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1. Introduction 

The problem of creating a four-legged robotics football team is a very difficult and 
challenging problem. Regardless of the hardware design and manufacture, there are several 
fields involved, like low level locomotion, perception, location, behavior development, 
communications, etc., which should be addressed for developing a fully functional team. In 
practical terms, this means that the software project to develop a robotics soccer team can be 
very large, which implies that verification, debugging and monitoring tools are needed and 
play a very important role in software development time (which uses to be a very expensive 
resource). 
This work is focused on the architecture and behavioral programming model we use to 
develop a team in the Sony Four-Legged League, which is one of the official leagues of the 
RoboCup. All the code, examples, and tools we present in this work have been developed 
for the TeamChaos team1, which has participated in the 2004, 2005 and 2006 editions of the 
RoboCup and several international competitions, and is a follow up of the former 
TeamSweden team, which has participated in the previous editions (1999 to 2003). In this 
league, all the teams must use the same physical platform, in particular the commercial four-
legged robot AIBO developed by Sony. The most recent model, AIBO ERS-7, integrates one 
CPU (64-bits RISC Processor 576MHz), audio interfaces (speaker and stereo microphones), 
switch sensors, two infrared distance sensors and a CCD camera (350K pixels) as 
exteroceptive sensors, accelerometers as internal sensors and wireless LAN for 
communications.  
In the 2007 RoboCup Edition, the teams of four-legged league consist on four robots, which 
have to operate fully autonomously, i.e., there is not external control, neither by humans nor 
by computers, thus all the processing must be done on board and for practical reasons it has 
to be performed in real time, which prevents us from using time consuming algorithms. 
Because of the fact that the hardware platform is standard, we can consider this as a 
software only league. The field is also standard; there are many color coded objects in the 

1
http://www.teamchaos.es

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria
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field to make easier the sensing, like ball, goals and beacons, and each team wears a colored 
uniform. However, in a real soccer field there are not characteristic colored cues, therefore, 
rules of RoboCup are gradually changed year after year in order to push progress towards 
the final goal, “by the year 2050, develop a team of fully autonomous humanoid robots that can win 
against the human world soccer champion team”. The official platform and field of this league 
for the RoboCup 2007 Edition is shown in Fig. 1. 

Fig. 1. Official platform (left) and field (right) of four-legged league in 2007 RoboCup 
Edition 

This league proposes a very demanding scenario, with high uncertainty in perceptions and 
limited processing capabilities. In addition, having a competition implies that at certain 
periods the software development and tuning presents high activity peaks. These facts 
condition the way robots have to be programmed. Our approach to this problem is twofold: 
we define a software architecture into which all the different modules plug, and we use a 
programming language that can drastically reduce development time for certain modules, 
in particular all behavior related modules. 
We follow the ThinkingCap architecture (Saffiotti et al., 1995), a two-layer architecture 
which clearly reflects a cognitive separation of modules. From the conceptual point of view, 
modules are arranged by the nature of their processing tasks. From a software point of view, 
the interfaces are clear and well defined, so that replacing or improving modules is not a 
demanding task. Our current instance of the architecture makes extensive use of the 
behavioral paradigm, and for implementing those behaviors we have opted for the LUA 
language (Ierusalimschy et al., 1996). LUA is a simple yet powerful embedded language 
with a quite portable interpreter. We have integrated LUA in the architecture and have 
developed a set of tools for the on line edition, monitoring and debugging of control 
programs. This allows us to develop and modify behaviors while testing robots on the 
playing field at runtime. Moreover, the behaviors can be tested and verified before the 
execution on the real robot using those software tools, which dramatically reduces the 
severity and duration of downtime during development time. In order to simplify and reuse 
behaviors, we organize them in two types depending on the complexity and functionality: 
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low-level behaviors, which perform specific actions (go to ball, look for ball, kick ball, etc), 
mostly reactive, and high-level behaviors, which perform high level tasks (defend, attack, 
pass, penalty shootout, etc), mostly deliberative. These usually imply the use of some form 
of state, and we have opted for the Hierarchical Finite State Machine (HFSM) paradigm 
(Hugel et al, 2005) to design them. We have developed a visual editor for HFSMs (based on 
Hugel’s code), which automatically generates LUA code directly executable by our 
architecture.
This chapter is organized as follows. Section 2 describes the control architecture. Section 3 
describes the LUA language and how it has been incorporated into the architecture. Section 
4 and 5 describe low-level and high-level behaviors respectively. Section 6 presents some 
conclusions and future work. 

2. Control Architecture 

2.1 The ThinkingCap Model 

The architecture used by each robot is an instance of the ThinkingCap architecture (Saffiotti 
et al., 1995). Fig. 2 shows the main elements of this layered architecture; the lower layer 
provides the interface to the actual hardware, the middle layer maintains a consistent 
representation of the environment around the robot and provides the reactive robot control, 
the higher layer maintains the representation of the objects in a world frame and performs 
decisions considering the global information, and the communication layer provides the 
interface to share information with the other members of the team.  

Fig. 2. Instance of the Thinking Cap architecture for the four-legged league 
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The lower layer provides an abstract interface to the sensori-motor functionalities of the 
robot (Commander Module – CM). This module accepts abstract commands from the upper 
layer, and implements them in terms of actual motion of the robot effectors. In particular, it 
receives set-points for the desired linear, lateral and angular velocity, and translates them to 
an appropriate walking style by controlling the individual leg joints. 
The middle layer maintains a consistent representation of the space around the robot 
(Perceptual Anchoring Module - PAM), and implements a set of robust tactical behaviors 
(Hierarchical Behavior Module – HBM). The PAM acts as a short-term memory of the 
location of the objects around the robot: at every moment, this module contains an estimate 
of the position of these objects based on a combination of current and past observations with 
self-motion information. The PAM module is also in charge of camera control, by selecting 
the fixation point according to the current perceptual needs (Saffiotti & LeBlanc, 2000). The 
HBM implements a set of navigation and ball control behaviors. 
The higher layer maintains a global representation of the field (Global Map - GM) and 
makes real-time strategic decisions based on the current game state, situation assessment 
and role selection (Hierarchical Finite State Machine - HFSM). Self-localization in the GM is 
based on fuzzy logic (Buschka et al., 2000), (Herrero-Pérez et al., 2004). The HFSM 
implements a behavior selection scheme based on finite state machines (Hugel et al, 2005). 
In addition, global ball sharing is also based on fuzzy logic (Cánovas et al, 2004). 
Radio communication is used to exchange position and coordination information with other 
robots (Team Communication Module - TCM) using customs protocols over UDP/IP. 
Intercommunication between the different modules is implemented by data structures 
interchange. The two more important data structures are those representing the world state, 
either in a local or global frame. The information stored in these structures can be related to 
either static objects (nets, landmarks) or dynamic objects (ball, teammates, opponents). The 
local state represents the objects that have been recently perceived by the robot camera in a 
robot centric frame. The data structure that represents the local state is called Local Perceptual 
Space or LPS (Saffiotti et al., 1995), which consists on an array of Local Perception Objects or 
LPO. Each one of these LPOs includes polar positioning information (ρ and θ) and an 
anchoring value, which somehow represents the reliability of that precise perception and 
decreases over time (Saffiotti & LeBlanc, 2000). At each control cycle, all the objects that have 
not been re-perceived are rotated and translated according to the odometry estimation. The 
global state represents all the objects that can be in the environment in a world frame, in our 
case the field viewed from the goalkeeper position. The data structure that represents the 
global state is called Global State or GS, whose contents is the result of fusing information 
from different sources (time aggregation of own camera perceptions and/or other robots 
global states). The most important information for soccer game play is that related to self-
positioning (implemented by filtering the different camera perceptions and odometry 
estimates) and ball positioning (implemented by filtering the local position of the ball from 
the different team robots and their absolute position estimations). The first one is important 
for zonal behaviors (i.e. keeping the goalkeeper in its own area), while the second is 
important when the robot does not sees the ball or it is too far to get good distance 
estimation.
From the control point of view, the behaviors use the information contained in the LPS 
(typically low-level behaviors of the HBM) and the GS (typically high-level behaviors of the 
HFSM) to perform reactive or strategic decisions, which finally translate into movement 
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commands (forward, lateral and angular velocities or kicking actions) or perceptual 
commands (object necessities or needs). While the former are more or less standard in any 
soccer-playing robot (and certainly in any four legged robot), the later are specific to this 
instance of the ThinkingCap architecture (Saffiotti & LeBlanc, 2000). The needs are stored in 
an array, and they represent the priority to actively look for an object in the environment. 
The PAM uses this array to determine at each cycle which object it should look for, typically 
the one with the highest priority. In case that two or more objects share the highest priority, 
the one selected is the one less recently seen. In any case, when looking for an object, if any 
other is perceived it is incorporated into the LPS. In addition to this, behaviors can also 
share information with teammates (ball booking, role information, etc). 

2.2 Integration with OPEN-R 

The API for programming and debugging code for the AIBO platform, Sony OPEN-R SDK, 
is merely an interface to develop software for the Aperios OS, which is the real-time 
operating system used by the entertainment robots of the company. This API discloses the 
specifications of the interface between the system layer and the application layer. The software 
developed using these specifications is object-oriented and modular, where each module is 
an OPEN-R object. In practice, OPEN-R objects are threads running concurrently with many 
inter-threads connections which invoke methods of the OPEN-R objects, i.e., the way to 
manage the concurrency is event-oriented programming. The software to control the robots 
consists on multiple objects with various functionalities running concurrently and 
communicating each other via inter-object communication. The programming language 
supported by this API is C++, including its functionalities.  
The Thinking Cap architecture has been programmed using OPEN-R. The natural way to 
implement the different modules of the architecture is by using one OPEN-R object for each 
module of the architecture, being the connections between objects implemented by the 
event-oriented inter-object communication of Sony OPEN-R SDK. Moreover, this 
implementation provides effective modularization as well as clean interfaces, making it easy 
to develop different parts of it. Furthermore, it allows the execution of each module in a 
computer, using RP-OPEN-R (Remote Processing OPEN-R) which is a tool for compiling 
and executing OPEN-R objects on x86-based CPUs or AIBO robots. For instance, the low 
level modules can be executed on-board and the high level modules can be executed off-
board, where some debugging tools are available. However, due to the real-time constraints, 
this distributed implementation generates serious synchronization problems, which cause 
delays in decisions and the robots cannot react fast enough to dynamic changes in the 
environment.
Because of the reasons above mentioned, we have favored two particular implementations 
of the Thinking Cap architecture using OPEN-R objects, which we call distributed and 
monolithic respectively. The distributed version is composed of three OPEN-R objects: low 
level control (ORLRobot), high level control (ORHRobot) and communications (ORTcm). 
The low level object contains the functionalities of the robot CM and the PAM module in 
charge of the head or camera, which allows executing this module independently for 
debugging. The high level object contains all the behavioral part of the system, the HBM and 
the HFSM, and the GM, the global representation of the field, which allows executing this 
module off-board receiving or simulating the data from the low level object. The 
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communications object implements an interface to communicate the robots using customs 
protocols over UDP/IP. The trade-off between synchronization problems and modularity 
for debugging is met using this distributed version of only three OPEN-R objects, instead of 
one object for each module. The monolithic version has two OPEN-R objects only: robot 
control (ORRobot) and communications (ORTcm) objects. The robot control object contains 
all the functionalities of the robot included in the ORLRobot and ORHRobot modules 
described above, while the communications object is exactly the same. 
In order to maintain both implementations, the different software modules are programmed 
using standard C++ code, and at compilation time it is decided whether it will be a 
distributed or a monolithic version. Fig. 3 shows the two possible implementations of the 
architecture at compilation time, each thread or OPEN-R object contains many software 
modules of the Thinking Cap architecture. As mentioned above, the distributed 
implementation allows running modules independently, which facilitates drastically the 
debugging, and the monolithic implementation avoids the synchronization problems of the 
inter-object communications of OPEN-R objects, mainly due to concurrency issues. 

Fig. 3. Implementations of the architecture: distributed (left) or monolithic (right) 

3. The LUA Interpreter 

3.1 The LUA-based Development Cycle 

Because the AIBO exhibits a closed and restricted programming system, the only way to 
incorporate new software to the robot is by way of OPEN-R objects coded in C++. The 
typical on robot development cycle is as follows: a C++ program is edited and compiled in a 
desktop computer using a cross compiler for the AIBO CPU. The generated binaries are then 
written in a memory stick (usually attached to the computer using an USB card reader). The 
memory stick is then inserted into the robot. Finally the robot is switched on and the 
program is verified or validated. There are alternatives to this process, some of them 
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involving using FTP to send the new binaries to the robot, but it is always needed to reboot 
or switch on the robot, which usually takes a couple of minutes). The typical off robot
development cycle is much simpler, because the C++ programs can be compiled to the 
desktop computer CPU and then executed there. Unfortunately, this procedure can only be 
used to check for the completeness of software modules, but not for the verification and 
validation of actual robot execution (despite the use of a good simulator, which are not 
freely available). For these situations the real robot is needed, and the debugging is quite 
tedious. In particular, this is more exacerbated during competitions, in which during a short 
time, a lot of behaviors and their parameters have to be modified and checked (and even 
created from scratch). 
In this situation, it is close to be mandatory the use of a series of tools that can boost 
development and debugging time on robot. Therefore, many teams working with the AIBO 
platform are using different high-level languages in their behaviors designs. For example, 
some teams use a reduced version of Perl (Upenn team, from University of Pennsylvania) or 
Python (UNSW team, from University of New South of Wales) interpreters to implement 
their high-level behaviors and for rapid development using scripts, which are compiled into 
intermediate opcodes for efficient performance. Other teams have developed specifics 
languages to engineering the behaviors of multi-autonomous agents in complex and 
dynamic environments, like the Extensible Agent Behavior Specification Language (XABSL) 
(Loetzsch et al., 2006). All of these approaches have their pros and cons. XABSL is a XML 
based language, which without the proper editing tool is very difficult to develop. Current 
XABSL tools only work with GermanTeam2 architecture and are very specific for that 
system. On the other hand, Perl and Python are general use languages, but because of the 
OPEN-R and hardware constraints, only a reduced interpreter can be used. Perl code 
readability and maintenance is difficult, and learning curve is quite high. Python is a much 
cleaner language, but its features (base libraries) are far more complex than what is needed 
for developing behaviors. In addition Python interpreter footprint is large compared to Perl 
and other options. For these reasons, we have adopted LUA3 as the programming language 
of the behaviors of our architecture. LUA (Ierusalimschy et al., 1996) is a free and open-
source multi-paradigm programming language, extremely compact and primarily used as a 
scripting language or an extension to another language, mainly C/C++. It is primarily 
considered an extension language although it can be categorized as extensible, interpretive, 
iterative, logic-based, multi-paradigm, object-oriented, reflective, or as a scripting language. 
The main characteristic is that it utilizes meta-mechanisms instead of implementing various 
features directly. This means that the core of the language is fairly restrictive because it is 
embedded, but it can be extended to include other desired features. Because the language 
does not include these extensions by default, it avoids the overhead for unused functions, 
streamlining the code to make it optimal for embedding within another program. 
Nowadays, this language is primarily used in video games because of its versatility. 
In order to enable the LUA interpreter to interact with the sensory and motor routines 
implemented in the OPEN-R modules, the interpreter was extended so that it is able to call 
C functions exported by the modules, namely a C extension module for LUA. Basically, this 

2
http://www.germanteam.de

3
http://www.lua.org
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extension module is an interface to access data variables in the OPEN-R routines and 
activate functions that set sequence of motions, behaviors, team messages, etc. The data 
variables are the structures defined in the control architecture of the robotic team, which is 
depicted in Fig. 2. Both the HFSM and the HBM are implemented using LUA scripts with 
this interface, being the difference the input/output data variables and the activation 
functions. In the HFSM, the data variables are used to coordinate and make decisions 
considering the team, the global state of the game and the messages of the teammates, and 
the decision is the activation of a low level behavior in the HBM. In the HBM, the behaviors 
only depend on the local state around the robot, being the actions the activation of 
perceptual needs and locomotion commands, including kicks. 
With the use of LUA, the on robot development cycle is as follows: a LUA source file is 
edited in the desktop computer, and then it is sent to the running robot (the development 
tools make some validation and verification checks, and the file is only sent if it contains no 
errors). From this moment on, successive calls to the edited script will use the new version. 
This is clearly a much nicer and helpful approach than the C++ one. In addition, although 
syntax check is performed, the new code can have potential errors. Because of the lack of 
LUA pointers, in any case, the new code cannot crash or hang the AIBO CPU, which is a 
quite common situation while debugging C++ code. In order to simplify code management, 
each behavior (be it low-level or high-level) is coded in a single LUA source code file 

3.2 Integration of the LUA Interpreter 

Because of LUA runs by interpreting bytecodes for a register-based virtual machine, we 
have performed different experiments to evaluate its computational cost because this is a 
critical point in real-time applications, like robotics soccer is. While interpreting LUA 
bytecodes is extremely fast, the integration of the LUA virtual machine with the legacy C++ 
code presents some difficulties. Because we use LUA source files that can be edited and 
replaced at any time, we do not store the bytecodes. The control cycle of our architecture is 
quite tight given the hardware platform, and typically both a low-level and a high-level 
behavior are executed every 100 ms. The time consumed by the interpreter should be 
minimum in order to leave as much CPU as possible for the vision process (PAM). For the 
integration we have tried and evaluated three different strategies: 

• Each time a script is called it is loaded from the file and then interpreted. This is the 
simplest approach, and the very first to be implemented. While it is simple, the 
overhead of interpreting two files every control cycle is too high. 

• The first time a script is called it is loaded and kept into memory, and then interpreted 
at every successive call. The advantage of this approach is that the loading time 
(accessing the memory stick is quite time consuming) is reduced, but when the behavior 
is modified the system must signal the interpreter to reload it. 

• The first time a script is called it is compiled to bytecodes and the kept into memory, 
and then executed at every successive call. The advantage of this approach, much like 
the just-in-time compilers (JIT) standard to the Java world, is that both the loading time 
and the interpretation time are reduced. In this case it is needed to signal the interpreter 
when a behavior has been modified to reload and recompile it. This is by far the more 
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complex approach (from an implementation point of view) and the one that has finally 
being selected. 

Fig. 4 shows a plot of the time in microseconds consumed in several calls to a high-level 
LUA behavior. The curve labeled as original is the simple approach, and the curves labeled 
as Optimization 1 and Optimization 2 are the two successive improvements. In average the 
three approaches consume approximately 40 ms, 17 ms and 7 ms respectively. The variance 
in execution time is due to the execution time of the other concurrent processes, being it 
larger when the task consumes more CPU. The measured time is the difference between the 
end and start times of the interpreter process obtained from the real time clock (RTC). As it 
can be seen, the third approach is by far the less time consuming (by a factor of nine with 
respect to the simple approach), and is the one that it is currently in use in our system. 

Fig. 4. Execution time (µs) for the three integration approaches of the LUA interpreter 

3.3 ThinkingCap Services of the LUA Interpreter 

Because behaviors need to access to information provided by other modules of the 
architecture, we have extended the LUA interpreter to interact with the routines 
programmed using OPEN-R; in particular, we have implemented a C extension module to 
call C functions exported by the OPEN-R modules. Basically, the library to interact with the 
Thinking Cap architecture, named chaoslib, is an interface to access data variables in the 
OPEN-R routines and activate functions that set sequence of motions, behaviors, team 
messages, etc. We will describe the most important methods of the library for a better 
understanding of the different examples shown below. The chaoslib methods can be grouped 
into: data access methods, control action methods, coordination methods, and persistence 
methods. 
Data access methods allow accessing all the different information that is generated by the 
different modules of the architecture, mainly the LPS and the GS. The most important 
methods are: 
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• chaos.lps_getLpo(index). Returns a table containing the values of the LPO stored at 
position 'index' of the LPS. A set of convenience constants is available (BALL, NET1, 
NET2, etc). 

• chaos.gsGetMyPos(). Returns a table containing the estimation of the location of the robot 
from the GS. 

• chaos.getBallVel(). Returns a table containing a vector with the estimation of the velocity 
of the ball. The goalkeeper typically uses this to decide a defensive action. 

• chaos.getGlobalBall(). Returns a table containing the estimation of the location of the ball 
from the GS. 

• chaos.getMates(). Returns a table containing the estimation of the location of the 
teammate members. 

Control action methods send commands to the other modules of the architecture, like 
locomotion commands, object necessities and kicking routines activation. The most 
important methods are: 

• chaos.setVlin(vlin). Sets the desired robot’s linear velocity. 

• chaos.setVrot(vrot). Set the desired robot’s rotation velocity. 

• chaos.setVlat(vlat). Set the desired robot’s lateral velocity. 

• chaos.setKick(kickid). Performs a kicking routine with identifier ‘kickid’. 

• chaos.setNeeded(index, value). Sets the necessity of LPO object at LPS position ‘index’ to a 
value of ‘value’. 

• chaos.trackLandMarks(). Special method that sets necessities for localization specific 
objects.

• chaos.setBehavior(behavior). Executes a behavior with name 'behavior'. 

Coordination methods allow the robot to interact with its teammates. These can be related 
to the current role of the player, implemented with a dynamic role allocation method 
(Agüero et al., 2006a), and with the booking of the ball, implemented with a distributed 
mutual exclusion method (Agüero et al., 2006b).  The most important methods are: 

• chaos.getRole(). Returns a table containing the current role of the robot. 

• chaos.haveBookedBall(). Returns a table containing a truth-value representing the ball 
booking state for the robot. 

• chaos.bookBall(). Ask the other robots that we want to book the ball. 

• chaos.releaseBookedBall(). Tells the other robots that we no longer want to book the ball. 

Persistence methods allow the behavior to obtain information about previous activations. 
This is due to the fact that consecutive activations of a behavior imply loading bytecodes 
into the LUA virtual machine. In this way, a behavior can share with itself some form of 
behavior state, and know information related to its activation. Data storage is implemented 
in a hash table. Because LUA does not support types, the global hash table has parameters to 
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specify data types. Current supported types are string, integer and float. The most 
important methods are: 

• chaos.getBehaviorInfo(). Returns a table containing the information about the current 
behavior. This information includes a behavior execution timer and a flag indicating if 
it is the first time the behavior is executed. 

• chaos.setGlobal(key, type, value). Stores the variable with name 'key' of type 'type' with the 
value 'value' into the global hash table. 

• chaos.getGlobal(key). Gets the value of the variable with name 'key' from the global hash 
table.

• chaos.getCurrentState(). Gets the current state of the game as set by the external referee. 

4. Low-level Behaviors 

4.1 The HBM Model and Tools 

Behavior-based systems are increasingly used in many robotic applications, including 
mobile units, manipulators, entertainment robots and humanoids. Behavior-based systems 
were initially developed on mobile robots, where complex tasks were achieved by 
combining several elementary control modules, or behaviors (Brooks, 1986). In most of these 
systems, however, arbitration between behaviors was crisp, meaning that only one Behavior 
was executed at a time, resulting in jerky motion. In other systems, several behaviors are 
executed concurrently and their outputs are fused together, resulting in smoother motion 
during switching of behaviors (Cameron et al., 1993), (Saffiotti, 1997), (Saffiotti et al., 1993). 
The use of behavior-based system for more complex plants than a wheeled unit needs a 
framework which is able to handle several DOF (Kim et al., 2001) uses fuzzy rules to control 
a 6 DOF arm, and (Lever et al., 1994) describes an automated mining excavator that uses 
concurrent behaviors. However, the complexity of these systems makes the design process 
very demanding: (Kim et al., 2001) uses 120 rules to perform a Pick Up task, and (Lever et 
al., 1994) uses a neural network for behavior arbitration, thus giving up the readability of the 
arbitration rules. 
We follow an approach to building behavior-based systems that can be applied to control 
plants with many DOF. Complexity is addressed by a hierarchical decomposition (Saffiotti 
& Wasik, 2002) of the overall task into simple behaviors. These behaviors are encoded by 
small sets of fuzzy rules. In addition, fuzzy meta-rules are used to encode the way behaviors 
are combined together: this makes it very easy to re-configure the system for different tasks. 
We define a set of basic behaviors, that is, behaviors that perform elementary types of 
actions, most of them common to all players independently of their role in the field. In our 
domain, these include turning toward the ball, going to the ball, or moving to a given 
position. These behaviors constitute the basic building blocks from which more complex 
types of actions are obtained by hierarchical composition. The behaviors, which are 
packaged in the HBM module, are defined by way of fuzzy rules (Saffiotti et al., 1993), 
(Saffiotti et al., 1995). The input space used by all behaviors is the local state provided by the 
PAM, which contains the current estimates of the position of all the objects in the field. The 
output space consists of the velocity set-points which are transmitted to the CMD module. 
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An additional control variable is used to indicate which kicks are applicable in the given 
situation.
Thus behaviors are coded by using fuzzy rules of the form: 

 if <predicate>   then <action> 

where predicate is a formula in fuzzy logic that evaluates a series of properties of the local 
state. This can be done without the need of an analytical model of the system or an 
interaction matrix, which may be difficult to obtain for complex plants and tasks, as the 
RoboCup case is. It is also worth noting that the uncertainty in fuzzy system is taken in 
account as well. 

Fig. 5. Membership functions for the posLeft, posAhead and posRight conditions 

In order to give a more concrete impression of how behaviors are implemented, we show 
here the gkcutb behavior. For sake of clarity, all the rules shown in this section are given in 
pseudocode and in a slightly simplified form with respect to the actual rules implemented 
in the robot. The rules are actually implemented using different LUA methods. The 
goalkeeper’s gkcutb behavior uses three rules to control the lateral motion of the robot 
(action strafe) to locate it on the trajectory from the ball to the centre of the net. It also uses 
three rules to control the orientation of the robot to point the head toward the ball (action 
turn). This behavior does not use the forward motion, and thus it is always set to zero 
(action go). Finally, it controls the type of kick to be applied (action kick). If the ball is close 
enough and the robot is pointing to a safe area it tries to kick it using its both arms and the 
chest.

 if posLeft     then strafe RIGHT 

 if posAhead     then strafe NONE 

 if posRight     then strafe LEFT 

 if headedLeft     then turn RIGHT 

 if headedAhead    then turn NONE 

 if headedRight    then turn LEFT 

 if and(freeToKick,  ballClose)  then kick FRONTKICK 

 always     go STAY 
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The aim of this behavior is to keep the goalkeeper on the trajectory of the ball to the net. The 
rule conditions are evaluated from features of the local information, like Ball<ρ, θ> (distance 
and orientation to the ball), and produce a truth value between 0 and 1. Fig. 5 shows the 
truth value, or membership function, of the first three conditions as a function of the x position 
of the robot with respect to the ball-to-net trajectory. These functions are defined by the 
designer, and depend on how the robot should try to cut the ball. The consequent of the 
rules indicate which control variable should be affected, and how: the first three rules 
involve lateral motion of the robot, while the three following rules involve rotational 
motion. Each rule affects the corresponding control variable by an amount that depends on 
the truth value of its condition: smaller or larger adjustments to the robot motion will be 
generated depending on how much the robot is close to the ball-to-net trajectory. Rules are 
evaluated and combined according to the standard Mamdani approach. 
Behaviors also may incorporate perceptual rules used to communicate the perceptual needs 
of active behaviors to the perceptual anchoring module (PAM), by using fuzzy rules of the 
form:

 if <predicate>   then need <object> 

whose effect is to assert the need for an object at a degree that depends on the truth value of 
condition.
In order to give a more concrete impression of how perceptual behaviors are implemented, 
we show here the trackbnet1 behavior. This behavior is useful when the robot tries to store a 
goal in the opposite's net. In this situation it will always concentrate attention on the ball, 
but when it is close to the ball, it might want to also get information on the relative position 
of the net, in order to fine motion to head to the net. This can be accomplished with only the 
following two rules: 

 always     need BALL 

 if ballClose    then need NET1 

where always is a condition which is always true. In a situation where the ball is at 400mm 
from the robot, the truth-value of ballClose is 0.7, and these rules assert a value of needed of 
1.0 for the anchor BALL and of 0.7 for NET1. Behaviors are dynamically activated and 
deactivated according to the current task and situation, and several behaviors can be active 
at the same time. The needed values stored in the S state are those asserted by the active 
behaviors, combined by the max operator. This guarantees that perceptual anchoring only 
depends on the currently active behaviors, hence on the current task. 
We build complex behaviors by combining simpler ones using fuzzy meta-rules, which 
activate concurrent sub-behaviors. This procedure can be iterated to build a full hierarchy of 
increasingly complex behaviors. The mechanism used to perform behavior composition is 
called Context-Dependent Blending (Saffiotti, 1997). Thus, under the CDB paradigm flexible 
arbitration policies can be obtained using fuzzy meta-rules of the form: 

 if <predicate>   then use <behavior> 
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For each such rule, the controller evaluates the truth value, in range [0,1], of <condition> 
and activates <behavior> at a level that corresponds to this value. Several behaviors may be 
active at the same time: in this case, their outputs are fused by a weighted combination 
according to the respective activation levels. Fusion is performed on each control variable 
independently. The use of fuzzy logic to fuse the outputs of concurrent behaviors provides a 
smooth transition during switching between behaviors (Saffiotti, 1997), which would be 
difficult to achieve in architectures based on crisp arbitration like subsumption architecture 
(Brooks, 1986). 
As an example, the following meta-rules implement the gkclearb behavior, which uses four 
rules to decide what action to take: turning until the robot faces the ball, moving the robot to 
approach the ball location, kicking the ball or moving the robot between the ball and the 
opponent's net. The behavior also controls the type of kick to be applied; depending on the 
orientation of the robot, it uses either arms or the head. 

 if not(ballSeen)     then use faceball 

 if and(ballSeen, ballClose, freeToKick) then use dokick 

 if and(ballSeen, ballClose, not(freeToKick)) then use alignbnet1 

One key characteristic of our behaviors combination technique is that there are well-
established techniques to perform fuzzy fusion of the output of behaviors (Saffiotti, 1997). 
The rule-based approach and hierarchical organization allows us to design, implement and 
test very complex behaviors, like the goalkeeper behavior, with a limited amount of effort. 
The goalkeeper behavior involves the use of navigation, manipulation, and perceptual 
actions in a highly dynamic and unpredictable environment. The full goalkeeper has been 
decomposed into 12 behaviors, which involve more than 70 fuzzy rules (including those in 
the basic behaviors) plus 12 perceptual rules. The development of these rules required about 
4 weeks of work by one person (Martínez & Saffiotti, 2003). 
We have implemented a Java based editor for HBM behaviors and a monitor. The HBM 
editor (Fig. 6b) is a simple text editor with an integrated LUA interpreter, which is used for 
detecting syntax errors. If the edited behavior contains no syntax errors, it can be sent to the 
robot at any time, without the need of stopping or rebooting it. The HBM monitor (Fig. 6b) 
is a visual tool that shows information very helpful for debugging behaviors. It includes: the 
table of objects (ball, nets, landmarks) with their anchoring value and relative positions, the 
current estimated robot position, the current output of the HBM (velocities), the current 
active behavior, a graphical display of the most recently viewed objects in robot centric 
coordinates, and a graphical display of the current global robot position with its uncertainty. 
When debugging single behaviors, we can easily contrast what the robot is actually doing 
and what it should be doing, and knowing what it actually perceives. A very difficult to 
debug issue is checking the different preconditions of an action with the real robot because 
the uncertainty in the perception and localization systems. With this approach we can 
produce a preliminary version of a behavior with several parameters estimated, then put the 
robot on the field and execute a single behavior. We then monitor the execution of the 
behavior, modify the LUA code accordingly and send it to the robot. We repeat this process 
until we are satisfied with the result. We then can execute the full system allowing for the 
change of the active low-level behavior by the high-level behaviors. 
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Fig. 6. The HBM tools, code editor (left) and monitor (right) 

4.3 Goalkeeper Example 

We can use complex behaviors to form even more complex ones, thus creating a behavior 
hierarchy. A simplification of the goalkeeper's strategy is exemplified in Fig. 7. The squared 
boxes indicate basic behaviors, that is, behaviors that directly control motion and do not call 
any sub-behaviors. 
There is a set of behaviors that are common to all players and are also used by the 
goalkeeper.

• lookball: Turns the robot until it directly sees the ball. 

• go2ball: Moves the robot to the ball location. 

• dokick: Moves the robot towards the ball and applies a kick. 

• alignbnet1: Moves the robot until it is aligned with both the ball and the opponent's net. 

While most basic behaviors are coded by means of fuzzy rules (as described in the previous 
section), there are some cases in which they are not needed. This is the case of the lookball
behavior. It is intended for finding the ball by means of turning on place. The behavior code 
is as follows: 

slowTime = 400 

local ball = chaos.lps_getLpo(BALL) 

local info = chaos.getBehaviorInfo () 

if info.isNew > 0 then 

 sgn = ball.theta / math.abs (ball.theta) 

 chaos.setGlobal("BALL_DIRECTION",INTEGER,sgn) 

end

sgn = chaos.getGlobal("BALL_DIRECTION") 

vrot = 0 

if info.timer < slowTime then 

 vrot = 50 * sgn 

else

 vrot = 75 * sgn 
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end

chaos.setNeeded(BALL,1.0)

chaos.setVlin(0)

chaos.setVrot(vrot)

chaos.setVlat(0)

For performance reasons, if the robot is not seeing the ball, it is best to turn towards the 
place where the robot last saw it. This is accomplished using the LUA based state methods, 
using the global variable BALL_DIRECTION. In addition, during the first four seconds the 
robot turns slowly (the ball might be close to the robot) and then turns faster (to cover the 
maximum area per time). 

There are some basic behaviors which are specific for the goalkeeper: 

• gktracklms: Select the least recently seen landmark as a desired perceptual goal. It 
directly calls the LUA special method trackLandMarks()

• gkkeepout: Turns the robot slowly moving until it is outside its net. 

• gkkeeparea. Put the robot facing forward and then moves it to the goalkeeper area. 

• gkkeepbarea. Put the robot facing backwards and then moves it below the penalty area. 

• gkcutb. Turn and move sideways in order to intercept the ball trajectory. 

Fig. 7. Behavior hierarchy for the goalkeeper 

The other behaviors in the hierarchy are complex behaviors intended to perform the 
following goalkeeper tasks: 
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• goalkeeper: Top-level goalkeeper behavior. 

• gkscanobj: Scan the field on place until a given object is found. Look at landmarks and 
nets cyclically. 

• gklocalize. Get a better position estimation through looking for the closest landmarks. 

• gkclearb. Turn and move forward in order to kick the ball out of the goalkeeper’s area. 

Some of the above behaviors express specific perceptual needs by way of perceptual rules. 
For instance, most behaviors express a need for the ball position. The gkkeepout and 
gkkeeparea behaviors both need to have accurate information about the robot's own location 
in the field, and hence they express a need for the most probably visible landmarks, 
including the opponent's net. Moreover, gkcutball and gkclearb behaviors both need to have 
accurate information about the ball position in addition to the robot's own accurate location 
in the field (to avoid self scoring). In general, the overall perceptual needs of the goalkeeper
behavior depend on which sub-behaviors are activated at every moment, and are used to 
direct perception. 

5. High-level Behaviors 

5.1 The HFSM Model and Tools 

For specifying and implementing high-level behaviors we make use of the Hierarchical 
Finite State Machine (HFSM) paradigm (Hugel et al, 2005). In some way or another, the 
notion of state is usually implied on the execution of a high-level behavior: there is a 
necessity on knowing what was the state of execution between two successive invocations of 
the behavior. In the RoboCup, most teams implement some form of state machines, be they 
ad hoc implementations or the output of formal tools like XABSL (Loetzsch et al., 2006) or 
Petri Nets (Ziparo and Iocchi, 2006).  
An HFSM consists on a set of states, meta-states, which are state machines, and transitions 
between states and/or meta-states. When the robot is in a state, it executes the 
corresponding state's code, which is standard LUA code accessing to local perceptions (ball, 
nets, landmarks, etc.), global information (global ball position, own location, etc.) and 
shared messages (teammate positions, etc.) from other robots. The states usually invoke low-
level behaviors (faceball, go2ball, etc). The transitions between states and/or meta-states 
define the conditions to change from one to the other state by the initial and final conditions 
of the states or meta-states. The meta-states are automata in their self and must carry out all 
the preconditions for an automaton; they must have an initial state, which is executed first, 
and cannot contain itself, i.e., an automaton can contain several meta-states (but not itself) 
and these meta-state can be referenced in different places in our automaton or from other 
automaton without duplicating code. This simple yet powerful paradigm allows us to 
specify and reuse machines than can be used inside others, avoiding the repetition of code 
and allowing for a better code management. For instance, if a typical set of actions is 
modeled using a meta-state called Score, whenever the conditions for scoring are satisfied 
and no matter in which state we are, we can always call that meta-state. Thus we write code 
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for scoring once, and we can invoke it in different situations. This is much like a subroutine 
is in programming. 
In our implementation, the main HFSM is a meta-state. Meta-states can be referenced from 
different states without duplicating code. The transitions are implemented defining two 
conditions to change between states: test code and priority. When the robot is in a state, it 
checks the test conditions from all transitions from this state. If some of these tests are 
satisfied, the new state for the robot is the final state of that transition otherwise the robot 
continues executing the current state. In the case many transitions come out from the same 
state, the priority associated to the transition is used to decide the final state. In practice, 
transition code is checked considering the priority, and when the conditions of a transition 
are satisfied, the robot’s state is changed. When the transitions are checked, not only the 
transitions from the state (inside the meta-state) are checked but also the transitions from the 
meta-state. In fact, transitions from the meta-state are first checked, that is, transitions from 
meta-states have more priority than transitions from states. 
The HFSM mechanism is also used for role assignment and execution (Agüero at al., 2006a), 
so that field players can play different roles in different game conditions. For example, if a 
defender goes to the ball it can change its role to attacker and another robot should change 
to its own role to defender. This can be easily achieved defining several meta-states and 
sharing information between the robots in order to know when to change. Fig. 8 shows an 
example of the HFSM of field players using three roles: attacker, defender and supporter. 
Each one of these roles is implemented as a meta-state, and the transitions reflect the 
conditions for switching from a given role to another. 

Fig. 8. A sample HFSM with meta-states and transitions 

A very important feature of the HFSM model is that a visual tool can be easily produced, so 
that code development is greatly sped up. We have implemented a Java based visual editor 
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for HFSM which is based on a early implementation of the tool by the Université de 
Versailles (Hugel et al, 2005). We have redesigned the GUI and in addition to generating 
C++ code, we also generate LUA code. The development process with the HFSM tool is as 
follows. The user starts by creating a set of states and meta-states with their corresponding 
transitions. Then the corresponding LUA code for the states and transitions is edited. 
Finally, the user can generate LUA code using the corresponding menu and then transfer it 
to the robot. The generated LUA code is included in a single LUA file. This process can be 
repeated over time without the need of stopping or rebooting the robot. The GUI includes a 
tree view of the whole HFSM (to get an overview of all the states, meta-states and 
transitions) and a visual view of the selected meta-state (Fig. 9a). When the code of a state or 
transition is edited, a programming window is open with a syntax-coloring editor and the 
list of available behaviors that can be invoked (Fig. 9b). 

Fig. 9. The HFSM editor, for meta-state edition (left) and code edition (right) 

5.2 Attacker Example 

In order to show how to apply HFSM to robotics soccer players, we present and describe a 
simple attacker, quite similar to the one currently used for competitions, being the major 
difference the lack of role negotiation (which is implemented in a higher level state machine, 
as shown in Fig. 8). The Attacker HFSM (shown in Fig. 10) is composed of three states: 
FaceBall, GoToBall, and Score. This HFSM should be activated only when the ball is in direct 
view of the robot (this is something that a higher level state machine should be take care 
for). The rationale behind the Attacker is to turn towards the ball (by calling the faceball
behavior from the FaceBall state), then move towards the ball (by calling the go2ball behavior 
from the GoToBall state), and finally pushing the ball towards the net. This last action is 
complex enough to be divided into some stages, and thus the state Score is in fact a meta-
state.
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Fig. 10. The Attacker HFSM 

The Score meta-state (shown in Fig. 11) is composed of three states: ApproachBall, Align, and 
DoKick. This meta-state should be activated only when the robot is close enough to the ball 
(approximately 50 cm). The rationale behind the Score is to move in a more precise way 
towards the ball (by calling the go2ball behavior from the ApproachBall state) while taking 
care than the robot, the ball and the net are more or less aligned (by calling the alibnet1
behavior from the Align state), and finally produce a kicking movement that pushes the ball 
into the net (by calling the dokick behavior from the DoKick state).  

Fig. 11. The Score meta-state 
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In general, the LUA code embedded in the previously described states is very simple, and 
consists in a call to the corresponding behavior, because each state has been designed to 
correspond to a single behavior. For instance, the DoKick state contains the code: 

chaos.setBehavior("dokick")

There are some states that need a little more complex code. For example, the GoToBall state 
not only calls the corresponding single behavior go2ball for robot movement, but also takes 
care of calling the appropriate localization related tasks, to avoid that in long displacements 
the robot misses the landmarks. This is the main difference between the state GoToBall and 
ApproachBall: the later does not perform localization tasks to concentrate the visual focus of 
the robot on the ball. The GoToBall state LUA code is as follows: 

local gs = chaos.gsGetMyPos() 

local ball = chaos.lps_getLpo(BALL) 

local net1 = chaos.lps_getLpo(NET1) 

local net2 = chaos.lps_getLpo(NET2) 

if (gs.quality < 0.6) then 

 chaos.trackLandMarks() 

end

if (net1.anchored < 0.5) and (net2.anchored < 0.5) then 

 chaos.setNeeded (NET1, 1.0) 

end

chaos.setBehavior("go2ball")

The code performs three activities. If the robot is not properly localized (its localization 
quality goes below 0.6) a special method trackLandMarks() is called, which sets necessities for 
the most relevant landmarks or nets. In addition, if one of the nets has not been perceived 
for some time, it sets the necessity for the opponent’s net, which might be helpful when 
attacking. Finally, it always invokes the go2ball behavior. 
Besides having LUA code in the states, there is also LUA code in the transitions, which 
basically check for the preconditions of activation of the corresponding state. These usually 
imply simple tests of either the local or global state (LPS or GS). For instance, the Kickable
transition code from state ApproachBall to DoKick (Fig. 11) is as follows: 

local ball = chaos.lps_getLpo(BALL) 

if ball.rho < 600 then

 return true 

else

 return false 

end
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This code tests if the distance of the robot to the ball is less than 60cm, in which case the ball 
can be kicked. 

6. Conclusions 

This work has presented the architecture and behavioral programming model used to 
develop a team of the Sony Four-Legged League, which is one of the official leagues of the 
RoboCup. This league is a very demanding scenario, with high uncertainty in perceptions 
and limited processing power. In addition, having a competition implies that some dates the 
software development and tuning presents high activity peaks. These facts condition the 
way robots have to be programmed. Thus, our main goal has been improving productivity 
as much as possible while being able to correctly develop all the required behaviors. 
The approach consists on adopting a programming architecture that reflects a cognitive 
separation of modules and allows for an efficient management of modules code. Because the 
standard programming mode of the AIBO robots makes use of OPEN-R and C++, the on 
robot behavior development control cycle is very unproductive, and this is typical task that 
sooner or later must be done (typically in dates close to or during the competition). We have 
then opted to use an embedded language to make much easier the behavior development 
task and have selected the LUA language for its many features, being the more important 
benefits its reduced footprint, its clear language and its execution speed. We have shown 
different examples of behaviors coded with the language and the main methods of the 
custom library to access the architecture from LUA. 
In order to organize behaviors in the architecture, we divide them into two types, low-level 
and high-level behaviors, which are implemented using the HBM and the HFSM model 
respectively. The HBM model allows us to define behaviors by way of fuzzy rules and fuzzy 
meta-rules in order to cater with uncertainty in both perceptions and actions. The HFSM 
model allows us to define behaviors by way of state machines in order to sequence high-
level tasks. The combination of these two models allows for the combination of the 
conceptual expressiveness of state machines and the robustness of fuzzy controllers, with 
the added benefit of being programmed in LUA, which allows for a very productive 
development cycle. 
Although all the work presented has been directed towards robotics soccer, it is important 
to note that the methodology and tools presented can be used in other scenarios in which 
the on robot behavior development is an important or crucial task. Two future lines open on 
this work: porting all the software and technology to a humanoid robot, and incorporating 
the methodology in the development of a prototype unmanned boat. 
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