
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work was partially supported by the European Commission (NoE ARTIST2, IST-2 004527) and by
IEETA - Universidade de Aveiro, Portugal

13

Task Management for Soft Real-Time
Applications Based on General Purpose

Operating Systems

Paulo Pedreiras and Luís Almeida
LSE-IEETA/DETI, University of Aveiro

Portugal

1. Introduction

Many embedded systems, such as those found in planes, trains, cars, robots and machine
tools, exhibit specific timeliness, predictability and precedence constraints that must be
respected. In many cases they are built on top of COTS microprocessor boards, possibly
PCcompatibles, e.g., PC104, SBCs and Mini-ITX, and using multi-tasking operating systems
or kernels, both real-time (RTOS) and general purpose (GPOS) despite the profound
architectural and functional differences exhibited by these two classes of software
infrastructures (Gopalan, 2001).
In fact, GPOS are typically time-shared multi-processing systems, optimized to manage
heterogeneous classes of resources such as CPU, memory, disk, network interface, etc. The
performance criteria for these systems are mostly associated with average throughput and
fairness, the typical applications are not strictly time-constrained and may exhibit
unpredictable blocking and execution times and activation latencies. Conversely, RTOS
favor the timely execution of the activities they support. However the predictability
delivered by this class of OSs comes at a price, which usually takes the form of additional
information and constraints on the application tasks, e.g., bounded worst-case execution
time, minimum inter-arrival time or activation period, relative phases and precedence
constraints, and on operating system primitives, e.g., bounded blocking times, predictable
synchronization primitives, suitable schedulers and admission control.
The architectural dichotomy presented by RTOS and GPOS leads to significant differences
at the application implementation level, and thus the choice of using an RTOS or a GPOS
may not be completely dictated by the timeliness and predictability aspects, only. For
example, in soft real-time applications, which tolerate occasional failures in the time
domain, GPOS may be preferred since they deliver sufficient real-time performance and
generally outperform RTOS in practical aspects like hardware support, price, availability
and diversity and quality of development tools.
Nevertheless, GPOS lack some features that are commonly required by embedded
applications, e.g., support for automatic activation of recurrent tasks with enough precision,
phase control and precedence constraints. These difficulties have been perceived in the
scope of the CAMBADA middle-size robotic soccer team (Cambada), developed at the

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Robotic Soccer 244

University of Aveiro, Portugal, and led to the development of a user-space simple process
manager library, called PMan, which extends the native services provided by the underlying
GPOS, Linux in this case. The PMan services are currently used to automatically trigger
processes, adapt the Quality of Service (QoS) delivered to each process according to the
operational environment, and to enforce phase and precedence constraints between distinct
but related processes.
This chapter describes the PMan library implemented in Linux and presents results that
confirm the usefulness of the services provided. It is organized in the following way: Section
2 discusses related work; Section 3 addresses the internals of the process manager layer
(PMan); Section 4 presents a case study including practical experiments and Section 5
concludes the chapter.

2. Related work

Since the mid 90s that several attempts were made to achieve real-time performance with
time-sharing general purpose operating systems. One approach that received substantial
attention from the research community was the use of CPU reservations (Lee et al, 1996)
(Jones et al, 1997) according to which a task could establish a contract with the CPU,
reserving a given amount of time units every given period. These reservations would have
priority over the time-sharing tasks. However, this model was not adequate to provide low
jitter execution, could lead to large blocking unless a consistent system-wide reservation
scheme was applied to all resources, and did not account for variable execution time. This
aspect caused particular inefficiency in multimedia applications, thus (Chu and Nahrstedt,
1997) proposed supporting a new class of periodic but variable execution time tasks, which
was completely built at user-level, thus highly portable, but required a kernel that could
provide reserves.
This same idea of providing real-time support to applications running in user space was
also the motivation for the development of the LXRT module in RTAI/Linux (LXRT). This
module permits executing hard real-time tasks in user-space context, with a positive impact
in the application development effort and in the system integrity, since programming errors
caused by the real-time tasks do not jeopardize the overall Linux kernel sanity. This feature
comes at a cost of degraded real-time performance, namely latency and jitter, particularly
when Linux system calls are used by the tasks. The Xenomai project (Xenomai) presents
several resemblances with RTAI/LXRT, however has a greater focus in facilitating the
developers migration from RTOS to GNU/Linux based environments, by providing an
emulation layer that supports diverse RT-APIs via skins, e.g., for VxWorks, POSIX and

ITRON. Both of these approaches provide good timing performance but require adequate
kernel level support that is not provided by the Linux kernel alone.
A different path was followed by Chu and Nahrstedt (1997) in which soft real-time
operation was achieved with a simple user-space scheduler based on the fixed priorities
defined within POSIX.4. We also follow this approach, providing a user-space scheduler
that can simply be executed as a normal application in a Linux GPOS, without need for
kernel patches or specialized kernels. With respect to (Chu and Nahrstedt, 1997), we take a
step further adding support for off-sets and precedence constraints.

Task Management for Soft Real Time Applications Based on General Purpose Operating System 245

3. The process manager layer - PMan

The core of our proposal is the processor manager layer, called PMan, which aims at
facilitating the development of soft real-time applications, extending the native services
provided by the underlying GPOS in the following aspects:

• automatic activation of recurrent tasks;

• settling of relative phase control, allowing to establish temporal offsets among
tasks;

• precedence constraints, conditioning the release of processes to the conclusion of a
set of predecessors;

• on-line process management and QoS adaptation, allowing adding and removing
processes at run-time as well as changing dynamically the temporal properties of
the executing ones, without service disruption.

The time management within PMan is associated to a periodic tick whose source is
userconfigurable and can be generated with a timer or an external event. For example, in the
CAMABADA project the PMan tick is associated with the arrival of image frames, in order
to minimize the latency between the image acquisition and the activation of the related
processing tasks.
The PMan operation relies on certain data concerning the processes, which is kept within
the PMan table. A process record in this table is shown in Table 1. The process name and
process pid fields allow a proper process identification, which is used to associate a table
entry with a particular process and to send OS signals to the processes, respectively. The
period and phase fields are used to trigger the processes at adequate instants. The period is
expressed in number of PMan ticks, allowing each process to be triggered every n ticks. The
phase and delay fields permit de-phasing the processes activation, for example to balance
the CPU load over time, with potential benefits in terms of process activation jitter. The
deadline field supports a basic reflection mechanism permitting the process, when
necessary, to carry out sanity checks or recovery actions in case of process misbehavior. A
user specified process is automatically activated upon occurrence of a deadline miss event.
The following section of the PMan process record is devoted to the recollection of statistical
data, which can be useful for profiling purposes. Finally, the status field keeps track of the
current process state.
The library of services associated to the PMan layer is summarized in Table 2. The layer is
initialized via the PMAN_init service and terminated with PMAN_close. The process
registration in the PMan table is carried out with PMAN_procadd. After registering it is
necessary to bind the process OS pid using PMAN_attach. This separation allows having a
process registering itself autonomously or having a third party managing the registration
and properties of other processes. Process entries may be removed from the PMan table by
calling PMAN_procdel. PMan_detach dissociates a process from a PMan table entry.

Robotic Soccer 246

Table 1. PMan process record

Table 2. PMan services

Attaching/detaching processes can be carried out online to allow, for example, selecting one
from a set of processes to carry out a given action according a desired cost function, i.e.
implementing functional alternatives that can be useful during CPU overloads.
A specific feature of PMan is the support for precedence constraints among processes. For
example, in a classical sampling-controller-actuation loop it is necessary to guarantee that
these functions are executed strictly in this order to have the end-to-end latency minimized.
With the recent advances in computing hardware, e.g., hyper-threading and multi-core
CPUs, simpler techniques such as those based on fixed priorities are no longer enough to
enforce the right sequencing, being necessary to use explicit synchronization primitives.
These ones become hard to use in non-trivial situations with many-to-many dependencies

Task Management for Soft Real Time Applications Based on General Purpose Operating System 247

between processes or when the set of processes and, consequently, their precedence
relations, vary dynamically. To cope with this difficulty the PMan library manages
automatically the precedence constraints among processes. Applications declare precedence
relationships using PMAN_precadd and, conversely, PMAN_precdel to remove previously
established relationships. PMan checks all related precedences before actually releasing a
process. The status of precedence constraints is updated whenever processes terminate.
The PMAN_QoSupd call allows changing the QoS allocated to each process at runtime. The
QoS attributes depend on the underlying OS. The current implementation over Linux
considers the OS priority as a QoS parameter. The application processes are assigned
realtime priorities, with SCHED_FIFO scheduler, via the sched_setscheduler system call.
The process priority, supplied as argument to PMAN_QoSupd, must be within the range
[sched_get_priority_min, sched_get_priority_max]. Similarly, the temporal properties of one
process can also be updated dynamically using PMAN_TPupd. The ability to change the
QoS of processes at runtime is particularly useful when the environment is highly variable
and/or hard to characterize, allowing the application to dynamically adapt itself, allocating
more resources to the processes that, in each instant, have higher impact on the global
performance.
The PMAN_epilogue call must be issued by every process managed by PMan, just before
termination. This service is required for internal PMan management, namely verification of
deadline violations and updating precedence constraints. PMAN_query, on the other hand,
allows accessing the statistical data of each registered process, which can be useful, for
example, for profiling and load management. Finally, PMAN_tick carries out temporal
management in PMan, incrementing the tick count, activating processes, checking task
deadlines, etc. This service must be requested periodically either with a system timer or with
an external event. The latter mode, which is not commonly found, supports a transparent
synchronization of the application execution with an external event stream, such as the
arrival of image frames from a camera with automatic image capture.

4. Process synchronization with PMan: a case study

4.1 The CAMBADA vision subsystem architecture

As stated above, the PMan library was developed to address some difficulties perceived in
the scope of the CAMBADA RoboCup middle-size robotic soccer team (Cambada).
Currently, the vision subsystem architecture (Fig. 1) uses one catadioptric configuration
implemented with a low cost Fire-wire web-camera (BCL 1.2 Unibrain camera) and a
hyperbolic mirror. The camera delivers 640x480 YUV images at 30 frames per second. When
a new frame becomes available, the image handling process is automatically triggered and
the frame is placed in a shared memory buffer. The Color_Class[i] set of processes (Fig. 1)
will then analyze the acquired image for color classification, creating a new one with color
labels, i.e., an 8 bit per pixel image. This image is also placed in a shared image buffer, which
is afterwards analyzed by the Obj_track[i] object detection processes (Fig. 1). The output of
the detection processes is placed in the real-time database (RTDB) which can be accessed by
the other processes on the system, such as the control action and world state update.

Robotic Soccer 248

Fig. 1. CAMBADA vision subsystem architecture

4.2 Motivation for explicit precedences and relative offsets

The activation of the image-handling processes is carried out by the PMan manager right
after the arrival of each new image frame. In earlier versions (Pedreiras etal. 2006; 2007) the
PMan triggered sets of related tasks simultaneously, using priorities to enforce precedence
constraints. This approach worked well with a single CPU and in the absence of
hyperthreading but it failed to enforce such constraints when the computing platform of the
robots was updated to Intel™ Core2Duo™ processors with two CPUs and hyper-threading.
This is a common problem in real-time applications, which depend on specific features of
the underlying hardware platform. When the platform is replaced, previous assumptions
may fail leading to a poor application performance and possibly to a system failure.
Therefore, the PMAN_precadd and PMAN_precdel primitives (Table 2) were added to the
PMan library to deal with precedence constraints explicitly, as referred in Section 3.
Another identified problem was the need to adjust the control parameters individually, for
each robot, due to differences in CPU processing power and thus differences in end-to-end
image handling latencies. Moreover, the highly variable nature of the execution time of
image processing activities further complicated the controller tuning. To solve these
problems the actual release instant of the control process was decoupled from the
termination of the preceding object tracking processes and it was set with a predetermined
offset with respect to the image reception. This technique substantially reduces the
dependence of the control performance on the underlying hardware used and it was added
to the current version of PMan.

4.3 Experimental results

To experimentally verify the implementation and assess the performance of the PMan
library several experiments were carried out using the CAMBADA architecture depicted in
Fig. 1. Table 3 shows the process set used in the experiments.

Table 3. Experimental process set

Task Management for Soft Real Time Applications Based on General Purpose Operating System 249

Two hardware platforms were used, one based on an Intel Pentium M Processor at 1.6GHz
(Asus A3N notebook PC) and another based on an Intel P4 DualCore at 2.6GHz (Asus
Pundit desktop PC). Both run the Linux 2.6.22 kernel, with the timer frequency set to 1000
Hz and the High Resolution Timer Support enabled. The first experiment aimed at assessing
the overhead induced by the PMan layer, namely by executing the PMAN_tick service.
Table 4 shows the latencies measured from the activation of the readFireWire process, which
calls PMAN_tick, to the start of execution of Color_Class[0], the process that executes right
after. Two different scenarios have been considered. The first scenario (Immediate)
corresponds to a slight modification of Table 3 in which the Delay parameter is made equal
to 0 for all processes. This means that all processes execute as soon as possible, i.e., when the
CPU is available and the precedence constraints are met. The other scenario (Deferred)
corresponds to the parameters specified Table 3. Both scenarios differ only in the activation
of the Control and WSUpdater processes, which is deferred by 20ms after the trigger in the
latter case.

Table 4. Upper bound on the execution time of PMAN_tick

The measured latencies vary between 5 s and 93 s in the notebook platform and between
8 s and 42 s in the desktop platform. As expected, the average values are lower for the
desktop PC due to the higher CPU processing power. It should also be remarked that the
deferred execution incurs an additional execution penalty, resulting from the need to create
a wake-up thread and an extra call to the nanosleep primitive. Nevertheless, in any of the
scenarios analyzed the additional overhead and latency induced by the PMAN_tick event
are negligible in face of the PMan tick period considered (33ms).
Table 5 shows the results of a second experiment, aiming at verifying the effectiveness of the
deferred activations, namely those of the Control process. When the activation is immediate,
i.e. with Delay=0, the activation latency is highly variable (with the notebook) and hardware
dependent, reaching an absolute jitter of almost 18ms in the worst-case, which is over 50%
of the sampling period, a non-negligible value from the control performance point of view.
With deferred activation, i.e. Delay=20ms, the absolute jitter is substantially reduced, being
below 3.5ms for the notebook and below 35 micro-seconds for the desktop PC. Note that in
the experiments the precedence constraints are always enforced and thus part of the jitter
observed in the notebook platform results from the predecessor tasks requiring more than
20ms to complete thus pushing the activation of the control process.

Table 5. Control process activation delay

Robotic Soccer 250

As expected, enforcing a deferral in the activation of processes that are subject to precedence
constraints can have a noticeable impact on the respective regularity practically eliminating
the respective jitter. Furthermore, the activation latency and associated jitter become nearly
hardware independent. This increased execution predictability facilitates the tuning of
feedback controllers, such as those used within the Control process, resulting in improved
control performance.
Fig. 2. presents a histogram of the control process activation latencies both with deferred
and immediate execution in the notebook platform. The reduction in the jitter figures is
clear. With the deferred execution near 90% of the process activation latencies occur within a
vicinity of 1ms of the desired value while with immediate execution the activation pattern is
substantially enlarged, with latencies ranging from near 6ms to around 23ms and two clear
peaks. It should be remarked that with immediate execution the start time of the control
process depends solely on the completion of its predecessors and that this instant depends
on the amount of processing they required. This amount depends on the richness of the
images, i.e., on the number of regions that have to be checked, a parameter that depends on
the environment (colors of the objects surrounding the playfield, illumination intensity and
nature, etc.) and is, to a large extent, unpredictable and highly dynamic. Therefore, to allow
a fair comparison among the diverse scenarios a fixed synthetic workload was generated
and used throughout the experiments.
Fig. 3 presents a histogram similar to that in Fig. 2 but referring to the desktop platform. The
major distinction between the results with both platforms is the strong reduction in the jitter
achieved with the desktop PC caused by its substantially higher processing power.
Particularly, it is worth noticing the high accuracy with which the control process is
triggered in the desktop PC with deferred execution. When this process is triggered the
precedence constraints are always already met and thus the residual jitter is due to the
handling of OS events, only. This behavior is confirmed quantitatively by inspecting Table 5.
The control process activation for the desktop platform varies between 20078micro-seconds
and 20046micro-seconds, with a standard deviation of 3 micro-seconds.

Fig. 2. Control process activation latency with deferred execution (left) and immediate
execution (rigth), notebook platform

Task Management for Soft Real Time Applications Based on General Purpose Operating System 251

Fig. 3. Control process activation latency with deferred execution (left) and immediate
execution (right), desktop platform

Fig. 4 shows an excerpt of an execution timeline in the notebook PC. Process activations are
indicated by small circles. The four Color classification processes and the five Object tracking
processes execute in sequence, inheriting the execution jitter of their predecessors. However,
the Control and World State update processes, on top, have a deferred activation that absorbs
the execution jitter of the predecessors, resulting in a higher activation regularity. Notice,
nevertheless, that these processes also have precedence constraints, which are always
enforced, even if the execution of the predecessors takes longer than the specified deferral
delay.

Fig. 4. Process execution timeline. Notebook PC, deferred execution

5. Conclusions

Using general purpose operating systems for soft real time applications has several
advantages related with low costs and the abundance of device drivers and software tools.
However, such applications still require adequate timing services, for process activation and
synchronization.

Robotic Soccer 252

In this chapter we presented a process management library that provides such services with
substantial hardware independence and executes completely within user-space, being thus
very flexible to deploy and use. In particular, this library provides support for periodic
process activations, possibly with relative offsets and explicit precedence constraints, and
also dynamic adaptation of temporal parameters and QoS attributes.
The library was developed within the scope of the CAMBADA RoboCup middle-size soccer
robots. Using this application as a case study, the chapter presents several practical
experiments that show the low overhead induced by the process management structure and
the effectiveness of its support for precedence constraints and relative offsets with hardware
independence.

6. References

Chu, H. & Nahrstedt, K. (1997). A soft real time scheduling server in UNIX operating
system. Proceedings of European Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services. Also In Lecture Notes In Computer Science,
pp. 153-162, ISBN:3-540-63519-X , Darmstadt, Germany, September 1997.

Chu, H. & Nahrstedt, K. (1999). CPU service classes for multimedia applications. Proceedings
of IEEE Conference on Multimedia Computing and Systems (MCS’99), pp. 296-301,
ISBN: 0-7695-0253-9,. Florence, Italy, June 1999.

Gopalan, K. (2001). Real-Time Support in General Purpose Operating Systems. ECSL
Technical Report TR92, Experimental Computer Systems Lab, Computer Science Dept,
WSUpd Control Color_Class[0..3] Obj_Track[0..4] Stony Brook University, Stony
Brook, NY - 11794-4400.

Jones, M. B.; Rosu, D. & Rosu, M. (1997). CPU reservation and time constraints: Efficient,
predictable scheduling of independent activities. Proceedings of 16th ACM Symp. On
Operating Systems Principles (SOSP’97), St. Malo, France, October 1997.

Lee, C.; Rajkumar, R. & Mercer, C. (1996). Experience with CPU reservation and dynamic
QoS in real-time Mach. Multimedia Japan, March 1996.

Pedreiras, P.; Teixeira, F.; Ferreira, N.; Almeida, L.; Pinho, A. & Santos, F. (2006). Enhancing
the reactivity of the vision subsystem in autonomous mobile robots using real-time
techniques. RoboCup Symposium: Papers and Team Description Papers, RoboCup-
2005: Robot Soccer World Cup IX, Lecture Notes in Artificial Intelligence,
Bredenfeld, A.; Jacoff, A.; Noda, I.; Takahashi, Y. (Eds.) pp. 371-383, ISBN: 3-540-
35437-9 , Springer Berlin / Heidelberg , Springer, 2006.

Pedreiras, P.; Teixeira, F., Ferreira, N.; Almeida, L.; Pinho, A. & Santos, F. (2007). A Real
Time Framework for the Vision Subsystem in Autonomous Mobile Robots. In
Vision Systems Applications, G. Obinata and A. Dutta (Eds.), pp.83—100, ARS, ISBN
978-3-902613-01-1, Vienna, Austria.

Cambada. Cooperative Autonomous Mobile Robots with Advanced Distributed
Architecture. University of Aveiro, Portugal. Online,
http://www.ieeta.pt/atri/cambada/

LXRT. Online, http://www.fdn.fr/~brouchou/rtai/rtai-doc-prj/doxyapi/group__lxrt.html
Xenomai. http://www.xenomai.org/index.php/Main_Page

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paulo Pedreiras and Luis Almeida (2007). Task Management for Soft Real-Time Applications Based on

General Purpose Operating Systems, Robotic Soccer, Pedro Lima (Ed.), ISBN: 978-3-902613-21-9, InTech,

Available from: http://www.intechopen.com/books/robotic_soccer/task_management_for_soft_real-

time_applications_based_on_general_purpose_operating_systems

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

