are a closer approximation to the true probability 
distribution function. 
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Fig. 7. Our system adds low weight Gaussians rotated around the beacon, meaning we 
linearise around multiple points 

10. Incorporating Teammate Observations 

The previous sections have all described ways in which the increased representational 
power of a sum of Gaussians representation allows us to more accurately model a 
probability distribution, and hence more accurately localise.  In this section we discuss the 
distribution of information between robots on a team rather than the representation of 
information on a single robot. 
This incorporation of distributed observations of the world state into Kalman Filter 
localisation is one of the most important improvements of our system over a standard 
extended Kalman Filter. Our technique involves each robot keeping track of a separate 
traditional Kalman Filter, which we update as per normal, but does not form part of the 
main weighted sum of Gaussians probability distribution function. We refer to the data 
stored in this Kalman Filter as the “shared Gaussian”.  Periodically, this is sent to all team-
mates. After being sent, the shared Gaussian is reset to a 'uniform' state, with high variance 
and a mean equal to our best estimation of our pose. This avoids any observations being 
incorporated into a team-mate's state estimate multiple times. In addition to sending the 
Shared Gaussian mean vector and covariance matrix, we also send the cumulative odometry 
information, which we also reset every time a wireless packet is broadcast. 
When a wireless packet is received, we can incorporate the team-mate observation into the 
main probability distribution as a direct observation. There is no need to linearise the 
function mapping observation to state space, since it is already a linear one - all observations 
have already been linearised by the sending robot. The data sent is of the form of a 7 
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dimensional mean vector and a covariance matrix.  This reduced form is used to save 
communications bandwidth. The receiving robot must have a matrix which maps the team-
mate pose and ball position/velocity estimates into its own world estimate. 

0

0

0

3,3

7,3

I

=A

9,4

4,4

3,4

0

0

I

=B

( )|BA=H

(17)

The matrix H is the mapping between the wireless team-mate observation and our world 
state estimate. The matrix B is constructed such that the placement of the 3x3 identity matrix 
corresponds to the index of the robot id from which the packet was received, such that our 
idea of where that team-mate robot is positioned is updated accordingly inside the mean 
vector.
The inclusion of team-mate observations greatly increases the accuracy of ball position and 
velocity tracking. With this change it is possible for a robot to grab a ball under its chin with 
its own local distance observations turned off, and relying on team-mate robots on the field 
to obtain the distance to the ball. 
In addition, the accuracy of the robot pose itself is greatly improved by this communication. 
Our scheme allows for the ball to act as a moving landmark from which the robots can 
localise. For example, if a very well localised robot is looking at the ball, it can transmit a 
very accurate and certain position of the ball to its team-mates. Following this, a poorly 
localised team-mate robot can look at the ball, and knowing the ball's position, gain 
information about its own location. 
Before introducing this information sharing, our robots required an active localisation 
behaviour.  If a robot is chasing the ball for a prolonged period of time it will have seen few, 
if any, landmarks and would previously become severely mis-localised. The active 
localisation behaviour involves a robot looking away from the ball to glance at a landmark 
to re-localize itself.  The downside of active localisation is that while the robot is looking 
away from the ball, there is a chance the ball could be moved by an opponent and our robot 
will lose track of it.  With information sharing in place, the ball itself helps the robot localise, 
allowing it to focus more on the ball and less on looking around for beacons. 

11. Results 

We evaluated the effectiveness of our system by setting up various configurations of 
landmarks, balls and team-mates, and then by running a robot between a set of waypoints 
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in order. The robot would stop when it considered itself to be close to a waypoint, and then 
the distance in centimetres between the robots position and the true waypoint position was 
recorded. We performed this test with several different field layouts and between several 
different version of the localisation module.  The field layouts for the various tests are 
shown in Figure 8.  The results are presented in tabulated form, listing the average 
measured distance between the robot position and the waypoint position for every 
waypoint. The total average distance error is also recorded.

Fig. 8. This figure shows the respective field layouts for the tests that were run in order to 
evaluate the performance of the system 

The first test which we ran is a base test. This involves 4 waypoints, each at a quadrant of 
the field, and all of the beacons and goals. The robot starts near the centre circle and runs 
between the waypoints in increasing numbered order. We use this test to compare the 
accuracy of the previous localisation system, and the new localisation system which has all 
of the enhancements mentioned in this report. 
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Full 2005 Localisation System 

Mean Error (cm) Standard Deviation 

Waypoint 1 32.0 8.86 

Waypoint 2 18.8 5.15 

Waypoint 3 31.4 23.6 

Waypoint 4 62.8 64.74 

Average 28.0 25.5 

Full 2006 Localisation System 

Mean Error (cm) Standard Deviation 

Waypoint 1 37.2 9.32 

Waypoint 2 14.0 5.3 

Waypoint 3 19.0 11.2 

Waypoint 4 17.0 7.7 

Average 21.8 8.3 

11.1 Beacon Test 

This test is very similar to the Base Test, except for the removal of 2 beacons.  This change 
makes it much harder for the robot to localise as it receives far fewer observation updates. 
This shows a larger disparity between the old and new localisation systems. 

Multiple Linearisations Disabled 

Mean Error (cm) Standard Deviation 

Waypoint 1 58 30.5 

Waypoint 2 34.2 12.1 

Waypoint 3 20.8 10.3 

Waypoint 4 28.4 8 

Average 35.35 15.22 

Multiple Linearisations Enabled 

Mean Error (cm) Standard Deviation 

Waypoint 1 27.0 12.4 

Waypoint 2 13.0 7.0 

Waypoint 3 37.0 5.1 

Waypoint 4 15.6 2.3 

Average 23.15 6.7 

11.2 Noise Filtering Test 

Our system is multi-modal in nature, allowing it to consider observations as possible false 
and possibly true. This results in spurious observations having a far lower effect on the 
accuracy of the system. If the robot observes a landmark which does not make sense for the 
current estimated world state then it is possible for the system to deal with this by using the 
Gaussian without the observation applied as the mean Gaussian instead. The setup for this 
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test is similar to that of the Base Test, except that we swap around the Yellow on Pink and 
Pink on Blue beacons. This result in any observation of either of these beacons as being 
“false”, and hopefully the localisation system will cull them. 

Noise Filtering Disabled 
Mean Error (cm) Standard Deviation 

Waypoint 1 137.0 31.0 

Waypoint 2 191.0 153.0 

Waypoint 3 189.0 8.2 

Waypoint 4 123 13.5 

Average 160.0 51.42 

Noise Filtering Enabled 
Mean Error (cm) Standard Deviation 

Waypoint 1 31.0 8.6 

Waypoint 2 27.3 9.8 

Waypoint 3 34.0 8.6 

Waypoint 4 12.6 1.0 

Average 26.22 7.0 

We used a one sided Mann-Whitney U test to test the significance of these results.  The 
Beacon and noise filter tests were significant (the beacon test at p = 0.05 and the noise filter 
test at p = 0.01). The base test is not significant with this small sample, but the changes do 
not degrade performance.  
In the end, the best test is the performance of the entire system. Our experience is that each 
of the changes presented in this chapter lead to small, but important, improvements in the 
level of play of the team as a whole. 
Our current experiments demonstrate a small but not statistically significant improvement 
in accuracy due to the ball tracking.  Our more subjective tests with the whole team in a 
game suggest that this is important for complete game behaviour. 

12. Conclusion 

The above results show that the documented improvements have had a great effect on the 
overall accuracy of the localisation system. The effectiveness of the Noise Filtering part of 
the system is staggering. It should be also noted that these experiments only measured the 
(x, y) pose error, whereas the localisation system tracks much more data than those 2 
dimensions, including the ball position and velocity. All of the mentioned improvements to 
the localisation system allowed us to great flexibility and power in terms of higher level 
behaviours. This is shown by the fact that our team came 2nd in the World Open in 2006, and 
in the same year were the Australian Champions.  
National ICT Australia (NICTA) is funded by the Australian Government’s Department of 
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