L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322386453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Open Access Database www.i-techonline.com

27

Distributed Particle Swarm Optimization for
Structural Bayesian Network Learning

Ferat Sahin and Archana Devasia
Rochester Institute of Technology
USA

1. Introduction

Particle Swarm Optimization (PSO) was first introduced as a concept for a non-linear
optimizer by Kennedy and Eberhart in 1995. Their seminal work articulates a technique of
evolutionary computation, which has its origin in artificial intelligence and simplified social
models such as bird flocking and fish schooling (Kennedy & Eberhart, Nov. 1995; Kennedy
& Eberhart, Oct. 1995). Its early appeal lay in its use of only primitive mathematical
operators and computational economy with regard to both memory and speed. The authors
were influenced by the work of Reynolds, Heppner and Grenander in modeling bird
flocking and recognized that the fundamental hypothesis to the development of PSO is that
an evolutionary advantage is obtained by the social sharing of information among members
of the same species. They stated that the simulation of the graceful but unpredictable
choreography of a bird flock by collision-proof agents could be used as an effective
optimizer for a wide range of functions.

1.1 PSO concept

The PSO technique involves casting a population of co-operative agents, randomly in the
multidimensional search space. Each agent has an associated fitness value, which is
evaluated by the fitness function to be optimized, and a velocity that directs its motion. Each
agent can keep track of its solution that resulted in the best fitness as well as the solutions of
the best performing agents in its neighborhood. The trajectory of each agent is dynamically
governed by its own and its companions’ historical behavior. Kennedy and Eberhart view
this adjustment as conceptually similar to the crossover operation utilized by genetic
algorithms (Kennedy & Eberhart, Nov. 1995). Such an adjustment maximizes the probability
that the agents are moving toward a region of space that will result in a better fitness. At
each step of the optimization, the agent is allowed to update its position by evaluating its
own fitness and the fitness of the neighboring agents. The PSO algorithm is terminated
when the specified maximum number of generations is reached or when the best particle
position of the entire population cannot be improved further after a sufficiently large
number of generations.

A simple pseudo code describing the functioning of the optimizer taken from (Tasgetiren &
Liang, 2003) is shown below.

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

506 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

Initialize parameters
Initialize population
Evaluate
Dof{
Find particlebest
Find globalbest
Update velocity
Update position
Evaluate

MWhile (Termination)

Kennedy and Eberhart realized that the behavior of the population of agents was more

comparable to a swarm rather than a flock. This swarm behavior or swarm intelligence rests

on five basic principles put forth by Millonas. These have been obtained from (Kennedy &

Eberhart, Nov. 1995) and (Kennedy & Eberhart, Oct. 1995) and are listed as follows:

1. Proximity principle: The population should be able to carry out simple space and time
computations.

2. Quality principle: The population should be able to respond to quality factors in the
environment.

3. Principle of diverse response: The population should not commit its activities along
excessively narrow channels.

4. Principle of stability: The population should not change its mode of behavior every time
the environment changes

5. Principle of adaptability: The population must be able to change its behavior when its
worth the computational price.

They found that the PSO concept seemed to be consistent with the checklist above. It could
inherently carry out multidimensional space calculations over a series of time steps thus
following the proximity principle. The agents could respond to quality factors such as their
own best fitness values as well as the neighborhood best, in accordance with the quality
principle. The algorithm could allocate responses between the individual best fitness value
and the neighborhood best thus ensuring the fulfillment of the principle of diverse response.
The population could change its mode of behavior only with a change in global best thereby
suggesting stability. And finally, the change of state with a change in neighborhood best
was in itself an indication of adaptability. The population was hence branded as a swarm.
The authors called each agent of the swarm, a particle and hence the label particle swarm.

1.2 Mathematical formulation
The dynamic behavior of the swarm can be quantified as given in equation (1).

V(t+1)=V(t)+¢|(x—xp)+¢2(x—x”) (1a)
x(t+1)=x(e)+v(e +1) (1b)

Here, v is the particle velocity and x is the particle position which represents a test solution.
In addition, ¢, and ¢, are uniform random variables which introduce an element of

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 507

uncertainty. The inclusion of such a stochastic factor facilitates an exhaustive search of the
hyperspace under consideration thereby preventing the swarm from converging on to a
local solution. Historically ¢, and ¢, are a combination of a positive constant and a random

function. Thus (1a) becomes,
V(l+1): V(t)+c1 Xrand, ()X(x—xp j+cz Xrand, ()x(x—xn) 2

Here ¢; and c; are acceleration constants called cognition and social constants respectively,
the functions randi() and rand,() are random functions usually uniformly distributed
between [0, 1]. The values of the constants determine the tension in the system (Shi &
Eberhart, 2001). Low values allow the particles to roam far from the target regions before
being pulled back, while high values result in abrupt movement toward or past target
regions. Kennedy and Eberhart chose the both the acceleration constants to have a value of
“2" in order to give the random factor a mean of “1” thereby causing the particles to overfly
local optima and enable search in the region between local solutions. Variables ¢, and ¢,

are clamped by an upper limit which is a parameter of the system.

The introduction of stochastic factors may cause the system to enter a state of explosion
because of increased global exploration resulting in the particle velocities and positional co-
ordinates tending to infinity. In order to prevent such a scenario, a maximum value of

velocity v, is usually defined. The second term in equation (la) is the cognition part of

max

the particle with the variable x, representing the (previous) position of the particle that

resulted in the best fitness so far. Kennedy and Eberhart referred to this as simple nostalgia
(Kennedy & Eberhart, Nov. 1995). The last term of (1a) is the communal part which involves

exchange of public knowledge. Here the variable x, is the neighborhood position that

resulted in the best fitness so far. Equation (1b) directs the new position of the particle based
upon its current position and its new velocity.

1.3 Neighborhood size

In PSO, a neighborhood is defined for an individual particle as the subset of particles it is
able to communicate with (Kennedy & Eberhart, April 2007). According to Bratton and
Kennedy, since the earliest PSO model was a simulation of the social milieu, the
neighborhood of choice was largely Euclidian. However it proved to be unwieldy and
cumbersome in mathematical computations and hence was dispensed with to be replaced
by topological neighborhoods. A number of neighborhood configurations have been
discussed in literature. Some significant ones listed below are taken from (Kennedy, 1999;
Guo et. al., July 2006) as shown in Fig. 1:

1. Stars: Every individual is connected to every other individual making the best
performing individual the social source of influence.

2. Circles: Every individual is connected to only K of its immediate neighbors. This results
in slower information propagation as compared to the stars topology. In this type of
neighborhood, clusters are created that may converge onto different local optima. But
due to neighbor to neighbor interaction, once the global solution is found, all the

508

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

clusters are pulled in towards it. For a K = 2 neighborhood (called a ring), it would take
swarmsize/ K number of steps for information about a new global best to be transmitted
to the other side of the ring.

Wheels: One individual called the focal individual is connected to all the others and they
are connected to only that one. The performance of the population is supervised by this
central individual so as to determine the best and adjust its course according to it. If the
adjustment results in improvement in the focal individual’s performance then that
improvement is communicated out to the rest of the population. This topology is faster
than the ring topology.

Random edges: For N individuals, there are N random symmetrical connections between
pairs of individuals.

Von Neumann: This topology is in the form of a 2-D lattice that wraps around itself as
can be seen in Fig. 1(d).

O

D) O

T

(©) (d)

Figure 1. Neighborhood Topologies found in (Guo et. al, July 2006, Venayagamoorthy et. al,
2007): (a) Star, (b) Wheel, (c) Ring, (d) Von Neumann

1.3.1 Global neighborhood
A global neighborhood (also referred to as the GBEST model) has a star topology. The
GBEST PSO algorithm as proposed in (Kennedy & Eberhart, Oct. 1995) is shown in Fig. 2.

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 509

Initialize population in D
dimensions with random
positions and velocity

}

Evaluate fitness function

Is
NO value < previous YES
individual best? l
New individual best = current
value
Individual best position =
Is current position

current value <
previous global best? >

New global best = current

YES value

Global best position =
current position

NO |
V(t+1):V(t)+¢1(x—xpj+¢z(x—x,,) i

x(t+1)=x(t)+v(t+1)

[teration # = max:
iterations?
Or
Fitness < threshold?,

Figure 2. Flowchart of the GBEST PSO Algorithm

All the particles in the GBEST model try to reach the global solution. Hence even when a
local solution is reached, all particles feel a tug in that direction. This may reduce the
chances of the particles exploring the entire search space and may even cause the swarm to

510 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

converge at the local solution. However since every particle keeps track of every other
particle in the swarm convergence rate is fast, which makes the GBEST approach an ideal
candidate for uni-modal problems.

1.3.2 Neighborhood of K

This refers to the Circle topology. It is called the LBEST or local version of the PSO. The
number of nearest neighbors is decided by the size of the neighborhood. As discussed
previously, for a neighborhood of size K, each particle can communicate directly with only K
other particles. Hence instead of moving toward the stochastic average of particle best and
global best, the particles move toward the points defined by particle best and local best,
which is the position of the particle with the best evaluation in the neighborhood (Kennedy
& Eberhart, Oct. 1995). Kennedy and Eberhart found this local approach to be more flexible
than the GBEST approach while trying to solve a three layer feed forward neural network
designed to solve the XOR problem (Kennedy & Eberhart, Oct. 1995). They have attributed
the insensitivity of this version to local solution to the fact that a number of groups of
particles spontaneously separate and explore different regions. The LBEST ring model has
been found to be suited for multi-model problems on account of its immunity to local
optima convergence. The flipside to this limited interaction between swarm particles is the
slower convergence rate in comparison to the GBEST model.

1.4 Other particle swarm parameters
In 2002, El Gallad et al have studied the various inputs required for working the particle
swarm optimizer. Some of their findings are described below.

1) Population of the swarm: This factor depends upon the problem being optimized. Smaller
swarms may be more successful for some problems while larger ones may be useful for
others. However if the swarm size is too small it may result in convergence upon a local
optimum while on the other hand very large swarms may increase computational time.
Hence as suggested in (El Gallad et al, 2002) a balance has to be struck between the
complexity of the algorithm and the risk of getting trapped in local optima by selecting
a proper swarm size specific to the application at hand.

2) Number of iterations: The uncertainty in the velocity update equation introduced by the
stochastic factors results in a global exploration of the search space that makes arriving
at the global optimum extremely likely if the algorithm is run for a sufficiently long
period of time. The use of the word sufficient is in itself indicative of the problem
specific nature of this parameter. Indeed the permissible error margin, which strongly
dictates the computational time, varies with the problem at hand. In cases where the
time required to converge onto the global solution appears to be very long, it is more
advantageous to run the algorithm for multiple short replications rather than running
one very long replication. This is indeed a sound suggestion since it is possible that the
time required for getting the particles out of local optima could be greater than the time
required to reinitialize a new replication in (EI Gallad et al, 2002). The stopping criterion
for such multiple replications can be evaluated by observing if successive generations
show any significant improvement or not.

3) Velocity of particles: This factor determines the fineness with which the hyperspace
under consideration is searched. If the value of this parameter is too high, then the

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 511

particles may fly past the optimal solution and may even oscillate about a certain
position. On the other hand if this value is too low, then the particles could get stuck at
a local optimum. In order to circumvent this issue, an adaptive velocity technique can
be applied. According to this approach, in the event that the solution found is
oscillatory, the value of velocity is allowed to gradually decrease in a random fashion
thereby helping the particles to get out of the oscillation and at the same time allowing
the swarm to explore new areas.

1.5 Evolution of PSO through the ages
This section elucidates the development of PSO and details the various adjustments and
modifications made to the original algorithm in order to maximize it performance.

1.5.1 Addition of inertia weight

Shi and Eberhart modified the PSO algorithm by introducing the concept of inertia weight.
They argued that such a factor was necessary in order to bring a balance between global search
and local search (Shi and Eberhart, 1998). Consider equation (la). In the absence of the term
representing the current velocity of the particle, the velocity would be memory less. If initially
a particle, i, is at the best global position then it would be stationary at that position. The other
particles would move toward the weighted centroid of their own best position and the global
best causing the swarm to statistically contract toward the global best. This continues till
another particle reaches a better global solution causing the particles to now statistically
contract toward the new global best. The described scenario represents a search space that
statistically shrinks over generations thus resembling a local search. Shi and Eberhart pointed
out that in this case the global solution could be found only if it existed within the initial search
space. Thus the search ability (i.e. global or local) could be varied by the presence or absence of
the current velocity term in equation (1a). In order to fine tune the search ability, the inertia
weight, w , was introduced which modified (1a) as follows.

V(t+l)=wv(t)+¢l(x—xpj+¢2(x—xn) 3)

Shi and Eberhart used the problem of Schaffer’s f6 function to test this algorithm using w
values ranging from 0 to 1.4. They found that the inertia weight in the range of [0.9, 1.2]
resulted in a higher success rate of finding the global solution within a reasonable number of
iterations as compared w values outside this range. They also experimented with time
decreasing inertia weights and found that as w was linearly decreased from 1.4 to 0 from
the first to the last iteration, the PSO showed significantly improved performance as regards
success rate of finding the global optimum and number of iterations required to reach this
optimum when compared to the case of using a fixed value of w. Further investigations
were carried out in (Shi & Eberhart, 2000) using a linearly decreasing inertia weight starting
at 0.9 and terminating at 0.4 on four benchmark functions viz. spherical, Rosenbrock,
Rastrigrin, and Griewank. The mathematical expression for these functions can be found in
Table 1. It was observed that the PSO algorithm converged quickly for all the four cases but
reduced its convergence speed when reaching the optimum. Shi and Eberhart attributed this
to the inability of the linearly decreasing inertia weighted PSO to perform a global search at
the end of a run. If w;, and wy, represent the initial and final values of w respectively,

512 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

MAX is the maximum number of optimization steps and ifer represents the current
iteration number, then a linearly decreasing w is defined in equation (4) (Iwamatsu, 2006),

W= Wiy =W g,) X(MAX = iter) [MAX +w 4,)
Name Mathematical Representation
D
Spherical f= Z xf
D-1
Rosenbrock f= Z {1 00Lx; | — i (x; - 1)2}
i=1
D
Rastrigrin f= z {x —10cos(2mx;)+ 10}
i=1
| & D
. 2
G k =—) X;
riewan f 000 ; : 1:1[[j
(sm X2+ y j -0.5
Schaffer’s {6 £=05-

(1+0.001(x + y2)f

Table 1. Benchmark functions used to test PSO in literature (Tasgetiren & Liang, 2003; Shi &
Eberhart, 1998; Clerc & Kennedy, 2002)

1.5.2 Introduction of constriction coefficient
Clerc and Kennedy demonstrated that constriction coefficients could be used to prevent

system explosion, which hitherto had been contained using v (Clerc & Kennedy, 2002).

max

A constriction factor is defined as follows:

_ 2
_\2—¢—\/¢>T4¢\

Here ¢ = ¢, + ¢, . The mathematical development leading to (5) is beyond the scope of this

©)

work but can be obtained from [13]. The constriction factor when inserted into the velocity
update equation modifies equation (2) as follows,

V(t+1)=}([v(t)+cl Xrand, ()X(x—xpj+cz xXrand, ()X(x—x,,)] (6)

They also showed that for values of ¢ >4, the particles would quickly converge onto the
global solution while for ¢ <4 the swarm would most likely get stuck at a local optimum.
Such a behavior is similar to that exhibited by the inclusion of inertia weight, w, into the
system response. This similarity spawned a study comparing the performance of a PSO

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 513

using a constriction factor with that using an inertia weight by (Eberhart & Shi, 2006). Five
benchmark functions viz. spherical, Rosenbrock, Rastrigrin, Griewank and Schaffer’s f6 function
were investigated during this performance analysis. It was found that even though it is not

essential to specify the value of v,,, in the constriction factor approach, limiting it to the

dynamic range of each variable in each dimension (ie. X,) of the system under
consideration resulted in the fastest and most consistent way to obtain good results. The
authors have shown that by setting w= yand ¢=c,+c,, the PSO algorithm using
constriction factor can be considered as a special case of the PSO using inertia weight.

1.5.3 Use of adaptive scaling term

Sometimes situations are encountered wherein the evaluation of the objective function may
not be feasible within a restricted time frame. In such cases the algorithm is limited to
operate within an acceptable time resulting in a solution that is sub-optimal. The ideal
choice here would be to accelerate the PSO in order to reduce convergence time and also
increase the probability of finding the global optimum. This is the motivation for
considering speed-up strategies for PSO. One such strategy proposed in (Fan, 2002)
involved the use of an adaptive scaling term into the algorithm. As discussed previously the
behavior of the swarm is modeled as shown in equation (1) and the necessary velocity
limitations are applied as shown below,

V(f) =Vimax» V() >Viax 7
V(l) = _Vmax ’ if V(t) < _Vmax ()

Fan explains that at the beginning of a search it is desirable that the particles be spread all
over the search space in order to explore all possible regions to maximize the chances of
finding the global solution. However as the search progresses, the searching scale should be
reduced in order to allow the found solution to be refined. For this purpose he introduced a

scaling term (l —(¢/T)h) that revises (7) as,
W= 0= 0/7)" Vi 190> 1= 7) Vo
V(Z) = _(1 - (I/T)h)Vmax } if V(t) < _(1 - (t/T)h)Vmax

Here, ¢ is the number of the current generation (i.e. optimization step), 7' is the maximum

®)

number of iterations and / is a positive constant chosen by trial and error. The velocity
update and position update equations remain the same as shown in equation (1). Changes
are effected only in setting the limits of velocity. Benchmark experiments revealed that this
modified PSO performed better as compared to the original PSO on test functions such as
spherical, Rosenbrock and Griewank’s function. The modified PSO had a higher
convergence rate than the original when used to solve these three function minimization
problems. Fan found that the original PSO rapidly stagnated when no improvement was
exhibited by its searched solution. However the modified PSO could still search
progressively till the global solution was found indicating a higher reliability rate. Even
with a fixed number of generations, the modified PSO exhibited better convergence
reliability. It was also found that in case of the original PSO the parameter v, strongly

514 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

influences the best function value, making the selection of v crucial. However in the

max
case of the modified PSO, this parameter can be selected quite arbitrarily within a relatively
large range. A preliminary study was also performed to examine the effect of the exponent
h that controls the reducing speed of the searching scale on the algorithm. It was found

that similar to v this parameter can also be arbitrarily selected over a wide range.

max ’/

1.5.4 Inclusion of Boundary Conditions

In order to prevent the swarm searching outside the solution space, boundary conditions

can be specified. These conditions are highly dependent upon factors such as problem

dimensionality and the location of global optimum. The following list of boundary
conditions has been taken from (Xu & Rahmat-Samii, 2007) who have also proposed two
hybrids.

1. Absorbing: This is a type of restricted boundary condition in the sense that if a particle of
the swarm flies outside the solution space in a particular dimension then it is tugged
back to the boundary of the space of that dimension and its velocity is assigned a zero
value. In 2007, Xu and Rahmat-Samii liken this situation to the energy of the errant
particle being absorbed by a soft wall so that the particle is stuck on it, and eventually
gets pulled back by its memory of best locations only.

2. Reflecting: This is another type of restricted boundary condition in which the deviant
particle is pulled back to the boundary of the solution space of the dimension it
overshot and the direction of its velocity in that dimension is altered. This is equivalent
to the particle being reflected by a hard wall, and the energy driving it outside the
boundary being totally reversed in order to accelerate it back toward the solution space.

3. Damping: This is the third type of restricted boundary condition and bears a
resemblance to the reflecting boundary condition. In this case also the errant particle is
drawn back into the solution space and is relocated at the boundary of the dimension
under consideration where its velocity component is reversed and assigned a random
number between 0 and 1. The only difference between a damping and a reflecting
boundary condition is the introduction of this uncertainty factor, which makes the
reflection imperfect.

4. Invisible: This is an unrestricted boundary condition in which the particle that leaves the
solution space is not brought back but allowed to stay there. The fitness of that particle’s
position is not assessed and instead it is assigned a bad fitness value. In due course, the
particle comes back into the solution space because of its inherent characteristic of
setting its trajectory towards the weighted sum of global and individual best.

5. Invisible/Reflecting: This is the first of the two new unrestricted boundary conditions
proposed in (Xu & Rahmat-Samii, 2007) and is a hybrid of the invisible and reflecting
boundary conditions. In this case the errant particle is not pulled back to the solution
space boundary and instead gets assigned a bad fitness score. Also, the direction of the
velocity of the particle in the dimension under consideration is reversed because of
which it accelerates back toward the solution space.

6. Invisible/Damping: This is the other new boundary condition proposed in (Xu & Rahmat-
Samii, 2007) and is a combination of the invisible and reflecting boundary conditions.
Again, the deviant particle is allowed to stay outside the solution space and gets assigned
a bad fitness value while the direction of the velocity of the particle in that dimension is

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 515

reversed with a random factor between 0 and 1. As a result the particle comes back into
the solution space.

1.6 Recent applications of PSO

Since its inception in 1995, the PSO algorithm has been used extensively; in some cases being
tailored to suit the problem at hand and in other cases to solve issues that have not been
attempted so far. In this section a brief description of some of the recent applications of the
PSO algorithm have been described.

1.

Micro-PSO (uPSO): Recently a microparticle swarm optimizer (uWPSO) is proposed for
reconstructing the dielectric properties of normal and malignant breast tissues (Huang
& Mohan, 2007). This is a type of high-dimensional microwave imaging which requires
a large population of co-operative agents in order to find the global optimum for
accurate image reconstruction. The population size adversely affects the computational
effort required. Huang and Mohan have proposed an algorithm that utilizes a smaller
population and implements a set of restart operations after the population has
converged. If the population converges to a solution that is inferior or equal to the
available best solution, the solution is blacklisted for future searches and all particles are
prevented from converging onto the same solution again. They utilized the concept of
the guaranteed convergence PSO and introduced a force of repulsion modeled on the
lines of Coulomb’s law of electrostatics between particles and blacklisted solutions. This
repulsive force is inversely proportional to some power of the distance between the
particle under consideration and a given blacklisted solution. The authors suggested the
value of this power should be chosen in such a way that it cause enough force to repel
the particles away from blacklisted solutions while at the same time allowing them to
search spaces surrounding the blacklisted solutions. While selecting the value of the
inertia parameter, the authors have employed an adaptive technique that sets the value
of w depending on the quality of solutions found. As regards the type of neighborhood,
since a uPSO typically consists of only 3-5 agents, the authors have suggested the use
the GBEST topology.

Application to Electromagnetic Devices: The PSO is successfully applied for the
purpose of optimizing the design of electromagnetic devices, particularly the problem
of a super conducting magnetic energy storage (SMES) configuration with eight free
parameters (Ho et al, 2006). In their attempt they have suggested certain enhancements
in order to balance the exploration and exploitation capabilities of PSO. Stagnation may
be introduced into the PSO algorithm due to sharing of information between the
particles of the swarm. In order to boost up the diversity of the algorithm, the authors
have proposed the introduction of an age variable, which is representative of the age of
a global best, or an individual particle’s best. If this age exceeds a certain threshold
value then that particular solution is disposed and replaced by a new randomly
generated solution thus improving global search ability. The authors also recommend
that in order to further ensure the solution diversity of the particles, a Roulette wheel
scheme should be adopted for selecting the individual and global bests from their
respective sets. For the purpose of balancing personal and social experience as well as
exploration and exploitation two new random factors are introduced by the authors.
The former in this case is actually a combination of rand1() and rand2() (defined in
equation (2)) set in such a way that the sum of rand1() and rand2() equals 1. Ho et al

516

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

also proposed the inclusion of an intensified search into the algorithm for accurately
identifying the global optimum. They have explained this method as follows. When a
global best is found, an intensification search is activated in the neighborhood around
this point using only its speed vector with the cognitive and social influences being
deliberately excluded in the velocity updating formula. In this iterative process, if a
search is successful, the algorithm will keep the velocity vector unchanged while
continuing its exploitation using this speed vector; otherwise, the algorithm will
generate randomly a new speed vector to begin the next refinement search. The
intensification search process will be repeated until the number of consecutive
unsuccessful explorations around a new reaches a previously decided number.
Application to Circuit Partitioning: The PSO is applied to a circuit partitioning problem
(Venayagamoorthy et al. 2007). Such a partitioning is essential in order to reduce the
number of test vectors required to detect faults in VLSI circuits. The authors have
compared the performance of a standard I-PIFAN (improved primary input and fanout
based partitioning approach) algorithm in partitioning combinational CMOS circuits
into a number of sub-circuits with that of a modified version employing PSO (called
PSO-PIFAN). In the I-PIFAN, the circuit can be partitioned depending upon the
combinations of the maximum node fan in size N and the minimum partitioning fanout
value F. Venayagamoorthy et al showed that I-PIFAN’s search is exhaustive and hence
slow and is constrained within a pre-specified range of N and F combinations. The best
result has to be selected from this range. Thus, if the optimal solution is outside the
specified range of N and F values then it will not be found. In the case of the PSO-
PIFAN, all combinations of N and F are searched simultaneously without necessitating
a specified range. The authors have concluded that the PSO-PIFAN performs a directed
search of the solution space and uses its memory to accelerate the PSO particles towards
the global solution in a shorter time and will always converge to the optimal solution.
Application in Power Systems: Recently, there has been an attempt to demonstrate the
feasibility and robustness of PSO in solving a transient stability constrained optimal
power flow problem (TSCOPF) (Mo et al, 2007). They tested the algorithm on two test
systems viz. the IEEE 30-bus system and the New England 39-bus systems with
promising results. Comparison with GA revealed PSO to be better equipped for solving
multi-contingency TSCOPF. In order to accelerate the process of computation, the
authors have proposed the use of a parallel computing environment.

1.7 Binary PSO

In order to easily solve combinatorial problems such as scheduling and routing issues that
involve ordering or arranging of discrete elements, Kennedy and Eberhart proposed a
binary version of the PSO optimizer, which could operate on two valued functions
(Kennedy & Eberhart, 1997). In this adaptation of the original PSO, the position of each
particle is described either by a 0 or a 1 in each dimension. In this case, the velocity of the
particle in a particular dimension represents the probability of the position of the particle in

that dimension being 0 or 1. A sigmoid limiting transformation O'(v(t + 1)) is used to update

the position of the particle under consideration by comparing it to a random number p .

This is expressed in the equation (9).

If O’(v(t + 1)) > p then x(t + 1) =1 otherwise x(t + l) =0)

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 517

The random number, p, is considered to be uniformly distributed in the range [0, 1].

The pseudo code for the discrete PSO developed by Kennedy, Eberhart and Shi and taken
from (Guo et al, 2006) is described as follows:

Loop
Fori=1to N, // N, is the number of
particles
If G(Xt;) > G(Pt;) then // G() evaluates the

objective function, X' is a
potential solution ie. X4 =
(xf,-l, xti, ... xti[)), xtia 7{1,0}, D
is the number of dimensions,
t is the iteration number and
Pt = (pta, pli... plp) is the
best solution that particle i
has obtained until iteration ¢

For d =1 to D bits

Pl = Xtia //ptiais best so far

Next d

End if
g=i / /arbitrary
For j = indices of neighbors (or population)

If G(Ptj)>G(Pfg) theng =j // Ptg = (ptgj, Plea,... Pth) is
the best solution in the
population or neighborhood
at iteration f and g is index of
best performer in neighbor-
hood (or population)

Next j
Ford=1toD
vty = 0Ny + crr(plia — Xxtia) + cara(plea — Xhia)
Utid ad [_Vmax/ + Vmax]
If random number < p(vtz) then
Xty =1
else
Xt =0
Next d
Next i

Until criterion

1.7.1 Recent Applications of Binary PSO

Recently, the binary PSO approach is applied to the problem of polygonal approximation of
digital curves (Yin, 2004). This problem is of significance since it is used in a number of
image analysis tasks such as object recognition, image matching and target tracking. A
polygon can be used to represent a shape in an image since the information of a shape is

518 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

mainly preserved at the corners that have the maximal measure of significance. The problem
at hand is to approximate the curve along the corners as closely as possible while at the
same time keeping the number of vertices at the corners of the polygon (called degree of the
polygon) as small as possible. Yin employed the binary PSO technique developed in
(Kennedy & Eberhart, 1007) with a slight modification. He introduced a local search
heuristic in between successive generations of the discrete PSO so that once the algorithm
found a good region within a given iteration, it could exploit that region thoroughly before
moving onto another region. This hybrid PSO showed significantly improved performance
in terms of the number of polygon vertices necessary for the same error and variations in
results between different runs as compared to the original binary PSO.

Another work has showed the use of binary PSO in optimizing flowshop scheduling
problems (Liao et al, 2007). They used a variant of the GBEST model to search for the best
global solution. Instead of determining the global best for a given iteration from the
individual bests of the individual particles up to that iteration, the global best was
determined from the positions of the particles at the current iteration. Liao et al showed this
technique to perform better than the conventional GBEST model. Even though it spent more
time on converging, it increased the probability of not getting stuck at a local solution. In an
attempt to further improve the PSO performance, Liao et al introduced a local search scheme
to be carried out once, every fixed number of iterations within the PSO loop. The main idea
was that given a current solution, the PSO mechanism would lead the solution to an
intermediate solution. The local search would be applied to this intermediate solution in
order to reach the global solution. The binary PSO method has been applied to define a
preliminary short/medium range aircraft configuration, fully compliant with given
requirements, that allows a minimum direct operating cost (Blasi & Del Core, 2007). In this
work they tested two different boundary conditions viz. absorbing wall technique and
reflecting wall. The authors found the latter technique to provide a slightly improved
performance over the former. They also compared the PSO method with that of a previously
studied genetic optimizer and found the PSO method to be quite promising.

2. Application of PSO to fault diagnosis of airplane engines

The work discussed in this work involves using PSO in conjunction with Bayesian Networks
(BN) for diagnosing and predicting faults in airplane engines. A distributed Particle Swarm
Optimization approach is explored in order to construct the best BN from a large dataset
comprising of raw data taken from the sensors of airplane engines during actual flights. The
inherent parallelism of the PSO technique has been exploited with the algorithm being
implemented on a cluster of 48 processors using Message Passing Interface (MPI) in Linux.
The seamless blend of graph theory and probability theory that makes uncertainty
representation both instinctive and spontaneous is an inherent characteristic of Bayesian
Networks and this makes it a highly appealing option for fault diagnosis. This work
attempts to employ Bayesian Networks for the purpose of creating a fault diagnosis system.
Initially no expert information is available as regards the relationship between the variables
forming the network and it is discovered solely from the available engine data. After the
network is conceptualized, expert information is incorporated for a more accurate modeling
of the dependencies associated between fault and other system variables. The task of
determining the Bayesian Network that best fits the data is accomplished by means of PSO.

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 519

As mentioned previously, the parallel behavior exhibited by the PSO technique is employed
in fitness evaluation of the processed data on a cluster of 48 CPUs running parallel, using
MPT in Linux. Such an arrangement serves to substantially reduce computational time.

2.1 Overview of Bayesian Networks

A Bayesian Network (BN) is a probabilistic network that provides a cogent and coherent
depiction of the dependencies and independencies between the variables of interest. Such a
network is a graphical model in the form of a directed acyclic graph (DAG), which has a
causal semantics thereby enabling an effortless incorporation of causal prior knowledge.
The strength of these causal relationships is encoded in the form of conditional
independence assertions between the variables (Heckerman, 1995). Consider a domain of
random variables given by U =(X,,X,,...,X,,). These signify the nodes of a network.

Conditional dependencies are represented in the form of directed links between variables.
An arrow from node X; to node X, indicates X; to be the parent of X,. In order to quantify
the effect of the parents on the node, a conditional probability distribution is associated with
it defining its local semantics, e.g. each node X; has a conditional probability distribution
P(X, | Parents(X;)). The product of these local conditional distributions evolves into

global semantics of the problem at hand with the Chain rule being its mathematical
manifestation. The Chain rule expresses the relationship between the unconditional

probabilities P(X), the conditional probabilities P(X; | e), where ¢ is the evidence and the
joint probability P(U) as shown in equation (10). Here P(U)= P(X 15 X950 X ,,). An

exponential enhancement in P(U) is observed as the number of variables escalates.

P(U)= ﬁp(xi | Parents(X;)) (10)
i=1

2.2 Bayesian Learning

Incomplete knowledge spawns learning. It is a means of obtaining information through

experience. Bayesian Learning uses hypotheses as intermediaries between data and

predictions (Russell & Norvig, 1995). The main steps are:
e Estimating the probability of each hypothesis given the data
e Making predictions from the hypotheses, using the posterior probabilities of the
hypotheses to weight the predictions

Four classes of Bayesian Network Learning arise based on whether the structure of the

network is known or unknown and the variables are observable or hidden. These include

the following;:

1. Known structure complete data: This is the case where the network is specified and the
data does not contain any missing values. It involves evaluation of the conditional
probability tables for each node of the network from the complete data.

2. Known structure incomplete data: For this case the network is specified but the data is by
no means complete and consists of missing values or hidden variables. The missing
data can be estimated on the basis of the available data and the information about the
missing data - an approach that is adopted by the Expectation-Maximization (EM)

520 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

algorithm (Friedman, 1995) and by Gibbs” Sampling. Bound and Collapse (BC) (Sebastiani
& Ramoni, 2000) is another technique which can be explored given such a scenario.

3. Unknown structure incomplete data: Such a problem involves an unspecified network
structure coupled with data having missing vales. Exact solutions are not viable and
hence such problems call for sub optimal networks which can be determined using
gradient based algorithms using structural EM and BC (Sebastiani & Ramoni, 2000).

4. Unknown structure complete data: The problem dealt with in this chapter belongs to this
category. It attempts to learn the structure of the BN using the complete sensor data and
on the basis of the developed structure endeavors to diagnose presence/absence of
faults in airplane engines. Here the network topology has to be generated such that it
fits the data the best. The number of structures grows super-exponentially as the
number of variables multiplies, making such a problem computationally expensive.
Thus applying distributed PSO could help greatly.

2.3 Structural Learning

In order to demonstrate the suitability of Bayesian Networks as an inference tool for
predictive maintenance of airplane engines, the network has to be built first and this
requires learning its topology using the available sensor data. This is structural BN learning.
Given a training set D, the problem of learning a BN involves finding a network B that best
matches D (Friedman, 1995). Structural BN learning can be addressed using either constraint
based or score based learning. The former deals with conducting statistical tests on the given
data and then determining a unique DAG that is consistent with the observed
(in)dependencies. The latter approach focuses on optimization. It involves finding a network
structure that maximizes a defined scoring function that represents how well each network
structure fits the data. Less vulnerability to errors in individual tests gives score based
methods an edge over constraint-based techniques. The approach in this work is score
based. Literature provides an assortment of scoring functions which include log-likelihood
(Heckerman, 1995) , the minimal description length (MDL) score (Lam & Bacchus, 2000),
Bayesian score (Heckerman, 1995) etc. Of these, the K2 scoring metric (based on a Bayesian
approach) provided in (Cooper & Herskovits, 1992) has been found to be the most
successful. The technique applied in the presented work is Bayesian score, which can be
described as having the following form:

Score(B: D)= P(B| D)= % (11)
P(D|B)=IP(D|93,B)P(93|B)d‘93 (12)

Here, D represents the data and B represents a network candidate. The network structure
that maximizes P(D | B)P(B), maximizes the score as well. The probability P(D | B) is

evaluated in the equation (12), where 85 is a parameter of the network B.

As discussed previously, the goal of score based methods is to find the highest scoring
network structure. This is accomplished by means of a search algorithm. This score + search
approach is NP-hard (Chickering et al, 2004) justifying a heuristic approach (Djan-Sampson
& Sahin, 2004). The most commonly used algorithm is a simple greedy hill-climbing

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 521

algorithm. However it suffers from the ills of local maxima and plateaus that have adverse
effects on the score. Heuristic searches generally assume that ordering of variables is known
and many do not scale well with networks having a large number (more than five) of
variables. Additional scaling difficulties arise while dealing with large datasets such as gene
and census data (Sahin et al, 2007, Yavuz et al, 2006). In order to avoid the pitfalls of
heuristic searches we use a PSO based approach, as it is highly compatible with large
datasets and large networks.

2.4 Applying Binary PSO

In this problem each particle of the swarm represents a BN. The position of each particle is
made up of a string of Os and 1s where each bit represents whether an edge exists between
the nodes indexed by the bit. Assuming no node can be its own parent, the binary string will
contain n(n - 1) bits. The fitness is calculated using the scoring function given below

(Herskovits, 1992):

n 4;

r,—1
Fitness = 1/log,, H H N(l+r

) T
1 kHIN;-,-k (13)

Here r, is the number of states for node i, the first product is over the nodes in the
network, the second product is over the set of permutations of the parents of node i, and
the third product is over the states of node. Also N; is defined as

Ny= D Ny (14)

Here, N is an entry in the conditional probability table for node i. The conditional

probability table elements contain occurrences of joint instantiations of the parents, (each
permutation is indexed with j) of node i for which node i is in state k. Hence, the sum N ij

is a total of a column of the conditional probability table, where each column enumerates
occurrences of node i in each state for a specific instantiation set of parents. At each step of
the optimization, equations (la) and (9) are used to update the particle velocities and
positions respectively.

3. Fault Diagnosis

Fault diagnosis using PSO based Bayesian Network learning is accomplished in two steps:
preprocessing and network discovery. Preprocessing generates the input dataset. Network
discovery is accomplished by the PSO algorithm that is run in a computer cluster. The
output is a network that correctly models the system dependencies and serves as a tool for
system diagnosis and monitoring as well as fault prediction.

522 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

3.1 Preprocessing

Extensive information pertaining to an assortment of airplane engine parameters viz.
temperature, altitude, pressure, flight phase etc. is furnished by sensors connected to the
airplane engines. MATLAB is used for the purpose of storing this raw data as structure files.
Each structure file comprises of sensor information pertaining to a single flight. The raw
data has to be suitably condensed in order to optimize computational efforts. The fact that
oil related variables account for most number of airplane engine faults forms the basis of
such a condensation. Hence, from each raw data file the features corresponding to only oil
related variables are extracted. Another aspect necessitating preprocessing of raw data is
data sampling. In order to allow all the oil related variables in a given file to have equal
lengths, a sampling interval adjustment is vital. The necessity of sampling uniformity stems
from the fact the sampling rate of different sensors is different.

In an effort to further reduce computational expense, focus is restricted to information
obtained during the approach phase of the flight. The rationale behind the choice of flight
phase is the fact that the sensors relevant for lube diagnosis record a broad range of values
during the approach phase thereby allowing us to delineate distinct states for the BN nodes
(Sahin et al, 2007). Such a choice also helps extend the coverage of flight data analysis since
unlike take-off and cruise, the approach phase has not been studied as well (Sahin et al,
2007) . The adjusted data pertaining to a particular flight now constitutes equal sized arrays
of sensor readings corresponding to only engine oil failure related variables, further
narrowed down to include only approach phase readings. In a Bayesian Network, the
maximum number of states corresponding to each node directly influences the total run
time of the network structure learning algorithm. Hence it is crucial to reduce the variation
of the values in the adjusted dataset. This is accomplished by means of an equal frequency
data binning algorithm. Similar data are grouped together into bins while at the same time
ensuring that that each bin contains a fairly equal number of elements. The data is tagged
based on the bin numbers, which represent the probable states a given variable would be at
a particular point in time. Thus a reduction in the maximum number of states associated
with each node is brought about. In the presented work, each node is chosen to have four
states (four bins). The equal frequency binning algorithm works as follows:

1. Initially a minimum number of elements (say n) are considered to be clustered
together in one bin.

2. The first bin is filled up with the first n number of elements, the second bin by the
next n number of elements and so on. This may cause the last bin to contain more
or less than n number of elements.

3. To ensure that similar elements are in the same bin some elements are transferred
to or from adjacent bins

4. Any resulting empty bins are discarded.

5. The bins are checked to see if similar elements are grouped together in the same
bin. If not the control goes back to step (3)

6. The original data is represented by the bin number.

3.1.1 Addition of Fault
The binned data is classified as faulty or non faulty by introducing an additional column
named Fault in the data. Information regarding the presence or absence of Fault is

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 523

determined from the maintenance records of the airplane engines. For example, a flight
before an oil related repair on an engine is categorized as faulty while the very first flight
after that maintenance is considered to have non faulty flight data. The entries of the Fault
column are set to 1 or 0 respectively depending on whether the raw data file is faulty or not.

3.1.2 Packing data and compression

In order to reduce the size of the data, we have packed the data by combining data elements
in bytes and applied compression techniques. The size reduction in the data file improved
the performance of the distributed PSO algorithm since smaller data can be sent to the
slaves faster in the cluster. Thus, less time was required to complete the algorithm. After
packing and compression, it was possible to condense the original file by about 40-75 times.
Details of this approach can be found in (Sahin et al, 2007).

3.2 Using Particle Swarm Optimization for Searching the best Bayesian Network
Parallelism is the hallmark of the PSO algorithm and this feature can be efficiently exploited
for fitness calculation, as it is the most computationally demanding aspect of a BN search,
especially when the problem at hand involves a large number of variables or large datasets.
The following sections explore the characteristics of the implemented PSO. Fig. 3 shows the
distributed PSO in master-slave framework.

3.2.1 Parallel Computing for Particle Swarm Optimization

The PSO algorithm was run on a cluster of 48 CPUs operating in parallel. An MPI (Message
Passing Interface) having a master slave framework was implemented. The particle swarm
was managed and initialized by the master. Each slave process received a particle from the
master and was required to calculate its fitness and send it back. After all the fitness results
for the swarm were received by the master, the algorithm was advanced by one step i.e. one
iteration. The master again sent out the newly evolved particles to the slaves and the
procedure was repeated.

Master Process

s = =
=R O o =
2l 2 =| & =| 2
6 [¢) o o) EEE EEEEN Q g
E % (T % (¢ ©»
Ja— [\ ;
Slave Slave Slave
EEEEN
Process Process Process

Figure 3. Parallel implementation of PSO algorithm

524 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

For dynamic evolution of the swarm, all the processes must wait for each other to complete
their current fitness calculation. Such implementation architecture is termed as synchronous
PSO. Efficient parallel implementation of the PSO algorithm was accomplished by keeping
the number of slave processes equal to or greater than the number of particles. This is
because with an adequate number of processes there is a high probability that all the
processes up to the number of particles will compute fitness and return the values at
approximately the same time resulting in a small idle process time.

3.2.2 Particle and Velocity Initialization

The particles in the swarm were heuristically initialized. If there were N nodes in the
network, each particle was initialized to contain a randomly selected set of N/2 edges. If this
resulted in a cyclic particle then it had to be axed and recreated. This was critical since the
chosen fitness function was designed to handle only acyclic graphs. The maximum number
of arcs was restricted to 2N. Such a restriction did not impact the particle initialization.
There was a possibility of encountering the problem of cyclic particles yet again when the
particles were allowed to ‘fly’. At such instances the cyclic particles were identified and
rendered acyclic by repeated removal of edges. For velocity initialization, each component
of each particle’s velocity was randomly initialized on the interval

~Vmax < V, < V max (15)

This initialization lead to particles having approximately N(N —1)/2 arcs after they were

moved for the first time. This ensured adequate initial exploration of the BN bit string
particle swarm. Effectual exploration of the search space demanded intelligent selection of
maximum velocity in order to prevent greediness from creeping in.

3.3 Training and testing

For the purpose of network generation and fault prediction, the PSO based structural BN
learning code is developed in two modes: simulation and inference. The simulation mode is
also referred to as training. This mode involved using a set of preprocessed data files (called
training files) for exploring the optimal representation of the system dependencies by
execution of the PSO algorithm. Other input parameters of significance included the number
of PSO particles, type of neighborhood, and the number of optimization steps. This resulted
in a BN that was representative of the input preprocessed (training) data. Inference mode is
also called the testing mode. In this mode the accuracy of the generated BN in diagnosing
faults in known and unknown datasets was investigated. A collection of preprocessed files
different from those used for training was tested by using the BN. For this purpose a
preprocessed training sample set, its corresponding BN realization and the set of files to be
tested were fed into the inference engine. Correct diagnosis of known files served to validate
the use of the BN for fault prediction in unknown datasets. Table 2 shows the list of engine
oil failure variables under investigation that directly or indirectly influences Fault. The
problem of coming up with the best BN that models the dependencies between the listed
variables has been attempted in our previous work (Sahin et al, 2007; Yavuz et al, 2006).
Here we incorporate expert information in order to make our model more accurate. This
expert input is of two types. Firstly we tag certain variables to be independent of others as a
result of which they show absence of parents in the resulting DAG. Secondly, we determine
and discard those variables that have no influence on the system.

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 525

4. Experimental Tests and Results

QOil related variable Symbol Remarks

Pressure Altitude ALT -
Engine Cycle ECYC Independent variable
Engine Hours EHRS Independent variable

Exhaust Gas Temperature EGT -

Fuel Flow FF -

Mach MACH -

Fan Speed N1 -

Core Speed N2 -

Oil Pressure OIP -

Oil Temperature OIT -

Power Lever Angle PLA -

Total Pressure PT -
Total Air Temperature TAT Independent variable

Thrust Mode TMODE -

Engine Vibration VIB -

Table 2. List of oil related variables

4.1 Incorporation of independent variables

Based on experts at Honeywell Inc., three oil related variables viz. Engine Cycle (ECYC),
Engine Hours (EHRS) and Total Air Temperature (TAT) are considered to be unaffected by
others and hence are marked as independent variables. Initially a set of 10 files comprising
of an equal number of faulty and non-faulty files are selected. After preprocessing, this data
is fed into the simulation mode of the software that utilizes PSO to generate the required
best BN. An accurate BN entails an appropriate PSO, the efficacy of which depends upon
judicious selection of its parameters. To come up with the most efficient optimizer, four
parameters viz. number of optimization steps, swarm size, maximum velocity of particles
and type of neighborhood were investigated. These are enumerated in Table 3. The training
data was subjected to an exhaustive series of simulations in order to study the inter-
dependencies between the various PSO parameters and construct the best BN. As perceived
from the Table 3, a total of 450 simulations were carried out.

PSO parameters Values Remarks
Number of 1000, 2000, 3000,
optimization steps 4000, 5000 In a single run the PSO parameters take
Type of Global, up specified values from column 2. Each
neighborhood neighborhood of 2 Tun is repeated five times and the
Number of quality of the network generated by
umpoer o 8,16,24 using those values for the parameters is
particles S
. ' assessed by considering the average
Maximum velocity 6.8 10 fitness score of the five runs

of particles

Table 3. List of PSO Parameters

526 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

Based on these 450 runs with different PSO parameter, we see that the behavior of a
network generated using PSO is highly dependent upon the inter-relationship between the
PSO parameters. Hence the choice of parameter values is always problem specific.

The quality of the generated BNs was evaluated on the basis of the fitness score and the
number of parents to the Fault node. Networks with higher number (three or more) of
parents to Fault were desirable since these provided better inference results (Sahin et al,
2007). Also networks with smaller fitness scores tended to differentiate faulty and non faulty
files better (Sahin et al, 2007). As a result of the 450 different simulations carried, 23
networks having four or more parents to Fault were obtained. They are as listed in Table 4.

Percentage Fault

. . Non-
Network Steps NOZ of Neigh- Velocity No. of Fitness Faulty Faulty
particles borhood parents Score Test Test
File .
file

Network1 3000 24 0 10 5 -3.6058E-06 92.61% 50.03%
Network2 5000 24 2 6 5 -3.4560E-06 96.65% 45.57%
Network3 5000 16 2 6 4 -3.4486E-06 49.99% 80.00%
Network4 3000 24 2 10 4 -3.4283E-06 99.90% 38.17%
Network5 5000 24 2 10 4 -3.4095E-06 58.50% 79.01%
Network6 5000 24 2 8 4 -3.3882E-06 88.26% 69.40%
Network?7 5000 24 0 6 4 -3.3345E-06 60.28% 80.92%
Network8 5000 24 2 10 4 -3.3232E-06 58.54% 60.62%
Network9 4000 16 0 6 4 -3.2829E-06 98.00% 55.01%
Network10 2000 24 2 10 5 -3.2558E-06 67.59% 47.20%
Network1l 4000 16 0 6 5 -3.2409E-06 52.43% 59.44%
Network12 2000 8 2 8 5 -3.2369E-06 49.99% 81.41%
Network13 2000 24 2 8 4 -3.2255E-06 78.73% 80.66%
Network14 3000 24 0 10 4 -3.2123E-06 33.60% 71.63%
Network15 3000 8 0 6 4 -3.1994E-06 87.59% 79.55%
Network16 4000 16 0 8 5 -3.1810E-06 63.27% 79.90%
Network17 5000 24 2 10 5 -3.1687E-06 81.30% 77.34%
Network18 2000 16 0 8 4 -3.1684E-06 96.13% 45.82%
Network19 2000 16 2 6 4 -3.1497E-06 50.08% 69.40%
Network20 4000 24 2 10 4 -3.1247E-06 99.50% 53.97%
Network21 3000 16 0 6 5 -3.1185E-06 77.55% 47.44%
Network22 3000 8 2 6 4 -3.0115E-06 98.53% 46.34%
Network23 1000 16 0 6 4 -3.0060E-06 67.87% 50.03%

Table 4. Simulation and inference results

Each network was tested on a set of seven known files in order to determine its diagnostic
capability. The results are indicated in the final two columns of Table 4. Let us examine
Network 2. It has five parents to Fault and a very good fitness score. It indicated a fault
probability of about 97% and above for faulty files and a fault probability of about 46% and
below for non-faulty files, thus exhibiting acceptable proficiency in fault diagnosis. Now
consider Network 1. It also has five parents to Fault and in fact the best (i.e. lowest) fitness
score as compared to the other networks. It was able to successfully diagnose faulty files as
seen by the high value of fault probability for faulty files. However it demonstrated some
ambiguity while diagnosing non-faulty files. This irregularity can be attributed to data over
fitting. Increase in the number of parents to the Fault node does not always ensure

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 527

successful diagnosis. In fact overfitting may introduce excessive variance thereby reducing
the prediction quality of the model. More than the number, it is which variables are parents
to the Fault node is what is significant. Network 10 may also be the victim of such an
overfitting as is indicated by the diminished capability of the network in diagnosing faulty
files. The inferior diagnostic capability of Networks 11, 12, 16 and 17 can be attributed to
poor fitness score in addition to overfitting. On the other hand, Network 4 with 4 parents to
Fault exhibited excellent diagnostic capability even surpassing Network 2. Networks 5
through Network 8 have low (i.e. good) fitness scores but are weak representations of the
system as observed by the excessively high fault probabilities predicted by these networks
for non-faulty data. On the other hand, Networks 21 and 22 with relatively high (i.e. poor)
fitness scores function as effective diagnostic tools. This may be considered as an indication
towards the significance of the variables that affect Fault directly (i.e. are parents to Fault) as
opposed to their number. Table 5 lists the parent variables to Fault for the networks
discussed in Table 4.

Fault Percentage

Network Faulty Test File Non-faulty Test File Parents to Fault
Network1 92.614632% 50.034897 % EHRS, MACH, PT, TMODE, VIB
Network2 96.649025% 45.570953 % ECYC, EGT, MACH, N2, TMODE
Network3 49.987072% 80.001564 % ALT, EGT, EHRS, OIP
Network4 99.900787 % 38.174068 % ALT, EGT, EHRS, OIT
Network5 58.498676 % 79.011688% ECYC, EHRS, OIP, PLA
Network6 88.262665% 69.401489% EGT, EHRS, OIP, PLA
Network?7 60.278790% 80.917755% OIP, PLA, PT, TAT
Network8 58.544533 % 60.622322% ALT, MACH, N1, TAT
Network9 98.004845% 55.009872% EHRS, N2, PT, TMODE
Network10 67.592590% 47.199936 % ECYC, EGT, N1, OIT, TMODE
Network11 52.425045% 59.435143% ALT, ECYC, EHRS, N1, VIB
Networkl12 49.987072% 81.405655% ALT, ECYC, OIP, PLA, TAT
Network13 78.727547 % 80.657501 % PT, TAT, TMODE, VIB
Networkl4 33.595486% 71.633659% OIP, PLA, PT, TMODE
Networkl5 87.590485% 79.550301 % ECYC, OIP, PT, VIB
Network16 63.271446% 79.898872% EGT, MACH, OIP, PT, TAT
Networkl7 81.295242% 77.337982% ECYC, MACH, N1, OIP, TMODE
Network18 96.130951 % 45.815529% ALT, EGT, EHRS, PLA
Network19 50.079407 % 69.395515% FF, PLA, PT, TMODE
Network20 99.503967 % 53.965019% ECYC, PLA, TMODE, VIB
Network21 77.546539% 47 442135% EHRS, N1, N2, OIT, TMODE
Network22 98.533943% 46.341629% ECYC, N2, TAT, TMODE
Network23 67.869797 % 50.034897 % EGT, N2, FF, PT

Table 5. Parents to Fault node

From Table 5 it is observed that all the networks with acceptable diagnostic capability viz.
Networks 2, 4, 18, 21 and 22, include the variables ALT and/or N2 and/or TMODE as
parents to Fault. Since the amount of data is limited for such a study no generalizations will
be made. However it must be pointed out that the presence of these variables as well as that
of others not identified here but which may very well appear repeatedly as parents to Fault

528 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

in further studies can be considered of certain consequence while deciding the suitability of
a network for diagnosing or testing new data. In summary, while evaluating the quality of
the BN for inference purposes, it is essential to consider the fitness score and, not only the
number of parents but also the variables that act as parents to Fault.

4.2 Removal of irrelavent variables

Another effective way to enhance the accuracy of modeling and accelerate the algorithm is
to determine and discard those variables that have no influence on the network. Such
variables appear in the form of leaf nodes or islands. In order to obtain a visual
representation of the networks generated from the simulations, a program called GraphViz
was employed (GraphViz software). These graphical depictions were examined in order to
ascertain the unnecessary variables. Three variables viz. EGT, MACH and VIB consistently
appeared as leaf nodes in a number of networks. Fig. 4 (a) and (b) illustrate networks having
these variables as leaf nodes.

Figure 4(a). BN generated exhibiting variable EGT as a leaf node

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 529

Once the variables were identified, they were not included while pre-processing the raw
data. An appropriate training set consisting of five faulty and five non-faulty files was
selected and fed into the simulation mode of the software. The PSO parameters were chosen
corresponding to those that resulted in the best diagnostic capability. The diagnostic
proficiency of the resulting BNs was tested on a group of seven known files. The results are
as presented in Table 6.

Figure 4 (b). BN generated using the proposed software exhibiting variable VIB as a leaf
node

Five good networks were obtained by following the procedure indicated in Section 4.1. The
values of the PSO parameters of these networks were selected while training the data with
variables EGT, MACH and VIB removed. For each set of PSO parameters, four different
runs were executed with an aim to obtain at least one network having three or more parents
to Fault. As seen in Table 6, only one run out of 20 runs resulted in Fault having four
parents. Three parents to Fault were found in nine runs. These 10 networks were then used
to diagnose fault in a set of files consisting of two faulty and five non-faulty files. The results

530 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

are indicated in the last two columns of Table 6. Networks 2, 10 and 17 are able to
successfully diagnose faulty files. Though there seems to be some uncertainty in diagnosing
non-faulty files this approach looks promising. Further study is on to better the predictive
capability for non-faulty files by performing extensive number of simulations and assessing
the influence of the remaining variables on the network.

Fault Percentage

Network Ozgggl:_ No: of Neighbor- Velocity Parents Fitness Faulty FI:t?lTy
particles hood toFault Score Test
steps . Test
Files .
Files

Network1 5000 24 2 6 3 - 58.50% 53.10%
Network 2 5000 24 2 6 3 -4.0015E-06 99.97% 55.24%
Network 3 5000 24 2 6 1 - - -
Network 4 5000 24 2 6 2 - - -
Network 5 3000 24 2 10 1 - -

Network 6 3000 24 2 10 2 - - -
Network 7 3000 24 2 10 2 - - -
Network 8 3000 24 2 10 0 - - -
Network 9 2000 16 0 8 3 -4.2130E+06 58.50% 49.70%
Network 10 2000 16 0 8 3 -4.1461E-06 99.97% 51.96%
Network 11 2000 16 0 8 1 - - -
Network 12 2000 16 0 8 1 - - -
Network 13 3000 16 0 6 4 -44827E-06 62.37% 56.54%
Network 14 3000 16 0 6 3 -4.0790E-02 45.63% 60.02%
Network 15 3000 16 0 6 1 - - -
Network 16 3000 16 0 6 3 -4.0195E-06 0.00% 48.76%
Network 17 3000 8 2 6 3 -3.7565E-06 98.57% 52.61%
Network 18 3000 8 2 6 3 -3.8662E+06 47.86% 72.62%
Network19 3000 8 2 6 3 -3.6141E-06 89.88% 76.83%
Network 20 3000 8 2 6 2 - - -

Table 6. Simulation and inference results with variable removal

5. Conclusion

This work involved the implementation of a highly successful technique for fault diagnosis
and predictive maintenance of airplane engines. Some of the highlights of the discussed
Bayesian Network approach include creation of the network without prior information and
later incorporating expert information for better modeling, monitoring, and diagnosing
faults in known systems, predicting faults in unknown systems, ability to handle large
systems and the possibility of modifying the technique for diagnosing and distinguishing
different types of faults. The presented Particle Swarm Optimization technique was effectual
in reducing the computational complexity of the problem at hand by capitalizing on its
innately parallel behavior thereby enabling the application of a cluster of 48 CPUs for faster
network creation. Thus the developed software had several advantages of being generic,
robust, scalable and modifiable.

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 531

6. References

Kennedy J. & Eberhart R. (Nov. 1995), Particle Swarm Optimization, Proceedings of the IEEE
International Conference on Neural Networks, vol. 4, Nov 1995, pp. 1942-1948.
Kennedy]. & Eberhart R. (Oct. 1995), A New Optimizer using Particle Swarm Theory,
Proceedings of the 6t International Symposium on Micro Machine and Human Science,

Oct. 1995, pp. 39-43.

Tasgetiren M. F. & Liang Y.-C. (2003), A Binary Particle Swarm Optimization Algorithm for
Lot Sizing Problem, Journal of Economic and Social Research, vol. 5, No. 2, 2003, pp. 1-
20.

Shi Y. & Eberhart R. (2001), Particle Swarm Optimization: Developments, Applications and
Resources, Proceedings of the Congress on Evolutionary Computation, vol. 1, 2001, pp.
81-86.

Kennedy J. & Eberhart R. (2007), Defining a Standard for Particle Swarm Optimization,
Proceedings of the IEEE Swarm Intelligence Symposium, April 2007, pp. 120-127.

Kennedy J. (1999), Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance, Proceedings of the Congress on Evolutionary Computation,
vol. 3, July 1999, pp. 6-9.

Guo Q.-J., Yu H.-B,, & Xu A.-D. (2006), A Hybrid PSO-GD based Intelligent Method for
Machine diagnosis, Digital Signal Processing, vol. 16, No. 4, July 2006, pp. 402-18.

El-Gallad A., El-Hawary M., Sallam A. & Kalas A. (2002), Enhancing the Particle Swarm
Optimizer via Proper Parameters Selection, IEEE Canadian conference on Electrical
and Computer Engineering, vol. 2, May 2002, pp. 792-797.

Shi Y. & Eberhart R. (1998), A Modified Particle Swarm Optimizer, Proceedings of the IEEE
International Conference on Evolutionary Computation, May 1998, pp. 69-73.

Kennedy J. & Eberhart R. (1997), A Discrete Binary Version of the Particle Swarm Algorithm,
IEEE International Conference on Systems, Man and Cybernetics, vol. 5, Oct. 1997, pp.
4104-4108.

Shi Y. & Eberhart R. (2000), Empirical Study of Particle Swarm Optimization, Proceedings of
the Congress on Evolutionary Computation, vol. 1, July 2000, pp. 6-9.

Iwamatsu M. (2006), Locating All the Global Minima Using Multi-Species Particle Swarm
Optimizer: The Inertia Weight and The Constriction Factor Variants, Proceedings of
the Congress on Evolutionary Computation, vol. 3, July 2006, pp. 816-822.

Clerc M. & Kennedy J. (2002), The Particle Swarm - Explosion, Stability and Convergence in
a Multidimensional Space, IEEE Transactions on Evolutionary Computation, vol. 6,
No. 1, Feb 2002, pp. 58-73.

Eberhart R. & Shi Y. (2006), Comparing Inertia Weights and Constriction Factors in Particle
Swarm Optimization, Proceedings of the Congress on Evolutionary Computation, vol. 3,
July 2006, pp. 816-822.

Fan H. (2002), A Modification to Particle Swarm Optimization Algorithm, Engineering
Computations, vol. 19, No. 8, 2002, pp. 970-989.

Xu S. & Rahmat-Samii Y. (2007), Boundary Conditions in Particle Swarm Optimization
Revisited, IEEE Transactions on Antennas and Propagation, vol. 55, No. 3, March 2007,
pp- 760-765.

Huang T. & Mohan A. S. (2007), A Microparticle Swarm Optimizer for the Reconstruction of
Microwave Images, IEEE Transactions on Antennas and Propagation, vol. 55, No. 3,
March 2007, pp. 568-576.

532 Swarm Intelligence: Focus on Ant and Particle Swarm Optimization

Ho S. L, Shiyou Y., Guangzheng N. & Wong H. C. (2006), A Particle Swarm Optimization
Method with Enhanced Global Search Ability for Design Optimizations of
Electromagnetic Devices, IEEE Transactions on Magnetics, vol. 42, No. 4, April 2006,
pp. 1107-1110.

Venayagamoorthy G. K., Smith S. C. & Singhal G. (2007), Particle swarm-based optimal
partitioning algorithm for combinational CMOS circuits, Engineering Applications of
Artificial Intelligence, vol. 20, 2007, pp.177-184.

Yin P.-Y. (2004), A Discrete Particle Swarm Algorithm for Optimal Polygonal
Approximation of Digital Curves J. Vis. Comm. Image R., vol. 15, 2004, pp. 241-260.

Liao C.-]., Tseng C.-T. & Luarn P. (2007), A Discrete Version of Particle Swarm Optimization
for Flowshop Scheduling Problems, Computer & Operations Research, vol. 34, 2007,
pp- 3099-3111.

Blasi L. & Del Core G. (2007), Particle Swarm Approach in Finding Optimum Aircraft
Configuration, Journal of Aircraft, vol. 44, No. 2, March-April 2007, pp 679-683.

Heckerman D. (1995), A Tutorial on Learning Bayesian Networks, Microsoft Research, 1995.

Russell S. & Norvig P. (1995), Artificial Intelligence: A Modern Approach, 1995, Prentice Hall.

Friedman N. (1995), Learning Belief Networks in the Presence of Missing Values and
Hidden Variables, Proceedings of the 14t International Conference on Machine Learning,
1995, pp. 125-133.

Sebastiani P. & Ramoni M. (2000), Bayesian Inference with Missing Data using Bound and
Collapse, Journal of Computational and Graphical Statistics, vol. 9, No. 4, Dec. 2000,
pP-779-800.

Lam W. & Bacchus F. (1994), Learning Bayesian Belief Networks: An Approach Based on the
MDL Principle, Computational Intelligence, vol. 10, 1994, pp. 269-293.

Cooper G. & Herskovits E. (1992), A Bayesian method for the Induction of Probabilistic
Networks from Data, Machine Learning, vol. 9, No. 4, Oct. 1992, pp. 309-347.
Chickering D. M., Heckerman D. & Meek C. (2004), Large-Sample Learning of Bayesian
Networks is NP-Hard, Journal of Machine Learning Research, vol. 5, 2004, pp. 1287-

1330.

Djan-Sampson P. and Sahin F. (2004), Structural Learning of Bayesian Networks from
Complete Data using Scatter Search Documents, Proceedings of the IEEE Conference
on Systems, Man and Cybernetics, vol. 4, Oct 2004, pp. 3169-3624.

Sahin F., Yavuz M. C.,, Arnavut Z. & Uluyol O. (2007), Fault Diagnosis for Airplane Engines
using Bayesian Networks and Distributed Particle Swarm Optimization, Journal of
Parallel Computing, vol. 33, No. 2, March 2007, pp. 124-143.

Yavuz M. C, Sahin F., Arnavut Z. & Uluyol O. (2006), Generating and Exploiting Bayesian
Networks for Fault Diagnosis in Airplane Engines, Proceedings of the IEEE
International Conference on Granular Computing, April 2006, pp. 250-255.

Herskovits E. (1992), Computer-based probabilistic network construction, Stanford
University, CA.

Mo N., Zou Z. Y., Chan K. W,, & Pong T. Y. G. (2007), Transient stability constrained
optimal power flow using particle swarm optimisation, [ET Generation,
Transmission, and Distribution, vol. 1, issue 3, May 2007, pp. 476-483.

GraphViz Software website. http:/ /www.graphviz.org.

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization
Edited by FelixT.S.Chan and Manoj KumarTiwari

Swarm Intelligence,
Focus on Ant and
Particle Swarm
Optimization

ISBN 978-3-902613-09-7

Hard cover, 532 pages

Publisher |-Tech Education and Publishing
Published online 01, December, 2007
Published in print edition December, 2007

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state.
The escalating complexity has demanded researchers to find the possible ways of easing the solution of the
problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering
sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to
be efficient in handling the computationally complex problems with competence such as Genetic Algorithm
(GA), Ant Colony Optimization (ACQO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of
the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm
Optimization" aims to present recent developments and applications concerning optimization with swarm
intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a
variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm
intelligence, this book also presented some selected representative case studies covering power plant
maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;
manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;
wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane
engines; and process scheduling. | believe these 27 chapters presented in this book adequately reflect these
topics.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ferat Sahin and Archana Devasia (2007). Distributed Particle Swarm Optimization for Structural Bayesian
Network Learning, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, FelixT.S.Chan and
Manoj KumarTiwari (Ed.), ISBN: 978-3-902613-09-7, InTech, Available from:
http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/distrib
uted_particle_swarm_optimization_for_structural_bayesian_network_learning

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE e TR AR5 S LiEE R = EARME SR E4058 7T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,
distribution and reproduction for non-commercial purposes, provided the original is properly cited
and derivative works building on this content are distributed under the same license.

