
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7

Simulated Environment in Robot Soccer

Gregor Klan ar and Rihard Karba
University of Ljubljana

Slovenia

1. Introduction

In the last two decades the concept of multi-agent mobile systems has been observed in
many computer simulations, laboratory examples and in some practical applications.
Among such systems robot soccer has shown to be a very popular research game and has
served as a perfect example of multi-agent systems in the last few years (Ferber, 1999; Moss
& Davidsson, 2002; Stone & Veloso, 2000).
In this work the mathematical background of the developed robot soccer simulator is
presented. The main purpose of the simulator design procedure is to obtain a realistic
simulator which would be used as a tool in the process of strategy and control algorithms
design for real world robot soccer as well as for other mobile-robotics related topics. To
assure transferability to the real system the obtained strategy algorithms have to be
designed on a realistic simulator. The main motivation for robot soccer simulator
development was to design and study multi-agent control and strategy algorithms in FIRA
Middle or Large League MiroSot category (5 against 5 or 11 against 11 robots). However, on
FIRA’s (Federation of International Robot Soccer Association) official website
(www.fira.net) there exists a simulator for SimuroSot league, which could only be used in
Middle League MiroSot (5 against 5 robots). A similar simulator was built by (Liang & Liu,
2002) where robot motion is simulated by dynamic model, collisions remaining
oversimplified. There also exist a number of other simulator applications but not many
papers are available. An important part of every realistic robot soccer simulator is collision
modelling and simulation. Good mathematical background in rigid body collisions
modelling and simulation could be found in (Baraf, 1997). Another useful contribution in
the field of robotic simulator is (Larsen, 2001) where collisions are treated by spring-dumper
approach rather than by impulse force only. The use of spring-dumper linkage in collisions
makes velocities changes continuous, which is less problematic for simulation than
discontinuous change of velocities (Fremond, 1995) obtained by impulse usage. However,
spring and dumper coefficients are not easy to identify. Moreover, when observed from
macroscopic time scale (as it is in simulation) collisions are indeed discontinuous events.
Simulated robots should have a realistic shape, which should not be represented simply
with a square (the real shape of the robot is not a square) otherwise the simulation of ball
guidance and other collisions becomes unrealistic. Furthermore, some of the available robot
soccer simulators do not treat collisions well, especially the collisions among robots (robot
corners), collisions between robot and boundary and situations where the ball is in-between

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,

pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
p
e
n

A
c
c
e
s
s

D
a
ta

b
a
s
e

w
w

w
.i
-t

e
c
h
o
n
lin

e
.c

o
m

Robotic Soccer 136

two robots or robot and boundary. Algorithms on such simulators are also not transferable
enough to the real system. A majority of them is used for competitions in simulation league
and these simulators do not need to be realistic.
With a rapid progress of computer graphics used in computer games, animated movies and
other purposes a number of physics engines have appeared which can realistically simulate
rigid body dynamics considering variables such as mass, inertia, velocity, friction, etc. Some
of available physics engines are ODE – Open Dynamics Engine, Ageia physX, AERO, Karma
in Unreal Engine and many others. Their usege enables computer simulations, animations
and games such as racing games to appear more realistic. Depending on their usage there
exist two types of physics engines, namely real-time and high precision. When dealing with
interactive computing (e. g. video games), the physics engines are simplified in order to
perform in real-time. On the other hand high precision physics engines require more
processing power to be able to calculate very precise physics and are usually used by
scientists and computer animated movies. Some of physics engines are free and open
source. As such they can also be used to simulate physics in different research oriented
experiments. These packages are usually comprehensive and therefore quite difficult to
manage, use and modify. When constructing the mobile robot its mathematical background
was completely developed by our team, which enabled us to get a better insight into the
problem domain and gave us the possibility to efficiently solve some simulator specifics as
mentioned in the sequel.
The presented simulator is mainly used as a tool in control and strategy design of multi-
agent system in real game and therefore needs to be realistic. Strategy design could be
developed also on a real plant but there are some important reasons which benefit the usage
of realistic simulator as stated in the paper. Some vital parts of the simulator are explained
and modelled in more detail, beginning with the kinematics and dynamic motion modelling
considering kinematics constraints and, further on dealing with different collisions
modelling. The stress is given to the motion modelling where the assumptions of pure
rolling conditions are made and dynamic properties are included. The results of this part are
motion models of the ball and the robot with differential drive. Some new ideas of collision
formulation and realization (taking into account the real robot shape) are used as well.
Collisions are simply solved by mathematically correct discontinuous change of velocities
(states of the velocity integrators), which is more convenient for realization than simulating
collisions by applying impulse force (Baraf, 1997; Larsen, 2001). However, collisions are only
described by approximate models, which are sufficient enough for realistic behaviour of the
obtained simulator. Precise collisions modelling is usually very demanding because of many
factors, which should be considered during collision. When simulating a realistic game a
precise collision modelling is less important than motion modelling. This is because the
game strategy is designed to play a good game where different collisions are undesired and
we want to avoid them. Nevertheless collisions still happen and have to be handled. The
problems of collision detection and the method of finding the exact time of the collision are
exposed too. For the latter the existing algorithms in Matlab Simulink are used.
The system presented in this paper is available for other researchers. It can be used for
mobile-robot related experiments, such as multi-agent strategy design, agent behaviour
analysis, robot motion planning, cooperation, collision avoidance, motion planning, control
and the like. The presented simulation is available at our website (Klan ar, 2007).

Simulated Environment in Robot Soccer 137

The work is organized as follows. First, a brief system overview is revealed, followed by the
mathematical model derivation of basic agents (robots and ball). Then some new ideas of
collisions modelling considering complex robot shape are presented in more detail. Finally
some experimental results and conclusions are given.

2. System Overview

The robot soccer set-up (see Fig. 1) consists of ten Middle League MiroSot category robots
(generating two teams) of size 7.5cm cubed, orange golf ball, rectangular playground of size

2.2×1.8m, colour camera and personal computer. Colour camera is mounted above
playground (each team has its own) and is used as a global motion sensor. The objects are
identified from their colour information; orange ball and colour dresses of robots. The agent-
based control part of the programme calculates commands for each agent (robot) and sends
them to the robot by a radio connection. The robots are then driven by two powerful DC
motors; one for each wheel.

Fig. 1. Robot soccer system overview

The role of the simulator developed in the paper is to replace the real playground, camera,
robots and ball, which is expensive and needs a large place to be set up. Therefore the
simulator must include mathematical models of motion as well as collisions which happen
on the playground.

3. Mathematical Modelling

To simulate robot soccer game mathematic motion equations should be derived first. The
playground activities consist of two kinds of moving objects: robot and ball. Therefore their
motion modelling (Egeland, 2002) is presented in the sequel.

3.1 Robot Model

The robot has a two-wheel differential drive located at the geometric centre, which allows
zero turn radius and omni-directional steering because of nonholonomic constraint
(Kolmanovsky & McClamroch, 1995). It is an active object in the robot soccer game. Its

Robotic Soccer 138

appearance is given in Fig. 2 and its motion is described in the sequel by kinematics and
dynamic motion equations.

Fig. 2. Symbol description

Where To=(xo, yo) is robot geometric centre, Tc=(xc, yc) is its mass centre, mc is body mass, mk

is wheel mass and Jc, Jk, Jm are moments of inertia for robot body around axis Z, for wheel
around its axle and wheel around axis Z, respectively. Supposing pure rolling conditions of
the wheels, the following kinematics constraints can be written:

lcc

rcc

cc

rbyx

rbyx

dxy

φθθθ

φθθθ

θθθ

=−+

=++

=−−

sincos

sincos

0sincos

 (1)

Where θ is robot orientation, φr and φl are angles describing wheels rotation and d is distance
between mass centre and geometric centre. According to the first constraint in Eq. (1), the
robot cannot slide in the sideways, while the second and the third constraints describe pure
rolling of the wheels. The null space of kinematics constraints (1) defines robot kinematics
motion equation, given as:

() ()

() ()
⋅

−

−+

+−

=
l

r

l

r

c

c

b

r

b

r

db
b

r
db

b

r

db
b

r
db

b

r

y

x

φ

φ
θθθθ

θθθθ

φ

φ

θ

10

01
22

)cos()sin(
2

)cos()sin(
2

)sin()cos(
2

)sin()cos(
2

 (2)

Dynamics motion equation can further be derived using Lagrange formulation (Welles,
1967)

=

−=
∂

∂
+

∂

∂
−

∂

∂ m

j

jkjk

kkk

af
q

P

q

L

q

L

dt

d

1

λ (3)

Simulated Environment in Robot Soccer 139

the last part of Eq. (3), λj are Lagrange multiplicators associated with j-th (j=1…3) constraint
equation and ajk is k-th (k=1…5) coefficient of j-th constraint equation. Lagrangian is defined
as:

() () ()
2222

222222

222
2

2

222

l
k

r
kmc

kk
k

kk
k

cc
c

JJJJ

yx
m

yx
m

yx
m

L
llrr

φφθθ ++++

++++++=
 (4)

Defining m=mc+2mk, J=Jc+2Jm+2mk(d2+b2) and expressing (4) by robot mass centre variables
the following is obtained:

() ()θθθφφθ cossin2
2222

22222

cckl
k

r
k

cc yxdm
JJJ

yx
m

L −+++++= (5)

According to (3) the dynamic model is written as:

() ()

() ()
() ()

lllk

rrrk

cck

kc

kc

rJ

rJ

bdyxdmJ

dmym

dmxm

τλφµφ

τλφµφ

λλλθθθ

θλλθλθθθθ

θλλθλθθθθ

=−+

=−+

=−+−−+

=+++−−

=++−++

3

2

321

321
2

321
2

0cossin2

0sincossincos2

0cossincossin2

 (6)

where λ1, λ2, λ3 are Lagrange multiplicators which can effectively be eliminated by the
procedure given in (Oriolo et al., 2002; Sarkar, 1994). Brief summary is given in the sequel.
Lagrangian formulation (3) can be expressed in matrix form, such as:

qAuqEqFqqVqqM)()()(),()(T−=++ (7)

where M(q) is inertia matrix,),(qqV is vector of position and velocity dependent forces,

)(qF is vector of friction or dumping forces, E(q) is input transformation matrix, u is input

vector of actuator forces and torques and A(q) is the matrix of kinematics constraints.
System kinematics from Eq. (2) expressed in matrix form reads:

)()(tvqSq = (8)

and matrix form of kinematics constraints from Eq. (1) is

0)(=qqA (9)

Calculating first derivative of (8) gives

vSvSq += (10)

Lagrange multiplicators can finally be eliminated by substituting (8) and (10) in Eq. (7) and
pre-multiplying by ST. The part with Lagrangian multiplicators vanish because STAT=0.
The dynamics of electric part (the motors) can usually be neglected, as electrical time
constants are usually significantly smaller than mechanical time constants.

3.2 Ball Model

The ball is a passive object whose motion across the playground can be described by five
generalized coordinates as shown in Fig. 3.

Robotic Soccer 140

Fig. 3. The ball rolling on the plane

Dynamics motion equation can be derived using Lagrange formulation

()tf
q

P

q

L

q

L

dt

d

kkk

=
∂

∂
+

∂

∂
−

∂

∂
 (11)

where L stands for difference between kinetic and potential energy, P stands for power

function (dissipation function), kq stands for generalized coordinate and ()tf is external

force respectively and is nonzero when the ball collides. Lagrangian is defined as

)(
2

1
)(

2

1 22222
zyxJyxmL ϕϕϕ ++++= (12)

where m is the ball mass and J is moment of inertia. Supposing pure rolling conditions the
following kinematics constraints follow

0

0

=−

=+

x

y

ry

rx

ϕ

ϕ
 (13)

where r is ball radius. Both conditions in Eq. (13) give perfect rolling of the ball, i. e. motion
with no slipping. Constraints in Eq. (13) are holonomic (integrable) and can be used to
eliminate two generalized coordinates. Further on, by neglecting rotation around z axis

0=zω and using constraints (13), equation (12) is rewritten as

()22
2

2
yxr

J
m

L +
+

= (14)

The power function is

22

2

1

2

1
yfxfP DD += (15)

where fD is dumping coefficient. Considering (11) the final motion equation of the ball are as
follows

2

2

)(

)(

r
Jm

fytF
y

r
Jm

fxtF
x

D

D

+

⋅−
=

+

⋅−
=

 (16)

Simulated Environment in Robot Soccer 141

4. Collisions Modelling

During the motion of the robots and the ball on the playground several collisions between
them are possible. They are given as submodels and describe the collision between moving
objects: the robot-ball collision model, the robot-boundary collision model, the ball-
boundary collision model and the collision between robots model. When simulating a
realistic game, a precise collision modelling is less important than motion modelling. This is
because the game strategy is designed to play a good game where different collisions are
undesired and we want to avoid them. Nevertheless collisions still happen and have to be
handled. However, in the sequel the collision models only approximately describe real
situations. Most of the presented models are therefore relatively simple for realization in a
simulator.

4.1 Robot-Boundary Collision

When modelling collision of the robot to the boundary, the test whether all robot corners are
inside the playground must be performed first. If they are, this means that there is no such
collision. The procedure is represented by diagram in Fig. 4.

Fig. 4. Robot–boundary collision simulation diagram

The notation Diff. Equation 1 in Fig. 4 stands for Eq. (3). When the robot hits the boundary
with two corners, it stops and so robot kinematics equation (in Fig. 4 marked as Diff.
Equation 2) becomes:

=

0

0

0

ϕ

y

x

 (17)

Robotic Soccer 142

More demanding case appears when the robot hits the boundary with one corner only. If the
angle between the robot and the boundary is greater than the proposed threshold value, the
robot starts to rotate around the corner (see Fig. 5).

Fig. 5. One-corner collision with the boundary

The velocity in point TK with tangential direction to the outer circle in Fig. 5 is obtained by a

transformation of the left wheel rim velocity (rL ⋅ω). Angular velocity ωTK in point TK is

thus:

()

4

cos

22 LL

rL
TK

+

⋅⋅
=

αω
ω (18)

where angle α is

=
L

L
2arctgα (19)

and linear velocity of the robot centre (vTs) is:

()αωω cos
5

2

2

2

r
L

v LTT KS
== (20)

Robot kinematics equation (in Fig. 4 marked as Diff. Equation 3) then becomes:

() ()

() ()

()

⋅

⋅⋅−

+⋅⋅⋅

+⋅⋅⋅

=
R

L

L

r

r

r

y

x

ω

ω

α

ϕα

ϕα

ϕ

π

π

0cos
5

4

0sincos
5

2

0coscos
5

2

4

4

 (21)

If the angle between the robot and the boundary is less than the mentioned threshold, the
robot slides along the boundary (see Fig. 4).

Simulated Environment in Robot Soccer 143

4.2 Ball-Boundary Collision

In the ball-boundary collision elastic collision is supposed. The velocity component parallel
to the boundary remains the same, while the perpendicular velocity component changes
sign and is multiplied by a factor less than one, representing energy loss. To assure proper
rebound without penetration, zero crossing algorithm implemented in Matlab Simulink
environment is used to treat the problem of integration over discontinuities correctly and
efficiently. This algorithm simply changes the integration step by bisection, according to
some input variable (distance between ball and boundary multiplied by sign which is
negative if the ball is outside the playground), until the exact time of discontinuity appears.

4.3 Robot-Ball Collision

Mutual impact of the robot and the ball can be described with collision model of two
spheres (Fig. 6). Mathematically the model is based on kinetic energy and momentum
balance equations as follows

2121

2121

2121

2121

2121

2121

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

yyyy

xxxx

yyxx

yyxx

wmwmvmvm

wmwmvmvm

wmwmwmwm

vmvmvmvm

+=+

+=+

+++=

=+++

 (22)

where indexes 1 and 2 stand for the first and second sphere, v represents the velocities
before and w the velocities after the collision, while m1 is robot and m2 ball mass
respectively.
The playground coordinate system is rotated so that axis x connects mass centres of the
spheres (see Fig. 6).

Fig. 6. Collision of two spheres

Robotic Soccer 144

Because of the coordinate system rotation the impact force is different from zero only in
normal direction of the collision, i. e. direction x. Thus the velocities in direction y remain
the same. Final non-trivial velocities after the collision are then given by:

22

11

221

2

211

1

21

121

21

212

2

2

yy

yy

xxx

x

xxx

x

vw

vw

mm

vmvmvm
w

mm

vmvmvm
w

=

=

+

−+
=

+

++−
=

 (23)

where index 1 stands for the robot and index 2 stands for the ball. If m2 is very small in
comparison with m1, a simplification of Eq. (23) is justified. Some manipulations give:

()

22

11

2112

11

yy

yy

xxxx

xx

vw

vw

vvkvw

vw

=

=

−+=

=

 (24)

Furthermore, energy loss is realized by multiplying the part of Eq. (24) inside the brackets
by factor k less than one.

Fig. 7. Robot-ball collision

Calculated velocities after the collision are then used as new initial states of the integrators
in the simulator. This is equivalent to applying and simulating impulse force caused by
collision but is less suitable for realization (Egeland, 2002; The Math Works, 1998).
However to assure a realistic collision of the robot and the ball, a concrete robot shape has to
be modelled. The actual robot shape is shown in collision situation in Fig. 7 and the idea of
how to include the real robot shape into the model is given in Fig. 8.

Simulated Environment in Robot Soccer 145

Fig. 8. Shape of the robot (inner) and its rim

The outer shape is the rim of the robot obtained if the ball is rolled around the robot and its
positions are recorded. With the proposed reshaping the collision of the robot with the ball
can be treated as a collision between two points (ball centre and point on robot rim). Because
linear and angular velocities of the robot are given for geometrical centre, the following
transformations have to be done in order to obtain the velocities in the point of the rim
where the collision with the ball occurs:

ϕϕω

ϕϕω

cos)(rv

sin)(rvv

y

x

=

−=

1

1
 (25)

Function r(ϕ) is the distance from the robot centre to the collision point on the rim and ϕ is
the angle from the local robot axis x to the line connecting the robot centre and the collision
point. To solve Eq. (23) the playground coordinates are rotated first so that axis x is in
tangential direction of the rim (in the point of collision). After that the collision results are
transformed to the global coordinates.

The shape of the robot is described with two look-up tables (distance r(ϕ) and tangent(ϕ) of

the rim), which are addressed with angle ϕ. To detect if the ball hits the robot, a check of the
distance between their centres must be performed. If the distance is less than the one

obtained from look-up table r(ϕ), the ball hits the robot. The accurate time of the collision is
again obtained by zero crossing algorithm. So proper collision without penetration (within
machine precision) and accurate integration over velocities are assured.

4.4 Collisions Between Robots

The collision of two or even more robots is undoubtedly problematic from the modelling
point of view. However, the complexity of the model must be strongly dependent on the
demands of the realistic simulator, where the compromise between reality approximation
and simulation precision must be found according to the simulation usage aims. During
simulator design a few more or less approximate solutions were tested until finally the best
one was implemented. When designing the control strategy of the robot soccer game, it
seems that collisions between robots are not so important because one focuses mainly on
shots on goal, on passes, organizing defence and similar actions, while collisions between
robots are more or less undesired. However, collisions between robots are quite frequent in

Robotic Soccer 146

the game and in the case of defence also very important. Therefore they must be treated
correspondingly in a realistic simulator.

Collision Detection

A collision detection algorithm (Klan ar et al. ,2003) consists of two steps. In the first step
only the information about a possible collision is obtained. The second step is then
performed only if the possibility obtained from the first step exists. In the second step a
separating plane between objects is found. The reason for performing collision detection in
two steps is only due to lower computational burden. Thus, the second step is performed
only in situations where collision is almost inevitable.
The first step is performed by analyzing bounding boxes of all robots. The latter have their
sides parallel to the global coordinate axes, thus representing the rectangle in which robot in
its current position is included (see Fig. 9). The possibility of two objects colliding exists only
if the bounding boxes overlap. The overlapping between two bounding boxes is determined
by checking if their sides overlap in both axis directions (x and y) at the same time.

Fig. 9. Overlapping of bounding boxes in both directions

As mentioned before the second step is performed only if the overlapping of bounded boxes
from the first step exists. The separating plane is calculated so that one object (convex
polyhedrons) is on one side of the plane and the other on another side of the separating
plane. The separating plane always exists if two objects do not invade.

Collision Realization

In a two-dimensional space the separating plane is a straight line. It is convenient that the
separating plane has a normal in the same direction as is the normal direction of collision. A
separating plane should thus contain the side of one of the two objects which are involved in
collision (see Fig. 10).

Simulated Environment in Robot Soccer 147

Fig. 10. Collision of two robots

When a collision of two robots appears, the following holds:

=∆ dtFG (26)

where G stands for conservation of momentum and dtF is force impulse acting at the time

of collision. Because of the force impulse a sudden change in velocities of the two robots
occurs. Force impulse acts only in normal direction of the collision. Thus only the velocity
components in the normal direction of the collision change while perpendicular components
remain the same. To calculate the new velocities of the robots after collision the force

impulse tFJ ∆= has to be calculated. The detailed procedure to estimate the velocities of

two rigid bodies after collision is described in (Baraf, 1997; Klan ar et al., 2003). The idea is

to calculate the relative velocities in the collision point p (see Fig. 10) before and after the

collision in normal direction. It is always true that the absolute value of the relative velocity
in normal direction after the collision remains the same compared to the absolute value of

the relative velocity in normal direction before collision in point p . From that property the

amplitude of force impulse can be calculated.

Force impulse in normal direction n of the collision (also normal of the separating plane at

the time of the collision, see Fig. 10) of the two frictionless bodies is given by

)t(njJ 0= (27)

where t0 is time of the collision and j is amplitude of the force impulse. For the normal
direction of the collision the following relation can be written

−+ −= relrel vv ε (28)

meaning that absolute value of relative velocity in normal direction after collision
+
relv

remains the same or is lowered for energy loss factor ε in comparison with to absolute value

of relative velocity in normal direction before collision −
relv . From the property (28) the

amplitude of force impulse j in Equation (27) can be estimated according to procedure

described in (Baraf, 1997). Let)t(pa 0

− be the velocity of contact point of robot A before

impulse J is applied and)t(pa 0

+
 velocity of contact point of robot A after applying

impulse. Similarly notations)t(pb 0

− ,)t(pb 0

+ are used for the second robot B taking part in

the collision. Relative velocity in normal direction before applying impulse is thus

Robotic Soccer 148

))t(p)t(p()t(nv barel 000

−−− −⋅= (29)

and after applying impulse

))t(p)t(p()t(nv barel 000

+++ −⋅= (30)

Defining

)t(xpr aa 0−= (31)

where ar is the displacement vector between mass centre ax of the robot A and collision

point p . Further let ()0tva
− and ()0ta

−ω be the liner and angular velocity of robot A before

and ()0tva
+

 and ()0ta

+ω after applying force impulse. The following velocities can be

written for mass centre of robot A and for the point of collision

() () ()
a

aa
M

tnj
tvtv 0
00 += −+ (32)

() () ()()0

1

00 tnjrItt aaaa ×+= −−+ ωω (33)

aaaa r)t()t(v)t(p ×+= +++
000 ω (34)

Here Ma stands for mass of robot A and I is the corresponding moment of inertia. The same
notation is used for robot B. Inserting Equations (32) and (33) to Equation (34), the
following relation is obtained

aaa

a

aa r)))t(nr(I
M

)t(n
(j)t(p)t(p ××+⋅+= −−+

0

10
00 (35)

The velocity in the contact point of robot B considering opposite direction of impulse force is
thus

bbb

b

bb r)))t(nr(I
M

)t(n
(j)t(p)t(p ××+⋅−= −−+

0

10
00 (36)

Inserting Equations (35) and (36) into Equation (30) and then combining obtained equation
with Equation (28) the amplitude of impulse is finally calculated as

()

() ()()() () ()()() bbbaaa

ba

rel

rtnrItnrtnrItn
MM

v
j

××⋅+××⋅++

+−
=

−−

−

0

1

00

1

0

11

1 ε (37)

Having estimated the impulse, linear velocity +v and angular velocity +ω for robot mass

centre can be calculated by using relations (32), (33). It is namely equivalent to impulse force
because of collision simulation but more suitable and accurate for realization. To obtain
accurate t0 zero crossing algorithm implemented in Matlab Simulink could be used in order
to assure accurate integration of discontinuous velocities signals. This algorithm simply
changes integration step by bisection, according to some input variable (distance between
robots multiplied by a sign which is negative if robots penetrate), until exact time of
discontinuity is achieved. However, the problem of high frequency oscillations around a
discontinuity (chattering) appears when two or more robots stay in contact (robots pushing
each other). Therefore step size of simulation becomes very small which results in halting of
the simulation. Thus a better solution is to check for correspondingly small distance
between one robot corner and the separating plane belonging to another robot. If separating
plane does not exist, the time before penetration of the simulated robots must be taken into

Simulated Environment in Robot Soccer 149

account. The obtained velocities after the collision are then used to determine new initial
states of the integrators in the simulator, which is equivalent to simulating impulse force
because of the collision. The former is more suitable and accurate for realization, though.

5. Experimental Validation

In the sequel a few examples of simulator operation will be compared to the operation of a
real set-up. In these comparisons similar conditions (initial pose, velocities and situations)
are ensured. These visual comparisons give some impression about the capability of the
simulator to realistically describe the real set-up.
The situation where the ball collides with the wall and the robot is presented in Fig. 11. Here
the robot stands still while the ball starts to move with initial velocity v= 0.8 m/s. In the left
graph of Fig. 11 the experiment result from the real set-up is presented while the right one
shows a similar simulated experiment. In both figures the object shapes are drawn with 165
ms resolution (simulation sampling time is 33 ms).

0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Ball−robot collision

0.4 0.5 0.6 0.7 0.8 0.9 1

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Ball−robot collision

Fig. 11. Comparison of collision between the ball and the wall and between the ball and the
robot on a real set-up (left) and on the simulator (right)

In both cases a similar ball motion is recorded. More interesting is the second ball collision
where the ball hits the robot and rebounds from the robot specific shape presented in Figs. 7
and 8. The difference between both of thecompared figures is the course of the ball which is
supposed to be a straight line on the simulator but in a real set-up it has a slight deviation
from the straight line motion. This might happen because of the ball spinning effect after the
collision and some other (stochastic) effects such us uneven terrain, dirt on the ground
which were not considered in the simulator.
In Fig. 12 the simulated and real robot hits the boundary at the 45° angle relative to the
boundary. In both cases the robot starts with constant velocity (v=0.5 m/s).

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Robot−boundary collision

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Robot−boundary collision

Fig. 12. Comparison of collision between the robot and the wall and between the ball and
the robot on a real set-up (left) and on the simulator (right)

Robotic Soccer 150

It can be observed that both examples in Fig. 12 (real and simulated) are almost identical.
In Fig. 13 comparisons between robots from a real set-up (first column) and simulated
robots (second column) for three different collision situations (rows in Figure 13) are given.
The experiments were performed with the same initial conditions (starting positions,
orientations and velocities).

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.7

0.75

0.8

0.85

0.9

0.95

1
Real set-up

Y
[m

]

X[m]
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.7

0.75

0.8

0.85

0.9

0.95

1
Proposed simulator

Y
[m

]

X[m]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.7

0.75

0.8

0.85

0.9

0.95

1

Y
[m

]

X[m]

Real set-up

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.7

0.75

0.8

0.85

0.9

0.95

1

Y
[m

]

X[m]

Proposed simulator

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Y
[m

]

X[m]

Real set-up

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Y
[m

]

X[m]

Proposed simulator

Fig. 13. Comparison of collisions between real robots and simulated robots

From the proposed representation also the estimation of robots course and their speeds in
certain time (sample time is 33 ms) can be observed. The first and second row of Fig. 13
show the situation where compared subjects are relatively equal. The real situation where

Simulated Environment in Robot Soccer 151

robots wheels slide on the real set-up is shown in the third row in Fig. 13. Here of course
simulator gives wrong results. It is evident that the proposed robots collision model
captures the behaviour of the real robots to the reasonable extent, which means that
simulated situations cover a vast majority of collisions in real game sufficiently well.
Presented collision models give sufficient representation of real situation. However, a lot of
factors in real set-up are of significantly stochastic character what means that their
modelling is not justifiable from the usable simulator point of view (fast enough on available
personal computers, simple enough, etc.). The mentioned factors are: nonuniform friction,
dirt or dust on the playground or wheels, shape of the robot, robot strength which depends
on battery status, wheel sliding, friction is different for the direction along or perpendicular
to the direction of wheels, etc. If comparison is performed over longer time interval shown
results are useless due to above reasons. Main goal of the work however is to present
reasonably accurate motion and collision models and thus contributes to obtain more
realistic simulator, which would be used as a tool in the process of strategy and control
algorithms design. Therefore, the validation of the simulator as a whole should be done
through transferability of obtained strategy algorithms to the real system. It can be
confirmed that the behaviour of the simulator is similar enough to the real setup which
means that the designed algorithms on a simulator (strategy and low level control) can be
without modifications directly used also in real games. The simulator was tested in a
number of European and World competitions in FIRA MiroSot league (real robots) category.
There the game strategies used in real competitions were mostly developed by using the
presented simulator.

6. Conclusion

The introduced simulator is mostly used as a tool in the process of strategy and control
design for real robot soccer game. Therefore, its verification is done through transferability
of the obtained strategy algorithms to the real system. The verification shows that the
behaviour of the simulator is similar enough to the real setup, which means that the
designed algorithms (strategy and low level control) can directly be used without
modifications in real games as well.
The designed simulator has significant improvements in comparison with the available
simulator in MiroSot leagues (simulator for SimuroSot) and other available simulators; the
advantages being dynamics motion modelling and a realistic shape of the robots, which
contributes to a more realistic simulation of robot ball interactions, collisions with robots,
robots and boundary interactions and the situations where the ball is captured between two
objects (it cannot invade any object). The presented simulator proved to be a good
approximation of the real system. The motion models as well as collision models give
realistic descriptions, which enable the simulator designed algorithms to be used on the real
system.

7. Acknowledgment

The authors would like to acknowledge the Slovenian Research Agency under CRP MIR
M2-0116 project for partly funding this work.

Robotic Soccer 152

7. References

Baraf, D. (1997). An Introduction to Physically Based Modeling: Rigid Body Simulation II –
Nonpenetration Constraints, In: SIGGRAPH '97 Course notes, Carnegie Mellon
University.

Egeland, O. & Gravdahl , J. T. (2002). Modeling and Simulation for Automatic Control, Marine
Cybernetics, Trondheim, Norway.

Ferber, J. (1999). Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence,
Addison-Wesley, Essex, England.

Fremond, M. (1995). Rigid bodies collisions. Physical Letters, Vol. A, No. 1, 34-41.
Klan ar, G.; Lepeti , M.; Karba, R. & Zupan i , B. (2003). Robot soccer collision modelling

and validation in multi-agent simulator. Mathematical and computer modelling of
dynamical systems, Vol. 9, No. 2, 137-150.

Klan ar, G. (2007). Mobile Robot Simulator, available at: http://msc.fe.uni-
lj.si/PublicWWW/Klancar/RobotSimulator.html.

Kolmanovsky, I. & McClamroch, N. H. (1995). Developments in Nonholonomic Control
Problems, IEEE Control Systems, Vol. 15, 20-36.

Larsen, E. (2001). A Robot Soccer Simulator: A Case Study for Rigid Body Contact, Sony
Computer Entertainment America R&D, March 2001.

Liang, T. C. & Liu, J.S. (2002). A Distributed Mobile Robot Simulator and a Ball Passing
Strategy, Technical Report TR-IIS-02-007, Institute of Information Science, Academia
Sinica, Nankang, Taiwan.

Moss, S. & Davidsson, P. (2002). Multi-Agent-Based Simulation, Springer-Verlag, New York.
The Math Works, Inc., Simulink (1998). Dynamic System Simulation for Matlab, Natick, USA.
Oriolo, G.; Luca, A. & Vandittelli, M. (2002). WMR Control Via Dynamic Feedback

Linearization: Design, Implementation, and Experimental Validation. IEEE
Transactions on Control Systems Technology, Vol. 10, No. 6, 835-852.

Sarkar, N.; Yun, X. & Kumar, V. (1994). Control of mechanical systems with rolling
constraints: Application to dynamic control of mobile robot. The International
Journal of Robotic Research, Vol. 13, No. 1, 55-69.

Stone, P. & Veloso, M. (2000). Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robots, Vol. 8, 345-383.

Welles, D. A. (1967). Lagrangian Dynamics, Schaum's Outline Series, McGraw Hill Book
Company.

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gregor Klancar and Rihard Karba (2007). Simulated Environment in Robot Soccer, Robotic Soccer, Pedro

Lima (Ed.), ISBN: 978-3-902613-21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/simulated_environment_in_robot_soccer

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

